A REVIEW ON THE ROLE OF PHARMACOGENOMICS IN DRUG DISCOVERY AND DEVELOPMENT

Anup Ojha \(^*\) and Tanuj Joshi

Department of Pharmaceutical Sciences, Kumaun University Bhimtal Campus, Bhimtal, Nainital - 263136, Uttarakhand, India.

Keywords: Pharmacogenomic, pharmacogenetics, Drugs, Cytochrome, Variants

ABSTRACT: Pharmacogenomics (constitute both branch i.e pharmacology and genetic) is the study of the role of genetics in drug response. It deals with the effect of genetic variation on drug response in patient by correlating the gene expression with the pharmacokinetic parameter i.e absorption, distribution metabolism and excretion. The Pharmacogenomics is used in the research to increase the safety and efficacy of the drug by targeting the drug at the particular site of genes. Pharmacogenetic also play important role in the study of effect of multiple genes in the pharmacological action of drugs. In Pharmacogenomics we identify and study about various component of the genes that affect the therapeutic of the drug. Most of the drugs fail to show therapeutic effect at the latter stages it may be due to unexpected adverse effect of drug that may be due to the effect of various component of genes. Pharmacogenetic studies can be used at various stages of drug development. In clinical studies, pharmacogenetic can be used in stratification of patient based on their genotype, which correspond to their metabolizing capacity. This helps in prevention of various adverse drug reaction and better outcomes of clinical trial.

INTRODUCTION: Pharmacogenomics and pharmacogenetic are two inter-related term that are widely used for the drug development and therapy. Pharmacogenomics is the broad term in which we study about all the component of genes to find out various determinant of drug response \(^1\). The various treatment therapy like cancer chemotherapy and oral-anticoagulant are now carried out with the help of pharmacogenetic status of patient, to minimize the toxicity and failure of the drug therapy \(^2,3\). At present the traditional method of selection of drug and dosage form is replaced by the pharmacogenetic method.

Definitions:
The study of variation in the drug response due to heredity character is called pharmacogenetic. The term pharmacogenetic was coined by Vogel in 1957 \(^4\). And the term Pharmacogenomics was introduced recently. The term pharmacogenetic and Pharmacogenomics are used interchangeable as there is no standard definition of the Pharmacogenomics. Lindpainter stated that Pharmacogenetic is a term used to differentiate between the compound but Pharmacogenomics is a term used to differentiate between the patient \(^5\).

Sources of Variability:
Both the pharmacodynamic and pharmacokinetic factor is responsible for variation in drug response. Variability in the expression of the cytochrome P450 enzyme, which is responsible for phase I drug metabolism, has been focus of most of the work in pharmacokinetic. Cytochrome P450 2D6 (CYP4502D6), for example, in 8% of the U.K
population the major CYP4502D6 enzyme is absent which is responsible for the metabolism of 25% of drugs, including CNS (antidepressant and antipsychotic) and cardiovascular (β-blocker and anti-arrhythmic) drugs. Much less work have been done in pharmacodynamic factor causing variation in drug response, but as drug can affect almost any protein in the body, almost every gene may have an effect on how drug vary in their response.

Possible implication of pharmacogenetic/Pharmacogenomics for drug development:
The use of pharmacogenetic and Pharmacogenomics principle in the drug development process has reduced the drug dose, increase the rate of absorption and drug targeting is increased remarkably. These are considered as below and in Table 1.

1. **Target identification:**
 At present, the drugs that are present in the market act at less than 450 out of 1000 target in the human proteome. By using the technique of Pharmacogenomics and pharmacogenetic the number of target for the drug therapy have been increased remarkably through:
 - Detection of new protein that is involved in disease process.
 - Targeting the disease causing process.

2. **Pre-clinical drug development:**
 There is great impact of Pharmacogenomics in this phase of drug development. The in-vitro screening is only possible due to the identification of molecule defect, which is different in different people. For example: An advancement has been made by using the drug metabolizing enzyme i.e. cytochrome P450 enzyme. These are the most important biological catalyst that are responsible for the metabolism of different types of drugs. This lead to the assessment of interaction of the drug with the enzyme such P450 enzyme.

3. **Phase I-III studies:**
 These phases of clinical trial provide regulatory approval to launch medicine in the market. The phase I clinical trial typically cost is nearly about $7 million, but it reaches up$43 million for phase III clinical trial. The refinement of the phase I study is carried out by using pharmacogenomics principe, which focus on individual genotype through pre-clinical testing. The early identification of the
defect in the drug during phase I may lead to droop the compound in early stage, which help in saving the development cost and time.

In phase II, there may be further refinement of the pharmacogenetic determinants of drug response, which may provide information necessary for design of the phase III studies. The net effect may be a reduction in sample size for phase III studies, which may in turn result in more efficient and quicker drug development, and a net reduction in cost.

4. Phase IV studies:
This phase refers to period when the licences is granted to launch medicine in market, so this phase is also known as the as postmarketing surveillance or pharmacovigilance. In this phase various study ranging from hypothesis- generation, reporting to hypothesis- testing, pharmacoepidemiological studies are carried out throughout the whole period of the phase. With the help of Pharmacogenomics less effort is to be required to improve the marketing surveillance than harmonization of marketing authorization procedure and creation of single market.

In the phase large no of patient are exposed to the drugs, so even detection of rate adverse effect is carried out. Different sample of DNA from patient treated with drug were stored, which allow pharmacogenetic testing and identification of genetic predisposing factor, which lead to improvement of the risk-benefit ratio. This is best explained by abacavir hypersensitivity study, which lead to identification of major genetic predisposing factor in the MHC locus. Any reduction in the total number of patient in the phase III study lead to need of large number of patient, more structured phase IV study in order to identify rare and long term toxicity. Prospective collection of DNA sample is possible in phase IV but expensive.

![FIG.2: POTENTIAL FINANCIAL LOSS WITH PREMATURE TERMINATION OF A CLINICAL TRIAL](image)

TABLE 1: APPLICATION OF PHARMACOGENOMIC/PHARMACOGENETIC METHOD IN VARIOUS STAGE OF DRUG DEVELOPMENT

<table>
<thead>
<tr>
<th>Stage</th>
<th>Application of Pharmacogenomic/pharmacogenetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug target identification</td>
<td>Identification and characterization of the gene coding for the drug targeting and to assess the variability, Patient selection- inclusion/exclusion criteria</td>
</tr>
<tr>
<td>Phase I clinical trial</td>
<td>Dose range selection</td>
</tr>
<tr>
<td>Phase II clinical trial</td>
<td>Dose modification</td>
</tr>
<tr>
<td>Phase III clinical trial</td>
<td>Interpretation of trial results based on pharmacogenetics test results</td>
</tr>
<tr>
<td>Phase IV clinical trial</td>
<td>Analysis of report adverse event with pharmacogenetics data during development by FDA.</td>
</tr>
<tr>
<td>Regulatory issues</td>
<td>Requirement for submission of pharmacogenetic data during development by FDA.</td>
</tr>
<tr>
<td>Patient therapeutics</td>
<td>Personalization of drug therapy.</td>
</tr>
<tr>
<td></td>
<td>Pharmacogenetic data in drug labelling.</td>
</tr>
<tr>
<td></td>
<td>Identification of responders and non responders.</td>
</tr>
<tr>
<td></td>
<td>Identification of high risk group of adverse event.</td>
</tr>
</tbody>
</table>
History of Pharmacogenomic:
If we talk about the history of pharmacogenomics it takes us about 510 B.C back. In 510 B.C, Pythagoras investigated the potentially fatal reaction in some individual but not all individual on ingestion of fava beans. Since from this investigation there are numerous landmark (Table 2) that have suggested this field as research. Every 500-1000 bases of human genome varies is observed.

<table>
<thead>
<tr>
<th>Year</th>
<th>Individual(s)</th>
<th>Landmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>510 B.C</td>
<td>Pythagoras</td>
<td>Recognition of the adverse event of ingestion of fava beans, later characterized to be due to deficiency of G6PD (Glucose-6-phosphate dehydrogenase).</td>
</tr>
<tr>
<td>1866</td>
<td>Mendel</td>
<td>Establishment of the rules of heredity</td>
</tr>
<tr>
<td>1906</td>
<td>Garrod</td>
<td>Publication of ‘inborn error of metabolism’</td>
</tr>
<tr>
<td>1932</td>
<td>Snyder</td>
<td>Characterization of ‘phenylthiourea nontaster’ as an autosomal recessive trait</td>
</tr>
<tr>
<td>1956</td>
<td>Carson et al.</td>
<td>Discovery of glucose-6-phosphate dehydrogenase deficiency</td>
</tr>
<tr>
<td>1957</td>
<td>Motulsky</td>
<td>Further refined the concept that inherited defects of metabolism may explain individual differences in drug response</td>
</tr>
<tr>
<td>1957</td>
<td>Kalow & Genest</td>
<td>Characterization of serum cholinesterase deficiency</td>
</tr>
<tr>
<td>1957</td>
<td>Vogel</td>
<td>Coined the term pharmacogenetics</td>
</tr>
<tr>
<td>1960</td>
<td>Price Evans</td>
<td>Characterization of acetylator polymorphism</td>
</tr>
<tr>
<td>1962</td>
<td>Kalow</td>
<td>Publication of ‘pharmacogenetics – heredity and the response to drugs’</td>
</tr>
<tr>
<td>197779</td>
<td>Mahgoub et al.</td>
<td>Discovery of the polymorphism in dibrisoquine hydroxylase sparteine oxidase</td>
</tr>
<tr>
<td>1988</td>
<td>Gonzalez et al.</td>
<td>Characterization of the genetic defect dibrisoquine hydroxylase, later termed CYP2D6</td>
</tr>
<tr>
<td>2000</td>
<td>Public-private partnership</td>
<td>Completion of the first draft of the human genome</td>
</tr>
<tr>
<td>2000</td>
<td>The international SNP Working Group</td>
<td>Completion of Map of human genome sequence variation containing 1.42 million SNPs</td>
</tr>
</tbody>
</table>

Current Success in Pharmacogenomic:

Codeine:
In children and adult, codeine (3-methylmorphine) is one of the most widely used drug for the treatment of mild to moderate pain. Codeine itself does not have its analgesic effect, it get converted to its pharmacologically active metabolite, morphine in liver which is responsible for analgesic activity and have approximately 600 times more analgesic effect than that of codeine. Recently the use of codeine has been decreased due to codeine related toxicity. The serious or fatal adverse reaction have been observed in the neonate after receiving the breast milk of the mother receiving standard dose of codeine for post-partum pain.

The amount of morphine produced from codeine varies from individual ranging from 0% to 75%. Clinical practice guideline have recently

Tonsillectomies and adenoidectomies adverse effect have been reported in the children taking codeine for relieving pain. The cytochrome P450 2D6 (CYP450 2D6) is the enzyme which is responsible for the biotransformation of the codeine to morphine, is highly polymorphic with over 100 genetic variants described in the CYP450 2D6 gene. The patient with more than three or more functional copies of CYP450 2D6 are classified as ultra rapidly metabolizers, which rapidly convert codeine to morphine and produces morphine toxicity even at very low dose. The morphine toxicity observed are respiratory depression and in rare case the death have been reported due to presence of these highly active alleles (CYP4502D6*1xN/*2xN/*17Xn/*35Xn; where N represent number of copies).

In some patient the codeine does not get converted into morphine due to the presence of poor metabolizing enzyme CYP4502D6, hence minimal analgesic effect and pain relief.
been developed to inform physician on the use of
genetic testing for safe and more effective dosing
of codeine by identification of individuals 36, 39.

Warfarin:
Warfarin is an anticoagulant used for prevention
and treatment of venous thromboembolism by
inhibiting the enzyme vitamin K epoxide reductase,
encoded in VKORC1, due to which the amount of
vitamin K available for synthesis of coagulation
factor get decreased. The dose of warfarin required
to produce anticoagulant effect varies about 20 fold
from individual to individual patient. In case of
warfarin several adverse effect can be observed
such as bleeding or thrombosis due to narrow
therapeutic window and inappropriate dosing in
individual 40. The dose of the warfarin depend upon
both the genetic and clinical factor. For example
genetic variant in VKORC1 as well as the
cytochrome P450 2C9 (CYP2C9) gene, which is
primarily responsible for metabolizing the
pharmacologically active S-warfarin isomer, confer
an increased variant [VKORC1rs9923231,
CYP2C9 rs1799853(*2),rs1057910] requires lower
warfarin doses to achieves equivalent therapeutic
effects 41,42.

The several other gene that influences the warfarin
dose are cytochrome P450 4F2 (CYP4F2) and
gamma glutamyl carboxylase (GGCX) 43, 44. The
impact of the genes on the variation of warfarin
dose is very minor after the accounting for
VKORC1 and CYP2C9 variant. The recent study
shows a significant association between warfarin
and VKORC/CYP2C9 genome in pediatric patient,
which shows that same genetic variants are
important for warfarin dosing in children 45, 46, 47.
For the predication of the accurate dose of warfarin
several pharmacogenetic based dosing algorithms
have been developed 48,49.

Carbamazepine:
Carbamazepine is one of frequently used
anticonvulsant drug used for treatment of the
epilepsy, trigeminal neuralgia, bipolar disorder and
seizure disorder in both children and adult 50, 51. The
several sever side effect have been observed in
patient taking carbamazepine such as life-
threatening cutaceous adverse reaction,
Hypersensitivity reaction, Stevens-Johnson syndrome(SJS) and toxic epidermal
necrolysis(TEN) 52. Hypersensitivity reaction is
generally characterized by high fever, skin eruption
and involvement of at least one internal internal
organ with approximately mortality of 10%. SJS
and TEN are serious bilistering reaction of skin and
mucous membrane which mortality rate range from
10% to 50% 53. The genetic variants in human
leukocyte antigen (HLA) region lead to
carbamazepine induced hypersensitivity reaction in
both child and adult.

The higher risk of SJS/TEN have been reported in
patient carrying the HLA-B*1502 variant 54, 55.
While HLA-A*31:01 allele is primarily predective
for HSS. The carbamazepine- induced SLS/TEN
largely depend on the genetic of the patient
ancestry. The number of the HLA-B*1502 variant
is high (10-15%) in the Asia including china,
Malaysia, Thailand, Indonesia, Tawani and
Vietnam but rare (<1%) in Japan, Korea, Africa,
America, European, and Hispanic population 56, 57.

Recently it have been reported that in European
population the carbamazepine-induced adverse
reaction including SJS/TEN and HSS is due to
HLA-A*31:01 Haplotype. Pharmacogenomico
testing for HLA-B*15:02 is in standard practice in
at least 50 hospital in Taiwan and is currently
recommended by the FDA for patient with ancestry
in at risk-populations. For clinicians, clinical
practice guidelines are available to make genotype-
based decision for patient with an indication with
carbamazepine therapy 58, 59.

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Associated gene(s)</th>
<th>Associated variants</th>
<th>Associated variant effect</th>
<th>Clinical practice recommendation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codeine</td>
<td>CYP2D6</td>
<td>*1xN/*2xN/*35xN</td>
<td>Increased activity;</td>
<td>Avoid codeine use because of</td>
<td>36, 39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Life-threatening CNS depressive effect</td>
<td>potential for toxicity. consider alternative analgesic.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>*4xN/*3-8</td>
<td>No active; impaired/</td>
<td>Avoid codeine use because of lack of</td>
<td>36, 39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/12/*15/*19/*20/*40/*42</td>
<td>greatly reduced</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 3:
<table>
<thead>
<tr>
<th>Drug</th>
<th>Gene</th>
<th>SNP</th>
<th>Effect</th>
<th>Dosing Recommendations</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warfarin</td>
<td>CYP2C9</td>
<td>rs1799853(*2)</td>
<td>Decreased activity; reduced dose requirement</td>
<td>Use of pharmacogenetic algorithm-based dosing is recommended when possible. Initial dosing ranges for patients with different combination of CYP2C9 and VKORC1 genotype provided on drug lable.</td>
<td>36, 39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rs1057910(*3)</td>
<td>Decreased activity; reduced dose requirement</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VKORC1</td>
<td>rs9923231</td>
<td>Reduced expression; reduced dose requirement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>HLA</td>
<td>B*1502</td>
<td>Increase risk of carbamazepine-associated Stevens-Johnson syndrome and toxicity epidermal necrolysis(SJS/TEN)</td>
<td>Do not use carbamazepine in native people that are positive for HLA-B*1502. If patient used carbamazepine for longer than 3 months with out</td>
<td>58, 59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A*31:01</td>
<td>Increased risk of carbamazepine-associated hypersensitivity syndrome(HSS)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method of Studying Genetic Bases of Drug Response Variation:

1. Candidate gene approach:
In this method, the identification of genetic determinants of drug response variability involves identification of association between various allelic variants or SNPs within the candidate gene and the drugs response \(^{62}\). This method starts with the identification of the candidate genes. The drug response may be due to candidate gens, which code for the drug metabolizing enzyme, the drug transporting protein, protein involved in cellular mechanism and the receptor protein. The study that is carried with the help of candidate gene is generally for allelic variants. More than allelic variant or SNPs are found in candidate gene. This method of study is generally carried in people with altered drug response (case) and people with normal drug response (control). This method of the study of genetic base of drug response varrriation is less expensive than linkage disequilibrium studies and genome wide study \(^{62}\).

2. Genome wide scan:
This method of study is very extensive and elaborate form for the study of effect of various allelic variants occurring throughout the genome and the study of the drug response in diseased condition. In this the identification of all allelic variants are carried out in the entire human genome and SNP map is created. This method is carried for testing the drug response variation \(^{63}\). The advantage of this method in comparison to the other method is that, it can identify the polygenic determinants of drug response. The human genome has approximately three million SNPs and it is very expensive to screen all the SNPs. As a result, only representative SNPs that are distributed in the human genome are selected for screening. This may ranges from 200000 to 300000 \(^{64}\).

3. Haplotype analysis:
This method of analysis is used for the study of the cluster of the SNPs occurring linkage disequilibrium in a chromosome and their
association with the drug response. This method of analysis is different from the genome wide scan. In that we only study about the selected Haplotype not the entire genome. Haplotype blocks are created by clustering selective SNPs and their linkage disequilibrium is tested for association with clinical outcomes. More information can be obtained from the Haplotype analysis than that of the pharmacogenetic study of the single nucleotide polymorphism and is cost effective. From above study we can identify the various genetic determinant for drug response and development of drug can be customized accordingly. The same method can be used in the clinical trial for determination of adverse effect.

Pharmacogenomics and Drugs Development: Initially the drug discovery in psychiatric was based on the serendipity. After the identification of the lithium in 1949 and chlorpromazine in 1950s, the purgative mechanism of action were elucidated after drug were shown to be efficacious. The newer drug discover paradigms depends on the synthesis and identification of novel compound through combinatorial chemistry and screening for biological screening for biological activity against known receptor or other biological targets with established endogenous ligands or substance 49, 60.

The experimental paradigms used in the pharmacogenomics was borrowed from the field of the population genetics and methodology used in earlier genetic study of common complex disease 60, 61. According to the human genome project all the human genes available act as the potential drug target. Then the main challenge of the drug discovery is the functional and therapeutic utilization of these genes and their expressed product. The pharmacogenomics brought the Experimental paradigms from the field of population genetics and the methodology used in earlier genetic studies of common diseases 60, 61.

DNA microarray is an emerging powerful technological breakthrough that enables the study of global gene expression pattern and sequence variation at genome level 62. DNA micro assay is the extended form of the southern bolt procedure in which the stretching of different cDNAs or oligonucleotide are carried on a solid surface such as silica or glass plate. In microarray each DNA species represent specific gene or expressed sequence tag, which is used to identify different SNPs or transcripts by hybridization and fluorescence detection.

CONCLUSION: Pharmacogenomics is one of the most important tool used worldwide to find the adverse drug reaction as well as for the development of new drug. The cost and time for the development of new drugs can be minimized with the help of this tool. The personalization of the treatment can be carried out with the help of Pharmacogenomic/ pharmacogenetic study. So, the Pharmacogenomics is the future of the drug discovery and development. At present, however, it is not clear whether and what extent the genomic hypothesis can be tested within the framework of available clinical trial methodology. For example, the sample size for phase clinical trial is not more than 3000 to 4000 patient. But the genomic studies reduces the sample size than that of the current resource of any single pharmaceutical company or an academic laboratory.

REFERENCES:

Christiansen FT: Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse transcriptase inhibitor abacavir. Lancet 2002; 359:727-732.

