VITAMIN E AMELIORATE THE LIPIDS PROBLEM INDUCES BY CONTRACEPTIVES

Saif M. Hassan *1, Mohammed A. Ejerish 2 and Usama Herba 2

Al-shomaly hospital 1, Training and Developing Center 2, Babylon Health Director, Ministry of Health, Babylon, Iraq

ABSTRACT: Women on different contraceptive methods have been linked with the development of various changes in lipids profile. Therefore, the relationship between contraceptive use and lipids changes needs to be investigated. Method: This was a cross-sectional randomized study conducted on non-lactating, non-pregnant women who were on different methods of contraceptives for at least a period of 6 months and were attending the Family Planning room at Al-shomaly hospital south of Babylon government. The study population consisted of a countryside population. One hundred twenty-five divided into five groups 25 women each group: (1): taken oral contraceptive (microgynon tablet), (2) taken oral contraceptive (microgynon tablet) with 400 IU Vitamin E per day, (3) on injectable contraceptive (depo Provera), and (4): on injectable (depo Provera) with 400 IU Vitamin E per day and (5): not taken any things as control individuals. Conclusion: contraceptives have a series role in elevation of lipids profiles, and use of Vitamin E can reduce a degree of these effects.

INTRODUCTION: Hormonal contraceptives are among the most reliable reversible methods of contraception. Their composition, dosage and usage vary, leading to differing rates of risk, side effects and advantages, as well as therapeutic and preventive effects 1. In the United States, hormone therapy delivered as oral contraceptives (OC) is one of the most commonly prescribed birth control methods, used by 11.6 million or 19% of women 2. In the early 1980s, third-generation oral contraceptives, containing the progestagens desogestrel or gestodene, were developed in an attempt to reduce the risk of cardiovascular diseases and to decrease androgenic side effects such as weight gain, acne, and adverse changes in metabolism of lipoprotein. However, in 1995 and 1996, 4 studies reported that women who used so-called third-generation oral contraceptives containing desogestrel or gestodene were at higher risk of venous thromboembolism than users of oral contraceptives with the second-generation progestagen, levonorgestrel 3.

Contraceptives prevent of pregnancy through Estrogenic effects which Inhibit ovulation by suppressing follicle stimulating hormone (FSH) and luteinizing hormone (LH), Prevent implantation by producing changes in secretions within uterus, Acceleration of ovum transport, and Cause degeneration of the corpus luteum while Progestational effects which Inhibit ovulation partly by suppressing luteinizing hormone (LH), Produce thick cervical mucus, prevent penetration of sperm, Inhibit the enzymes that permit sperm to penetrate the ovum, and Alter Fallopain tube secretion and slow ovum transport. 4

Injectable and oral contraceptives appear to influence the concentrations of serum lipids and lipoproteins. Since hyperlipidemia is one of the risk
factors of coronary artery disease (CAD), investigations of the hyperlipidemic effects of contraceptives are importance \(^5\), \(^6\). Contraceptive induces an increase in the production rate of apoB-containing lipoproteins all along the VLDL→IDL→LDL cascade \(^7\). Depo Provera (medroxyprogesterone acetate, DMPA) when given as 150 mg by deep intramuscular injection every 12 calendar weeks (84 days+5 days). Oral contraceptive methods involve remembering to take a pill each day, in the case of the progestogen only pill within the same three hours each day \(^8\). Vitamin E has a role in maintaining membrane integrity and protection from reactive oxygen species which has been implicated in both carcinogenesis and arterial injury by ischemia. As an antioxidant, it is capable of stopping the propagation of potent oxidants formed during cellular metabolism or introduced as toxic chemicals. It prevents peroxidation of membrane phospholipids \(^9\). Vitamin E supplementation significantly reduced circulating oxidized LDL and reduced LDL oxidative susceptibility \(^10\).

METHOD: This study was a cross-sectional randomized study conducted on One hundred and twenty-five, non-lactating, non-pregnant women, aged 20–45 years who were on contraceptives for not less than 6 months participated in the study who were on different methods of contraceptives and were attending the Family Planning room at Al-shomaly hospital south of Babylon government. The study population consisted of a countryside population. These women were randomly categorized into five groups with 25 women in each group:

Group (1): 25 women were on oral contraceptive (microgynon tablet)

Group (2): 25 women were on oral contraceptive (microgynon tablet) has taken 400 IU Vitamin E per day.

Group (3): 25 women were on injectable (depo Provera) and

Group (4): 25 women were on injectable (depo Provera) had taken 400 IU Vitamin E per day.

Group (5): 25 women were not taken any things as control individuals.

A questionnaire was used to collect patient information, that does include demographic data, history, and duration of contraceptive use. The questionnaire was given to each patient to complete in the Family Planning room of hospital to ensure confidentiality.

RESULTS: The ages of women were 20–45 years and that of the controls, 20–45 years. The mean ages of the five groups were 31.53±1.84 years (cases) and 29.25±8.09 years (control) and were not statistically significantly different. 25 women were on OC combined estrogen and progesterone [0.03 mg EE and 0.15 mg LNG]), 25 women were on OC has taken 400 IU vitamin E per day, 25 women were on an IC (Depo-Provera [150 mg medroxyprogesterone]), 25 women were on an IC (Depo-Provera) has taken 400 IU Vitamin E per day and 25 as control.

The mean BMI for the case group was 25.14±4.2 kg/m2, while that of the control group was 23.83±0.85kg/m2.

TABLE 1: WOMEN CHARACTERISTICS, INCLUDING AGE (YEARS), BMI (kg/m2) ABBREVIATIONS: (C, CONTROL; OC, ORAL CONTRACEPTIVE; VIT E, VITAMIN E)

<table>
<thead>
<tr>
<th>Test parameter</th>
<th>C (n=25)</th>
<th>OC (n=25)</th>
<th>IC (n=25)</th>
<th>OC + vitE (n=25)</th>
<th>IC + vitE (n=25)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>29.25±8.09</td>
<td>33.11±6.32</td>
<td>29.91±5.48</td>
<td>33.41±6.32</td>
<td>32.2±5.97</td>
<td>NS</td>
</tr>
<tr>
<td>BMI (kg/m2)</td>
<td>23.83±0.85</td>
<td>26.4±1.12</td>
<td>25.24±0.63</td>
<td>25.82±1.12</td>
<td>22.30±0.94</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Compare between control group, OC Group (1) and IC group (3):

At the end of the study, we are found that there was a significant difference between Control, OC

Group (1) and IC group (3). (P=0.002) (See Table 2, Fig.1).
1. Total Cholesterol (TC), Triglyceride (TG), and LDL levels for OC group (1) and IC group (3) were higher as compare with the control.

2. Total Cholesterol (TC), Triglyceride (TG), and LDL levels for OC group (1) were higher as compare with the IC group (3).

3. HDL levels for the control group were higher as compare with OC Group (1) and IC group (3).

<table>
<thead>
<tr>
<th>Test parameter</th>
<th>C (n=25)</th>
<th>OC (n=25)</th>
<th>IC (n=25)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC (mmol/L)</td>
<td>3.37±0.60</td>
<td>4.33±0.86</td>
<td>4.10±0.71</td>
<td></td>
</tr>
<tr>
<td>TG (mmol/L)</td>
<td>0.64±0.21</td>
<td>0.81±0.21</td>
<td>0.77±0.41</td>
<td>0.002</td>
</tr>
<tr>
<td>HDL (mmol/L)</td>
<td>1.31±0.25</td>
<td>1.3±0.25</td>
<td>1.35±0.39</td>
<td></td>
</tr>
<tr>
<td>LDL (mmol/L)</td>
<td>1.74±0.57</td>
<td>2.65±0.94</td>
<td>2.29±0.80</td>
<td></td>
</tr>
</tbody>
</table>

FIG.1: CHANGE IN LIPID PROFILE BETWEEN CONTROL GROUP, OC GROUP 1 AND IC GROUP (3).

TABLE 2: CHANGE IN LIPID PROFILE BETWEEN OC GROUP 1 AND OC + VIT. E GROUP (2).

<table>
<thead>
<tr>
<th>Test parameter</th>
<th>OC (n=25)</th>
<th>OC + Vit. E (n=25)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC (mmol/L)</td>
<td>4.33±0.86</td>
<td>4.12±0.96</td>
<td></td>
</tr>
<tr>
<td>TG (mmol/L)</td>
<td>0.81±0.21</td>
<td>0.73±0.21</td>
<td></td>
</tr>
<tr>
<td>HDL (mmol/L)</td>
<td>1.3±0.25</td>
<td>1.33±0.25</td>
<td></td>
</tr>
<tr>
<td>LDL (mmol/L)</td>
<td>2.65±0.94</td>
<td>2.55±0.94</td>
<td></td>
</tr>
</tbody>
</table>

FIG.2: CHANGE IN LIPID PROFILE BETWEEN OC GROUP 1 AND OC + VIT. E GROUP (2).

TABLE (2): CHANGE IN LIPID PROFILE BETWEEN OC GROUP 1 AND OC + VIT. E GROUP (2).

Compare between IC Group (3) and IC + Vit. E group (4):

At the end of the study, we are found that there was a significant difference between IC Group (3) and IC + Vit. E group (4). (P=0.002) (See Table 3, figure 2).

1. Total Cholesterol (TC), Triglyceride (TG), and LDL levels for IC Group (3) were higher as compare with the IC + Vit. E group (4).

2. HDL levels for the OC + vit. E group (2) was higher as compare with IC Group (3).

TABLE (2): CHANGE IN LIPID PROFILE BETWEEN IC GROUP (3) AND IC + VIT. E GROUP (4).

<table>
<thead>
<tr>
<th>Test parameter</th>
<th>IC (n=25)</th>
<th>IC +Vit E (n=25)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC (mmol/L)</td>
<td>4.10±0.71</td>
<td>3.77±0.66</td>
<td>0.002</td>
</tr>
<tr>
<td>TG (mmol/L)</td>
<td>0.77±0.41</td>
<td>0.71±0.61</td>
<td></td>
</tr>
<tr>
<td>HDL (mmol/L)</td>
<td>1.35±0.39</td>
<td>1.34±0.26</td>
<td></td>
</tr>
<tr>
<td>LDL (mmol/L)</td>
<td>2.29±0.80</td>
<td>2.21±0.80</td>
<td></td>
</tr>
</tbody>
</table>
and LDL levels were decrease and increase in HDL level in women taken contraceptives in concomitant with Vitamin E as compare with those not taken. Fatemeh et.al. 2012 The use of vitamins E has beneficial in ameliorating coronary side effect of contraceptives by decrease levels of triglycerides (TG), total cholesterol (TC) 16. Shahnaz Torkzahrani et.al. 2014 found that the HDL level and the HDL/LDL ratio increased in women taken vitamin E with contraceptives 14.

REFERENCES:

How to cite this article: