SHATAVARI (ASPARAGUS RACEMOSUS WILD): A REVIEW ON ITS CULTIVATION, MORPHOLOGY, PHYTOCHEMISTRY AND PHARMACOLOGICAL IMPORTANCE

Ramit Singla and Vikas Jaitak*

Centre for Chemical and Pharmaceutical Sciences, School of Basics and Applied Sciences, Central University of Punjab, Bathinda-151001, Punjab, India

ABSTRACT: Asparagus racemosus, a climbing Ayurvedic plant, is known for its numerous activities such as hyperlipidemia, hypertension, angina, dysmenorrhea, anxiety disorders, benign prostatic hyperplasia (BPH), leucorrhoea and urinary tract infections. This plant possesses a wide range of secondary metabolites inclusive of steroids, alkaloids, dihydrophenanthrene derivatives, flavonoids, furan derivatives and essential oils. Information from the literature suggests that, the major constituents of A. racemosus are steroidal saponins which are mainly responsible for different biological activities of A. racemosus. The review summarizes the information concerning the cultivation, morphology, phytochemistry, biological activities, safety profile, marketing status and conservation techniques of A. racemosus.

INTRODUCTION: The genus Asparagus consisted of about 300 species around the world, out of which 22 species are recorded in India. A. racemosus is widely distributed across the globe and its distribution ranges from tropical Africa, Java, Australia, Sri Lanka, Southern parts of China and India, but it is mainly cultivated in India.1

Classification:

Kingdom : Plantae
Order : Asparagales
Family : Asparagusceae
Sub family : Asparagoideae
Genus : Asparagus
Species : Asparagus racemosus L

Vernacular names:2

Sanskrit : Satavari
Hindi : Satavari, Shatawar or Satmuli
Bengali : Shatamuli
Marathi : Shatavari or Shatmuli
Gujarati : Shatavari
Telegu : Toala-gaddalu or Pilli-gaddalu
Tamil : Shimaishadavari or Inli-chedi
Malayalam : Chatavali
Kannada : Majjigegeadde or Aheruballi
Madhya Pradesh: Narbodh or atmooli
Kumaon : Kairuwa
Rajasthan : Norkanto or Satawar

A. racemosus is an important medicinal plant which is regarded as a ‘rasayana’ which means plant drugs promoting general well-being by increasing cellular vitality and resistance.3 Use of A. racemosus is mentioned in the ancient literature of Ayurveda (Charaka samhita).4 Traditionally, A. racemosus is indicated in epilepsy, vata disorders,5 brain tonic, helps in regulating cardiac disorders and hypertension.6
It is extensively used in male genital dysfunctions, oligospermia, spermatogenic irregularities and other male disorders such as painfull micturition. It is also explored in Ayurvedic formulations for digestive discomfort, indigestion, amoebiasis, piles and debility. In females, prescribed by the doctors in habitual abortions, weakness of the uterus, excessive bleeding during menstruation. Recent reports and experiments disclosed Shatavari as antidiarrhetic, antispasmodic, aphrodisiac, antidysenteric, demulcent, diuretic, galactagogue, nutritive, mucilaginous, refrigerant, stomachic and works as a tonic for human beings. It is also known to reinforce the immune system and protect vital organs like heart, brain and other organs of the body. This review is a discussion about the cultivation, morphology, phytochemistry, biological activities, safety profile and conservation techniques for this plant.

Cultivation and Morphology: In Thailand, traditionally the decorticated roots of the plant have been used as a remedy for diseases of spleen, liver and other internal organs, including preventing miscarriage. In India, conventionally the roots have been utilized during internal pain, tumors, fever and as a tonic. A. racemosus (Shatavari) is a climbing plant consisting of tuberous roots. According to Indian pharmacopoeia, A. racemosus contains not less than 0.1 per cent of Shatavarin IV, as calculated on the dried weight basis. The taste is initially starchy and then slightly bitter followed by a sweet taste. A. racemosus has small pin-needle like phylloclades (photosynthetic branches) which are uniform and shiny green in appearance.

The roots, 5-15 cm in length and 2 cm in thickness, are marketed in the form of pieces. These are silvery white or ash-color externally and white internally. Roots are more or less smooth when fresh, and start to develop longitudinal wrinkles upon drying. Microscopically the inner parenchymatous zone of cortex is composed of 18-24 layers in the upper portion and 42-47 layers in the middle tuberous portion of the roots. Cells are thin-walled and composed of cellulosic fibres; with circular to oral outlines and distinct inter cellular spaces. In some roots 3-4 layers of cortex immediately adjacent to the endodermis are modified into a sheath of stone cells round the endodermis. The number of vascular bundles ranges from 30-35 in the upper levels and 35-45 in the middle tuberous portions of the roots. The roots upon grinding are light brown in colour with a coarse texture. The plant prefers light (sandy), medium (loamy) and heavy (clay) soil. Black, well drained and fertile soil are highly favourable for A. racemosus cultivation and can also be cultivated in loose and medium black soil. Crops mainly need tropical, hot climatic conditions and require minimum irrigation with the avoidance of over-watering. Raised beds which are about 3m are harvested in the month of May or June. The time of transplanting is in the month of July-August. It produces minute flowers in the month of July which are white and unisexual in nature.
Analytical techniques: Analysis of Shatavarin V from the root extract was performed with RP-HPLC method \(^{22}\). In another study analysis of sarsapogenin in *A. racemosus* extract under isocratic conditions by RP-HPLC \(^{23}\) has been reported. Shatavarin I and IV have been analyzed using HPLC with Evaporative Light Scattering Detector (ELSD) using a solvent system of 57.3 % ethyl acetate in methanol \(^{24}\). Presence of fructo-oligosaccharides (FOS) was reported by enzymatic, size exclusion, gas chromatography with flame ionization detector (GC–FID), high pressure anion exchange chromatography (HPAEC) and thin layer chromatography methods \(^{25}\).

Phytochemicals: *A. racemosus* consists of a diverse range of molecules in which major constituent is steroidal saponins along with alkaloids, flavonoids, dihydrophenanthrene derivatives, furan derivatives (table 1) and volatile constituents (figure 2-3). Twenty nine steroidal saponins (1-27) were reported from *A. racemosus*. An oligospirostanoside (1) named 3-O-[α-L-rhamnopyranosyl-(1→2)-α-L-rhamnopyranosyl-(1→4)-O-β-D-glucopyranosyl]-25(S)-spirosta-3β-ol is obtained from *A. racemosus* which on oral administration potentiates antibody synthesis and enhanced cell-mediated immune response in immune compromised animals \(^{26}\). Shatavarin VI (5) and Shatavarin VII (6) were reported which are specific *A. racemosus* \(^{28}\). (1S,2R,3S,8S,9S,10S,13S,14S,16S,17R,22R,25R)-21-nor-18β, 27 α-dimethyl-1β, 2β,3β-trihydroxy-25-spirost-4-en-19β-oic acid (15) which was reported to have immunostimulant property.

TABLE 1: PHYTOCHEMICALS ISOLATED FROM ASPARAGUS RACEMOSUS

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Name</th>
<th>Category</th>
<th>Plant part</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3-O-[α-L-rhamnopyranosyl-(1→2)-α-L-rhamnopyranosyl-(1→4)-O-β-D-glucopyranosyl]-25(S)-spirosta-3β-ol (1)</td>
<td>Steroidal</td>
<td>Roots</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>Racemoside A, B, C (2-4)</td>
<td>Steroidal</td>
<td>Defatted fruits</td>
<td>27</td>
</tr>
<tr>
<td>3</td>
<td>Shatavarins (5-12)</td>
<td>Steroidal</td>
<td>Root</td>
<td>28</td>
</tr>
<tr>
<td>4</td>
<td>Aspararin A (13)</td>
<td>Steroidal</td>
<td>Roots</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>Immunoside (14)</td>
<td>Steroidal</td>
<td>Roots</td>
<td>29</td>
</tr>
<tr>
<td>7</td>
<td>Sarsasapogenin (16)</td>
<td>Steroidal</td>
<td>Roots</td>
<td>31</td>
</tr>
<tr>
<td>8</td>
<td>Diosgenin (17)</td>
<td>Steroidal</td>
<td>Roots</td>
<td>31</td>
</tr>
<tr>
<td>9</td>
<td>Sitosterol (18)</td>
<td>Steroidal</td>
<td>Roots</td>
<td>31, 32, 33, 34</td>
</tr>
<tr>
<td>10</td>
<td>Anti-HIV compounds (19-24)</td>
<td>Steroidal</td>
<td>Root</td>
<td>35</td>
</tr>
<tr>
<td>11</td>
<td>Filiasparoside C (25)</td>
<td>Steroidal</td>
<td>Root</td>
<td>36</td>
</tr>
<tr>
<td>12</td>
<td>Shatavaroside A (26)</td>
<td>Steroidal</td>
<td>Root</td>
<td>37</td>
</tr>
<tr>
<td>13</td>
<td>Shatavaroside B (27)</td>
<td>Steroidal</td>
<td>Root</td>
<td>37</td>
</tr>
<tr>
<td>14</td>
<td>Asparagamine A (28)</td>
<td>Alkaloid</td>
<td>Root</td>
<td>38</td>
</tr>
<tr>
<td>15</td>
<td>Polycyclic alkaloid (29)</td>
<td>Alkaloid</td>
<td>Root</td>
<td>39</td>
</tr>
<tr>
<td>16</td>
<td>Racemosol (9, 10-dihydro-1, 5-dimethoxy-8-methyl-2, 7-phenanthrene diol) (30)</td>
<td>Dihydrophenanthrene derivative</td>
<td>Root</td>
<td>40</td>
</tr>
<tr>
<td>17</td>
<td>Racemofuran (31)</td>
<td>Furan derivatives</td>
<td>Root</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td>8-Methoxy-5,6,4-trihydroxyisoflavone-7-O-β-D-glucopyranoside (32)</td>
<td>Flavonoid</td>
<td>Root</td>
<td>41</td>
</tr>
<tr>
<td>19</td>
<td>Cyanidine-3-galatoside (33)</td>
<td>Flavonoid</td>
<td>Woody portions of tuberous roots</td>
<td>31</td>
</tr>
<tr>
<td>20</td>
<td>Kaempferol (34)</td>
<td>Flavonoid</td>
<td>Woody portions of tuberous roots</td>
<td>31</td>
</tr>
<tr>
<td>21</td>
<td>5-hydroxy-3,6,4′-trimethoxy-7-O-β-D-glucopyranosyl-[1→4]-O-α-D-xylopyranoside (35)</td>
<td>Flavonoid</td>
<td>Leaves</td>
<td>42</td>
</tr>
<tr>
<td>22</td>
<td>Quercetin (36)</td>
<td>Flavonoid</td>
<td>Flowers and fruits</td>
<td>2</td>
</tr>
<tr>
<td>23</td>
<td>Rutin (37)</td>
<td>Flavonoid</td>
<td>Flowers and fruits</td>
<td>2</td>
</tr>
<tr>
<td>24</td>
<td>Hyperoside (38)</td>
<td>Flavonoid</td>
<td>Flowers and fruits</td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td>Quercetin-3-glucuronide (39)</td>
<td>Flavonoid</td>
<td>Leaves</td>
<td>2</td>
</tr>
</tbody>
</table>
Sitosterol (20) 32, 33; Shatavaroside A (26) and Shatavaroside B (27) 37; Asparagamine A (28) 38; polycyclic alkaloid (29) 39 and Racemofuran (31) isolated from A. racemosus possess an immunomodulatory activity 3, antioxytocic property 38, human stomach cancer cells (KATO-III) in cultures with IC₅₀ =79. 81µg/ml 39 and antioxidant activity IC₅₀ value of 130 µM 17 respectively (figure 2).

FIG. 2: STRUCTURES OF STEROIDAL SAPONINS, ALKALOIDS, DIHYDROPHENANTHRENE, FURAN DERIVATIVE, FLAVONOIDS FROM ASPARAGUS RACEMOSUS

Essential oil constituents: Fifty five essential oil constituents were extracted from aerial parts pertain to a diverse range of chemical classes such as acids, alcohol, aldehyde, ester, hydrocarbon, ketone, N-containing compounds. The major ones being borneol (40), myrtanol (41), pinocarveol (42), 2-ethylhexanol (43) perillaldehyde (44), 4-[1-hydroxyethyl] benzaldehyde (45), hexanal (46), furfural (47), decanoic acid (48), undecanoic acid (49), camphor (50), 6, 10, 14-trimethyl pentadecanone (51), [E]-4-hexadecen-6-yne (52). Remaining chemical classes which consisted of ester, S and N-containing compounds were detected at lower concentration. Only three compounds; borneol (40), myrtenol (41) and paraldehyde (44) occupied 45.09% of the (figure 3) whole content 43.
Roots were also reported to contain (4,6-dihydroxy-2-O-(2-hydroxy isobutyl) benzaldehyde (53) and undecanyl cetanoate (54) 31.

Miscellaneous: The variation in the content of trace element (table 2) was also carried out by collecting plant from the different regions, varying in altitudes from the state Uttranchal, India 45. Their study indicated that there is much variation in the trace element content with the changing altitudes and the best altitude for the cultivation is 2250 meters.

TABLE 2: TRACE ELEMENTS FROM THE ASPARAGUS RACEMOSUS

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Metal</th>
<th>Root (mg/kg)</th>
<th>Leaves (mg/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Zinc</td>
<td>44.0±0.2 to 148.0±1.2</td>
<td>53.0±0.2 to 165.0±3.2</td>
</tr>
<tr>
<td>2</td>
<td>Copper</td>
<td>14.0±0.1 to 23.0±0.3</td>
<td>15.0±0.6 to 34.0±0.5</td>
</tr>
<tr>
<td>3</td>
<td>Manganese</td>
<td>5.0±1.4 to 62.0±2.5</td>
<td>14.0±0.4 to 84.0±0.7</td>
</tr>
<tr>
<td>4</td>
<td>Iron</td>
<td>211.0±0.5 to 1493.0±0.2</td>
<td>505.0±0.2 to 2040.0±0.3</td>
</tr>
<tr>
<td>5</td>
<td>Cobalt</td>
<td>84.0±0.3 to 122.0±1.5</td>
<td>85.0±0.3 to 83.0±0.2</td>
</tr>
<tr>
<td>6</td>
<td>Sodium</td>
<td>199.0±0.5 to 490.0±20</td>
<td>127.0±0.6 to 745.0±0.3</td>
</tr>
<tr>
<td>7</td>
<td>Potassium</td>
<td>2652.0±0.4 to 13260.0±3.5</td>
<td>5460.0±0.2 to 10842.0±2.5</td>
</tr>
<tr>
<td>8</td>
<td>Calcium</td>
<td>961.0±0.6 to 2115.0±3.2</td>
<td>1346.0±0.3 to 6153.0±1.6</td>
</tr>
<tr>
<td>9</td>
<td>Lithium</td>
<td>18.0±0.2 to 58.0±3.8</td>
<td>28.0±0.6 to 48.0±1.6</td>
</tr>
</tbody>
</table>

Biological activities: The second century physician Galen described *Asparagus* as "cleansing and healing". Nutritional studies demonstrated that *Asparagus* is a low-calorie source of folate and potassium. In the first century, Pliny wrote, ‘*Asparagus*, of all the plants of the garden, receives the most praiseworthy care’.

The plant is widely used in about 64 Ayurvedic formulations which include traditional formulations such as ‘Shatavari Kalpa’, ‘Phalaghrita’, ‘Vishnu taila’ 2. The plant has numerous traditional practices and these traditional practices were verified by the experimental studies.
1. **Antioxidant property:** Crude extract and purified aqueous fraction of *A. racemosus* have been demonstrated for its antioxidant effect. The activity was tested in rat liver cell mitochondrial membrane damage induced by generated free radicals. The lipid peroxidation induced was evaluated by the formation of thiobarbituric acid reactive substances (TBARS) and lipid hydroperoxides (LOOH). The extract exhibited antioxidant effect against oxidative damage by providing protection against lipid peroxidation, protein oxidation and depletion in the levels of protein thiols and antioxidant enzyme, superoxide dismutase. The purified aqueous fraction which consisted of polysaccharides was found to be a potent antioxidant as compared to the crude extract. Purified fraction was more effective against lipid peroxidation whereas the antioxidant effect of the crude extract was more effective in inhibiting protein oxidation.

The crude and purified extracts indicated protection against radiation induced loss of protein thiols and inactivation of superoxide dismutase. Racemofuran (31) and asparagamine A (28) from chloroform extract showed antioxidant activity against DPPH. A similar study indicated that an increase in the antioxidant defence owing to the significant increase in the enzymes superoxide dismutase, catalase, and ascorbic acid and significant decrease in lipid peroxidation upon treatment with *A. racemosus* root extract. Anti-oxidant study was carried out on the basis of scavenging activity of the stable DPPH (1, 1-diphenyl-2-picrylhydrazyl) free radical. The antioxidant property observed was due to their redox property of the phenolic compounds present in the ethanolic root extract.

2. **Diuretic activity:** The diuretic property was highlighted in Ayurveda has been validated by a suitable experimental model. Study was carried out using an aqueous extract of the roots utilizing three dose vials 800 mg/kg, 1600 mg/kg and 3200 mg/kg for its diuretic activity in comparison with standard drug (furosemide) and control (normal saline) rats after performing acute toxicity tests. The extract demonstrated diuretic activity at a 3200 mg/kg dose without any acute toxicity.

3. **Antidepressant activity:** Antidepressant activity was evaluated in mice using tail suspension test (TST) and forced swim test (FST). The methanolic extract decreased immobility periods significantly in TST, FST, which indicated significant antidepressant activity underlining the fact that the efficiency of the extracts was comparable to fluoxetine and imipramine used as reference drugs in the study. Methanolic extract administered to mice significantly decreased brain MAO-A (Monoamine Oxidase A) and MAO-B (Monoamine Oxidase B) activity levels it has been found that the methanolic extract possesses antidepressant activity probably by inhibiting MAO-A and MAO-B; and through interaction with adrenergic, dopaminergic, serotonergic and GABAergic systems (Gamma aminobutyric acid).

Experiments have been performed on rats using the methanolic extract and subjected to forced swim test (FST), learned helplessness test (LH) and it has been found that the extract decreases immobility in the FST and increases avoidance response in LH indicating antidepressant activity. Behavioural experiments were conducted, extract administered increased the number of head twitches produced by 5-HT (5-hydroxy tryptamine), increased clonidine-induced aggressive behaviour and it was concluded that the methanolic extract has a significant antidepressant activity mediated via serotonergic, noradrenergic systems and precipitation of antioxidant defences. Inhibitory activities of different extracts were determined on the basis of enzyme kinetics of acetyl and butyryl cholinesterases, and monoamine oxidase. Methanolic extract significantly inhibited cholinesterase and MAO activities and act as a non-selective competitive inhibitor as compared hexane and chloroform extracts. It indicated a direct possible correlation between the spinning content in methanolic extracts and cholinesterase, monoamine inhibitory activities because hexane and chloroform extract showed negligible saponin content.
4. Antiepileptic effect: The anticonvulsant activity was evaluated using different extracts on seizures induced in rat models by maximal electroshock (MES) and pentylenetetrazole. In the test carried out, the methanolic extract has shown significant anticonvulsant effect which was anticipated by the observation of a decrease in the duration of the hind limb extension, clones and also the duration of stupor phase. There was a prolonged onset of the tonic clonic seizure induced by pentylenetetrazole in the groups treated with methanolic and aqueous extracts and mechanism behind the activity was GABAergic.

5. Antitussive effect: The methanolic extract of roots has been reported to possess antitussive. The activity was tested against sulfur dioxide (SO\textsubscript{2})-induced cough in the mouse model. The methanolic root extract administered at the concentration of 200, 400 mg/kg, and codeine phosphate was taken as a standard antitussive reference drug. Upon oral administration of methanol, extract displayed 40% and 58.5% inhibition of SO\textsubscript{2}-induced cough at a dose of 200 and 400 mg/kg respectively. Antitussive effect produced was dose dependent for both extracts as well as standard drug which further supported the claims put forward by traditional medicine practitioners about the usefulness of A. racemosus in the treatment of cough.

6. Antileishmanial activity: Leishmaniasis can occur in diverse clinical forms such as cutaneous, mucosal, visceral leishmaniasis (VL, the most severe) and remain a major health problem in the tropical and subtropical areas, threatening almost 350 million people in 88 countries. The viability of promastigotes after treatment with Racemoside A (2) was evaluated using a modified MTT assay. The decreased formazan production in the promastigotes indicated that racemoside A (2) reduces the viability of the cells. Treatment with racemoside A (2) also demonstrated a dose-dependent removal of phagocytosed amastigotes. Racemoside A treated L. donovani promastigotes showed signs of programmed cell death, i.e. the flagellated promastigotes shrank and became aflagellated, oval or round with increased vacuoles. Phosphatidylycerine was translocated from the inner side of the outer layer of the plasma membrane which is observed during cell death.

7. Anti-plasmodial activity: The ethyl acetate extract of the roots of A. racemosus has been tested for anti-plasmodial activity. The extract with yield value of 7.9% per 100g have shown dose dependent inhibition of chloroquine resistant strain of Plasmodium falciparum (3D7) with an IC\textsubscript{50} value of 29µg/mL.

8. Anti-HIV activity: A. racemosus is also known to show immunomodulatory activity. Steroidal saponin glycosides have been reported from these extracts. Compound 19 isolated from the ethanolic extract exhibited the highest anti-HIV activity as compared to other saponin glycosides. Glycoside 20 with two sugars exhibited weak anti-HIV activity and saponins with three sugar units showed weak to no activity. Structurally similar compounds have been reported to have anti-HIV protease activity.
9. **Immunostimulant:** Immune deficiencies disorders are the group of disorders in which the body’s defence system is compromised, making it to be less effective against foreign invaders. As a result, the person with an immunodeficiency disorder will have frequent infections that are generally more severe and remain longer than usual. Isolated polyhydroxylated steroidal sapogenin acids (13-15) were studied on the immune system of normal and cyclosporine-A induced immune-suppressed animals and has been found that compound is a potent immune system stimulator.

The study mainly focused on the lymphocytes and cytokines, since T & B lymphocytes are the backbone of the immune system and modulation of Th1/Th2 immunity are important biological targets for immunostimulant. Upon oral administration of the compounds there has been significant and dose dependent increased CD3 & CD19 count and Th1/Th2 cytokines. Results obtained were comparable to levamisole, indicating that the compounds were potent immune system stimulator.

Steroidal saponins, shatavaroside A (26) and shatavaroside B (27), isolated from the methanolic extract of A. racemosus, and their immunomodulatory activity have been evaluated using poly-morphonuclear leukocyte function test and some more sensitive assays such as nitroblue tetrazolium, nitrous oxide and chemiluminescence assays were used as a confirmatory test for the activity. The steroidal saponins isolated were found to be active at nano concentrations (5ng/mL) and can act as a potent immunostimulant.

10. **Hepatoprotective Activity:** The hepatoprotective activity of A. racemosus was evaluated against isoniazid-induced hepatotoxicity in male albino rats. Animals exposed to Isoniazide showed necrotic changes resulting in the release of hepatic enzymes aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and γ-glutamyl transpeptidase that mark liver injury. The increased level of aspartate aminotransferase and alanine amino transferase indicated increased permeability and hepatic cell damage. Restoration of glutathione levels in cases with isoniazide toxicity upon extract administration was observed. Hepatoprotective activity was resultant of inhibited production of free radicals, acting as a scavenger and reducing the free radical generation via inhibition of hepatic CYP2E1 activity.

In paracetamol induced liver injury in rats there is increased levels of SGOT, SGPT, serum bilirubin and serum alkaline phosphatase, upon treatment with the ethanolic roots extract and reversal in their levels indicating the hepatoprotective activity. There were depleted levels of catalase and superoxide dismutase which act as antioxidants and upon treatment with the extract there was an improvement in their levels.

11. **Antibacterial activity:** The root extracts of A. racemosus have been studied for antibacterial activity employing standard cylinder method. Microbes used were Bacillus subtilis, Staphylococcus aureus, Staphylococcus wernerii, Pseudomonas aeruginosa and Escherichia coli, Proteus mirabilis, Klebsella pneumonia, Pseudomonas putida. Both gram-positive and gram-negative bacteria were sensitive to the extract. Ethanolic extract of concentration100mg/ml, 300mg/ml, 500mg/ml were prepared and there antibacterial activity was comparable to reference standard drug Gentamycin (25μg). The gram positive bacteria were most affected by Staphylococcus aureus.

12. **Pregnancy:**

a. **Antiabortifacient:** The formulations containing A. racemosus roots (eg. Shatavari sidh ghirit) were prescribed in the cases of threatened abortions. The observed activity was due to the Shatavarin-1 (7). *In vivo* effect of shatavarin IV (12) i.e. saponin A4 on the uterine muscles was similar to the estrogen. The polycyclic alkaloid asparagamine A (28) have been reported to possess an anti-oxytocic action and showing an antiabortifacient affect.
b. Antenatal tonic: A capsule Sujat containing A. racemosus extract, in a clinical trial containing a group of 450 patients, reported that regular use of this capsule during antenatal period increases the fetal weight and decreases the occurrence of perinatal deaths. There was reduction in the incidence of pregnancy induced hypertension (PIH). PGI2 and NO (nitric oxide) are the important vasodilators; a deficiency of these can lead to PIH. Essential fatty acid GLA (Gamma linolenic acid) obtained from A. racemosus known to mediate the produce PGI2 in preference to TXA2.

13. Anti-Ulcer: Acute gastric ulcers were induced in rat model by cold restraint stress, pyloric ligation, aspirin plus pyloric ligation, and duodenal ulcers induced by cysteamine. The protective activity of the extract was due to the increase in mucosal defensive factors like mucus secretion, cellular mucus, life span of cells and anti-oxidant effect. Satavari mandur an Ayurvedic preparation that containing A. racemosus given in the dose of 1.5 g, twice daily for a month displayed noteworthy improvement in symptoms of peptic ulcer and healing of peptic ulcers was endoscopically verified. A marked decrease in cell shedding and increase in mucin secretion indicated its predominant effect on mucosal defensive factors.

There was a significant reduction in ulcer index and reductions in the volume of gastric secretion upon treatment with crude extract in indomethacin treated rats. The reduction in gastric lesions was found to be comparable to standard Ranitidine. It has been concluded that A. racemosus have an antiulcerogenic activity. The activity was the result of inhibitory effect on release of gastric hydrochloric acid and protects gastric mucosal damage.

In humans, A. racemosus root powder is effective in chronic peptic ulcers. There was an increase in the lifespan of gastric mucosal epithelial cells, secretion and viscosity of gastric mucus.

14. Anti-diarrheal Activity: In the developing countries, diarrhoea is the reason for three-fourth of infant and childhood mortality. The mortality rates were found to be high in children of less than five years of age. The use of oral dehydration therapy reduced mortality but chronic diarrhoea is still a life-threatening problem in the regions where malnutrition is a regular co-existing and complication factor. The extracts of A. racemosus were evaluated for its antidiarrheal activity in castor oil-induced diarrhoeal rats. The ethanolic and aqueous extracts have been shown to possess inhibitory activity against gastrointestinal tract motility after charcoal meal administration and PGE2 induced enteropooling, taking loperamide as a reference drug.

15. Anticandidal Activity: Experimental findings suggested that methanol extracts possessed high anticandidal activity against different Candida species. The disc diffusion method was chosen for antifungal susceptibility tests taking fluconazole as a reference drug. Candida strains were isolated from vaginal thrush patients, and the species were identified using conventional tests. They observed zone of inhibition ranging from 13 to 16 mm. The MIC (Minimum inhibitory concentration) values were between 2.5 to 0.312 mg/ml, while MFC (Minimum fungicidal concentration) values ranged between 5 to 0.625 mg/mL.

16. Anti-aflatoxigenic activity: Fourteen essential oils constituents were obtained from the biodeteriorated A. racemosus which were tested as individual component as well as in combination their anti-aflatoxigenic activity. Constituents obtained were thymol, eugenol, menthol, geranyl acetate, linalool, β-asarone, 1, 8-cineol, E-citral, β-caryophyllene, α-pinene, carvone, p-cymene, carvacrol, ocimene (figure 3). Among 14 constituents, thymol and eugenol showed potent fungicidal activity since both caused blocking of the growth of spores and the rest of essential oil constituents showed moderate antifungal activity.
17. **Cardio protective effects:** Abana, herbomineral formulation manufactured by Himalayan drugs, have been found useful in controlling hypercholesterolemia, prevention and management of coronary heart disease. Abana was given in normal as well as in cases of essential hypertension and angina pectoris and was found to reduce the total cholesterol and triglyceride levels. There was an observed significant increase in high-density lipoprotein cholesterol levels 77.

The lipid-lowering effects of *A. racemosus* root extract in hypercholesteremic rats was demonstrated and the investigation revealed that primary reason of antihypercholesterolemic effect was increased excretion of cholesterol, neutral sterols, bile acid and increase in hepatic bile acid content. Increased HMG-CoA reductase activity in hypercholesteremic rats upon treatment with *A. racemosus* root powder was powders. Interestingly, normocholesteremic animals under *A. racemosus* treatment, exhibited no significant variations either in excretion of cholesterol, neutral sterols, bile acid, hepatic cholesterol and bile acid content. Significant increase in plasma HDL-C levels with a concurrent decline in the plasma cholesterol level and an improvement in the atherogenic index of hypercholesterolemic test animals clearly indicated the beneficial role of root administration in hypercholesteremic animals. The reduction in the levels of HDL-C is an indicative of high risk of cardiovascular disease, so improvement in its levels gives cardioprotective activity 15.

18. **Neurodegenerative disorders:** EuMil, polyherbal formulation consisting of standardized extracts has been used as anti-stress agent to ease the various aspects of stress related disorders. The extract showed normalization in the elevated levels of NA (nor-epinephrine), DA (dopamine), 5HT (5-hydroxy tryptamine) concentrations, which were increased by chronic electroshock stress. Decrease in neurochemical levels in the brain indicates the effectiveness of the formulation in neurological disorders 78. It has been found to be effective in neurodegenerative disorders like Alzheimer’s and Parkinson’s disease.

The potential of methanolic root extract roots against kainic acid induced hippocampal and striatal neuronal damage in mice have been evaluated 79. Upon injection of kainic acid in intra-hippocampal and intra-striatal region in anesthetized mice leads to the production of excitotoxic lesions in the brain. After the injection of kainic acid, there was an observed impairment of hippocampus and striatal regions of the brain with an increased lipid peroxidation, increased protein carbonyl content, decreased glutathione peroxidase activity and reduction in the glutathione content.

Glutathione is an important antioxidant which is a nucleophilic scavenger of toxic compounds and also act as substrate in the glutathione peroxidase mediated destruction of hydroperoxides which would otherwise accumulate to toxic levels in brain tissues. The mice treated with methanolic root extract showed an enhancement in glutathione peroxidase activity, glutathione content, reduction in membrane lipid peroxidation and protein carbonyl. They concluded, plant extract plays the role of an antioxidant by attenuating free radical induced oxidative damage. The oxidative damage protection of the hippocampal and striatal regions of the brain is useful in the neurodegenerative disease 79.

19. **Anti-cancer property:** The root extract was shown to have a protective effect in the mammary cell carcinoma 80. Steroidal components of the *A. racemosus* were investigated for the apoptotic activity and inferred to have the capacity to tumor cell death 81.

Anticancer activity of shatavaris (containing Shatavarin IV) (12) which was isolated from the roots of have been evaluated by MTT assay using MCF-7 (human breast cancer), HT-29 (human colon adenocarcinoma) and A-498 (human kidney carcinoma) cell lines and *in vivo* experimental model of Ehrlich ascites carcinoma (EAC) tumor bearing mice. The experimental results suggested that the extract (containing Shatavarin IV) possess potent anti-cancer activity 82.
Safety profile: The safety profiling of *A. racemosus* was performed extensively and have been found to be safe at therapeutic dose but showed toxicity at much higher doses. Its methanolic root extract has been administered to Charles-foster strain albino rats 100mg/kg/day for 60 days.

In prenatal study the extract treated group of rats caused increased resorption of fetuses, swelling of legs and slow growth of fetal body and placental parts. In the post-natal study it was observed that the group of rats to which the extract was administered showed a decreased number of pups per litter, increased mortality of pups per litter and delayed the various developmental parameters when compared to control group, although, it does not show teratogenicity at clinical dose.

At higher dose teratogenic effect were observed therefore highlighting that it can be given during the pregnancy but with a caution. In another study conducted using Charles-foster rats as test animals, were treated with aqueous extract of roots observed that there was no morbidity or mortality in test animals at any given dose.

There was an observed increase in the serum creatinine level at a dose of 4000 mg/kg and 5000 mg/kg in acute study, elevated level of SGPT activity at a dose of 50, 150, 500 and 1000 mg/kg and decreased blood urea nitrogen level at 500 mg/kg as compared to control. The histopathological changes were observed in the test animals and shown mild fatty change at 500mg/kg and 1000mg/kg dose.

A. racemosus is well tolerated in Charles foster rats in both acute and sub-acute toxicity study but showed some biochemical and histopathological changes. Still there is a need to find the chronic toxicity study and its mechanism in Charles foster rats.

Drugs under marketing: According to National Medicinal Plant Board, 2003 the demand for *A. racemosus* was 10,924.7 tonnes in 2001–2002 which was increased up to the level of 16,658.5 tonnes in 2004–2005 indicating the annual growth rate of its demand is 15%.

Himalayan herbal health care, currently manufactures formulations containing significant amount of extract of the plant (table 3). The substantial amount of extract in the formulations has been used by *A. racemosus*.

Conservation: The active principle is the main constituent of the medicinal plant which is of interest, so cultivating the superior clones which can be identified by molecular marker techniques and chemo-profiling are the techniques for improving the active principle contents.

The micro propagation method was developed as an efficient *in vitro* protocol for the micropropagation of *A. racemosus* through the axillary branching method. The cell suspension culture system is a more efficient method for the large scale production of secondary metabolites from plant cells.

Synthesis of sarsasapogenin in the callus cultures of *A. racemosus* has been reported than in the later studies, HPTLC showed that the highest amount of sarsasapogenin (0.133%) was present in shoot tumor followed by root callus (0.127%) and these levels were 2.59 and 2.5 times higher than the natural roots respectively. In -vitro propagation of *A. racemosus* was carried out using shoot apex and nodal explants and plants were transferred to the fields after five weeks of hardening.

Callus cultures of *A. racemosus* were developed and saponin content was determined. It was observed that maximum accumulation in root calli and nodal was 10.38 ± 0.14 mg/g of callus and 7.69 ± 0.136 mg/g of callus respectively after 60 days of accumulation. In vitro cultures showed 20 fold increases in shatavarin levels as compared to the wild type roots.
<table>
<thead>
<tr>
<th>S. No.</th>
<th>Drug</th>
<th>Content of A. racemosus</th>
<th>Medicinal property</th>
<th>Reference</th>
</tr>
</thead>
</table>
| 1 | Abana® | 10 mg Shatavari root extract per tablet | Hyperlipidemic conditions
Mild to moderate hypertension
Adjuvant in the angina with cardiac risk factor
Inhibition of platelet aggregation | 6
86
87
88 |
| 2 | Diabecon® | 20 mg Shatavari root extract per tablet | Monotherapy in non-insulin-dependent diabetes mellitus
Adjuvant to other oral antidiabetic drugs
NIDDM with hyperlipidemia
Early retinopathy
Microalbuminuria
Promotes β-cell repair/ regeneration and increases the C-peptide level | 89
90
91
92
93
94 |
| 3 | EveCare® | 32 mg Shatavari root extract per 5 ml syrup | Dysmenorrhea
Menorrhagia
Metrorrhagia
Oligomenorrhea | 95
96
97
98 |
| 4 | Geriforte® | 20 mg Shatavari root powder per tablet | Geriatric stress
Generalized anxiety disorders
Stress related anxiety
Prolonged illness and convalescence | 99
100
101
102 |
| 5 | Himplasia® | 80 mg Shatavari root powder per tablet | Benign prostatic hyperplasia | 103 |
| 6 | Lukol® | 40 mg Satavari root extract per tablet | Leukorrhea
Malaise
Backache associated with leukorrhea and Pelvic inflammatory disease | 104
105
106 |
| 7 | Menosan® | 110 mg Satavari root extract per tablet | Natural menopause
Surgical menopause | 107
108 |
| 8 | Renalka® | 50 mg Shatavari root extract per 5 mL of syrup | Burning micturition
Cystitis, Recurrent Urinary Tract Infection, Dysuria, Hematuria | 7
109 |

CONCLUSION: *A. racemosus* is an important medicinal plant having traditional importance as it is used in the indigenous system of medicines like Ayurveda, Sidha, and Unani. Traditional practices are proven by various experimental and scientific studies. This depicts the plant with tremendous potential in both healthcare and trade. Considerable work has been done to explore the biological activity and medicinal applications of the plant, still there are available countless possibilities of pharmacological applications which needs to be explored.

The plant has numerous therapeutic application *viz.* antioxidant, diuretic, antidepressant, antiepileptic, antitussive, anti-HIV, immunostimulant, hepatoprotective, cardio-protective, antibacterial, anti-ulcerative, neurodegenerative. The major studies were reported using extracts of the plant; still the active principle involved behind these activities needs to be explored. Formulations containing *A. racemosus* as the major ingredient against numerous disorders indicate its economic and therapeutic importance worldwide. The safety profile analysis showed that the *A. racemosus* is safe in therapeutic doses and can be used during pregnancy with a caution. As the value of medicinal plants depends on the active principle present in it, so the uniformity in quality as well as the quantity of planting material is of paramount importance.

Consistency can be achieved by utilizing the biotechnological approaches like micropropagation and callus culture. Furthermore, the optimization of environmental conditions and the development of appropriate agro techniques would enhance the quality and quantity of the overall production, thereby assuring of high quality and having phytochemicals in optimum yields.
This in turn would encourage farmers to undertake commercial cultivation of *A. racemosus* thus curbing the overexploitation of this plant in the wild and thereby complement the conservation process.

ACKNOWLEDGEMENTS: The authors are grateful to Prof. P. Ramarao, Dean Academic and Centre of Coordinator in Centre for Chemical and Pharmaceutical Sciences for guiding and positive feedback during the course of the work. Authors are also thankful Honourable Vice-Chancellor for providing necessary facilities at Central University of Punjab, Bathinda.

Conflict of interests: The authors have declared no conflict of interests

REFERENCES:

How to cite this article:

This article can be downloaded to ANDROID OS based mobile. Scan QR Code using Code/Bar Scanner from your mobile. (Scanners are available on Google Playstore)