BIOPHYTUM SENSITIVUM DC.: A REVIEW

Manisha ¹ and Suresh Kumar*²

Department of Pharmacognosy and Phytochemistry ¹, SGT College of Pharmacy, SGT University, Gurugram - 122505, Haryana, India.
Department of Pharmaceutical Sciences and Drug Research ², Punjabi University, Patiala - 147002, Punjab, India.

ABSTRACT: *Biophytum sensitivum* DC. (Family - Oxalidaceae), commonly known as “Lajjalu” in Northern India, is an annual herb that grows at the foothills of the Himalayas. It is an indigenous medicine, used against “Madhumeha” (Diabetes mellitus) apart from being used as tonic, stimulant, and in the treatment of stomach ache, asthma, insomnia, convulsions, cramps, chest-complaints, inflammations, tumours and chronic skin diseases. It has been scientifically screened for various pharmacological activities such as anti-tumour, antipyretic, immunomodulatory, antidiabetic, antiulcer, radio-protective, larvicidal, antibacterial and antioxidant. Phytochemical investigations showed the presence of flavonoids and phenolic compounds as the major constituents. The present work attempts to compile a review on macroscopic characteristics, chemical constituents, pharmacological reports, clinical studies, formulations and patents listed for this plant. The data has been collected from major databases like Chemical Abstracts, Medicinal and Aromatic Plants Abstracts, PubMed, Scirus, Science Direct, and other online and electronic databases’ which has then been systematically collated for a holistic review about *Biophytum sensitivum*.

INTRODUCTION: The nature has blessed us with numerous “gifts” in this world. The plants are one of them, which form the basis of life and give us not only food and shelter but also the medicine to alleviate ailments, relieve pain and for longevity. According to W.H.O. about 75-80% of the world population, mainly in the developing countries still use plant based medicines for primary health care. Many of the currently available drugs were derived directly or indirectly from phytochemicals ¹. India has a rich heritage of usage of medicinal plants in the Ayurvedic, Siddha and Unani systems. The country has about 15000 medicinal plants that include 7000 plants used in Ayurveda, 700 in Unani, 600 in Siddha, 450 in Homeopathy and 30 in modern medicines ².

1. **Biophytum Genus:** *Biophytum* is a genus of about 50 species of annual and perennial herbaceous plants distributed in tropical Asia, Africa, America and Philippines. In India, nine species are found and out of these only three species viz., *Biophytum sensitivum* DC. (Syn *Biophytum petersianum* Klotzsch.), *B. reinwardtii*
Edgew. and *B. umbraculum* Welw. are reported to have ethnomedicinal properties. *B. sensitivum* (Family - Oxalidaceae) commonly known as ‘Nagbeli’ and “Lajjalu”, is an annual herb that grows at the foothills of the Himalayas, around the inner Tarai region (east of Koshi river) in Eastern Nepal.

2. Traditional Uses of *Biophytum sensitivum*: In Ayurveda, it is a tonic, stimulant and used in the treatment of stomach ache, diabetes and asthma. It is also used in insomnia, convulsions, cramps, chest-complaints, inflammations, tumours, chronic skin diseases. Pounded plants are given in insomnia. The decoction of the root is given in fever, gonorrhea and lithiasis. The leaves are diuretic, astringent and antiseptic. Decoction of leaves is used as an expectorant and is given in asthma and phthisis. Paste of the leaf is applied to wounds and cuts to stop bleeding. The powdered seeds are applied to wounds, and (with butter) to abscesses to promote suppuration. The crushed whole plant is used in chronic skin troubles. It is eaten to induce sterility in man. It is a folk medicine against “Madhumeha” (Diabetes mellitus), particularly in Eastern Nepal. In Siddha system, the grounded leaves are given along with butter milk for diarrhea, grounded seeds are applied over wound and ulcer, the samoolam of this plant is mixed with honey and given for cough and chest congestion, and paste of the leaves is applied over burns and contusions. *B. sensitivum* is one of the plants used against snake envenomation. The whole part of plant is used to counteract the snake venom activity. It is one of the auspicious herbs that constitute the group “Dasapushpam”, which comprise ten potential herbs which are culturally and medicinally significant to the people of Kerala in India. During the last few decades, extensive research has been carried out to elucidate the chemistry, biological activities, and medicinal applications of *B. sensitivum*, it has been proved to be revolutionary therapeutic plant to combat life threatening diseases.

3. Distribution and Propagation: It is a common weed distributed in wet lands (mostly plains) of tropical Africa, Asia and India, and is found normally in the shade of trees and shrubs, in grasslands, at low and medium altitudes. It is commonly known as by various vernacular names such as Lajjalu (Hindi), Sensitive Plant (English), Mukkutti (Malayalam), Alambusha, Jalapushpa, Panktipatra, Pitapushpa (Sanskrit), Nilaccurunki, Tintanali (Tamil), Jhalai (Bengali), Haru Muni Jalapushp (Kannada), Jharera, Lajwanti (Marathi), Attapatti, Chumi, Jala (Telugu) and Alleluya (French).

It is easily propagated through seeds. Seeds are propelled away from the plant by built up tension from when they dry and sown in a mixture of moist peat and sand, after sowing it is covered with a transparent cover to increase humidity. It requires bright indirect sunlight to partial shade, medium humidity and 16 °C to 29 °C temperature, moist soil and water soluble fertilizers during growth season.

4. Morphological Description of the Plant: It is an annual herb which looks like a miniature palm, with unbranched, erect, glabrous or hairy stems from 2.5 to 25cm.

4.1. Leaves: Leaves are green in color, peripinnate, 3.7-12.7cm long, crowded into a rosette on the top of the stem; leaflets 6-15 pairs, oblong, very variable in size, 6-12 mm long. The remarkable feature of leaflet is their ability to fold together representing an extreme form of “sleep movement” which is exhibited by a lot of members in this family. When applying pressure, tapping or damaging them they fold together in a few seconds. This plant also displays this behavior when the light drops at night. This ability is not restricted to the leaves; the peduncle which carries the flowers has the same ability and also drops at night.

4.2. Flowers: Flowers are dimorphic, normally yellow, white or orange with a red/orange streak in the center of each of the 5 petals on long peduncles of various lengths; petals usually twice as long as the sepals, capsules elliptic, shining. The flowers are many, and crowded at the apices of the numerous peduncles. The sepals are subulate-lanceolate, striate, and about 7 millimeters long. Interesting feature of flowers of this plant is heterostyly. Heterostyly in *B. sensitivum* is responsible for 3 flower morphs. The three morphs (tristylos) each have a stable difference in pistil and stamen length. The fruit is a capsule which is ellipsoid, apiculate, slightly exceeding the sepals. Seeds are ovoid and transversely striate.
5. Regeneration of *Biophytum sensitivum*: *B. sensitivum* has been studied for the potential of regeneration by callus culture and micropropagation techniques \(^6\). Micropropagation of leaf and shoot tip explants in MS medium containing 0.05mg l-1 TDZ and 1mg l-1 BAP results in formation of 14 shoots. The *in vitro* regenerated plants from the callus obtained from shoot tip and leaf explants were hardened, transferred to the field, established well and found normal. It is reported the regeneration of the plant through direct and indirect organogenesis and somatic embryogenesis using MS medium supplemented with 2, 4-D or NAA in combination with BAP induced callusing in stem, inflorescence tip and flower bud explants. Eighty percent of the root plantlets and ninety percent of the somatic embryo derived plantlets survived on soil medium \(^7\).

6. Chemical Constituents: The whole plant contains various chemical constituents like phenolic and polyphenolic compounds, saponin, essential oil, polysaccharides and pectin. The main constituent was found to be amentoflavone. Amentoflavone was quantified by reversed phase high performance liquid chromatography (RP-HPLC) in methanolic extract of roots, stems and leaves and the contents were estimated to be 0.26% in roots, 0.33% in stems, and 0.012% in leaves \(^8\). High-performance thin layer chromatographic (HPTLC) method has been developed for estimation of amentoflavone and was validated for precision (intra- and inter-day), repeatability, and accuracy were 0.52-1.36\% \(^9\). Various chemical constituents of *B. sensitivum* have been summarized in Table 1.

Table 1: Reports on isolated phytoconstituents from *B. sensitivum*

<table>
<thead>
<tr>
<th>Plant Part / Extract</th>
<th>Isolated Compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerial parts</td>
<td>Amentoflavone and Cupressoflavone (bioflavone) (^20, 21)</td>
</tr>
<tr>
<td></td>
<td>Polysaccharide, BP100 III, which is composed of galacturonic acid and rhamnose (^22, 23)</td>
</tr>
<tr>
<td></td>
<td>Luteolin-7-methyl ether, isoorientin and 3-methoxyluteolin 7-O-glucoside (Flavonoids) (^20)</td>
</tr>
<tr>
<td></td>
<td>4-cafeoylquinic acid and 5-cafeoylquinic acid (^21)</td>
</tr>
<tr>
<td>Leaves</td>
<td>Orientin, isoorientin, isovitexin, isoorientin 7-O-glucoside, isoorientin 2-O-rhamnoside (^24, 25)</td>
</tr>
<tr>
<td>Roots</td>
<td>((-)-epicatechin (^21)</td>
</tr>
<tr>
<td>Whole plant/ Essential oil</td>
<td>1, 4-dimethoxy benzene, 1, 2-dimethoxy benzene, 2-methoxy-4-methyl phenol, (Z)-linalool oxide, (E)-linalool oxide, linalyl acetate, 1-octen-3-ol and isophorone (^26)</td>
</tr>
</tbody>
</table>

![Amentoflavone](image1)

![Cupressoflavone](image2)

![Orientin](image3)

![Isoorientin](image4)

![Isovitexin](image5)

![\((-\)-epicatechin](image6)

![Luteolin-7-methyl ether](image7)

![Luteolin-7-o-glucoside](image8)

![4-cafeoylquinic acid](image9)

![1, 2-dimethoxy benzene](image10)

![5-cafeoylquinic acid](image11)
7. Pharmacological Reports: The plant has been screened for a number of pharmacological activities. It has been reported to exhibit anti-tumor, antipyretic, immunomodulatory, anti-inflammatory, anti-diabetic, antiulcer, radioprotective, larvicidal and antioxidant activities. Reported pharmacological activities of *B. sensitivum* have been summarized in Table 2.

TABLE 2: PHARMACOLOGICAL ACTIVITIES OF BIOPHYTUM SENSITIVUM

<table>
<thead>
<tr>
<th>Activity</th>
<th>Plant part / Extract / Fraction / Isolate</th>
<th>Dose / Animals / organisms used</th>
<th>Experimental Model</th>
<th>Mechanism of action / Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-tumour</td>
<td>Leaves / WE</td>
<td>100 and 200 mg/kg for 28 days / Swiss albino mice</td>
<td>Solid tumour by Dalton’s Ascitic Lymphoma</td>
<td>Decreased the tumor volume and viable cell count there by increasing the life span of DAL by 93.3%. Also reduced GSH, GGT and NO levels in ascites tumor bearing animals 28 days. Reduced P-glycoprotein activity. Jefferson et al. 2001.</td>
</tr>
<tr>
<td>Apoptotic Effect</td>
<td>Whole plant / ME</td>
<td>0.1 mg/ml in L929 cell culture and 500 µ/dose/animal / BALB/c mice</td>
<td>Dalton’s ascites lymphoma and Ehrlich ascites carcinoma cells</td>
<td>Inhibit the solid tumor development in mice induced with DAL cells and increase the lifespan of mice bearing Ehrlich ascites carcinoma tumors by 93.3%. Also reduced GSH, GGT and NO levels in ascites tumor bearing animals 28 days. Reduced P-glycoprotein activity. Jefferson et al. 2001.</td>
</tr>
<tr>
<td>Anti-angiogenic activity</td>
<td>Whole Plant / ME</td>
<td>50 mg/kg in B16-F10 melanoma cell-induced capillary formation in C57BL/6 mice</td>
<td>B16F-10 melanoma cells</td>
<td>Significantly inhibited the tumor directed capillary formation induced by melanoma cells and antiangiogenic activity is exerted through its cytokine modulation activity and inhibitory activity against VEGF mRNA expression. Prevention of tumor development in CAM and inhibition of angiogenesis.</td>
</tr>
<tr>
<td>Chemo protective effect</td>
<td>Leaf / Acetone extract</td>
<td>Fertilized eggs of gallus</td>
<td>Chick chorioallantoic membrane (CAM) assay in vivo</td>
<td>Prevented signaling of angiogenesis from epithelial cells and significantly inhibited development of capillary networks in CAM and has potential anti-angiogenic property.</td>
</tr>
<tr>
<td>Anti-metastatic effects</td>
<td>Whole plant / ME</td>
<td>Swiss albino mice</td>
<td>Cyclophosphamide (CTX) induced toxicity</td>
<td>Significantly increased the total WBC count, bone marrow cellularity and alpha-esterase positive cells compared to control mice treated with CTX alone.</td>
</tr>
</tbody>
</table>

FIG. 1: CHEMICAL STRUCTURES OF IMPORTANT CONSTITUENTS OF BIOPHYTUM SENSITIVUM

1,4-dimethoxy benzene
2-methoxy-4-methyl phenol
Isophorone
Linalyl acetate
1-octen-3-ol
Linalool oxide
<table>
<thead>
<tr>
<th>Effect in cancer</th>
<th>Whole plant / ME</th>
<th>0.1 mg/ml in L929 cell culture and 500 μ/dose/animal/ BALB/c mice</th>
<th>B16F-10 melanoma cells</th>
<th>Inhibited tumor metastasis through a regulatory mechanism involving MMP-2, MMP-9, prolyl hydroxylase, lysyl oxidase, VEGF, ERK-1, ERK-2, STAT-1, NM23 and I cytokines in lung tissues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole plant / ME</td>
<td>BALB/c mice</td>
<td>Ehrlich ascites carcinoma cells</td>
<td></td>
<td>Increased the total WBC count and bone marrow cell count and also enhanced the differentiation of stem cells by increasing the presence of γ-esterase-positive bone marrow cells and have stimulatory effect on the humoral arm of the immune system and production of immune cells by increasing weight of spleen and thymus</td>
</tr>
<tr>
<td>Whole plant / ME</td>
<td>25 to 900 μg/ml</td>
<td>In vitro DPPH radical scavenging activity</td>
<td></td>
<td>Significant antidiabetic activity</td>
</tr>
<tr>
<td>Whole plant / PE, CE, ME and WE</td>
<td>Rabbit</td>
<td>Amentoflavone induced diabetes</td>
<td></td>
<td>Significant anti-inflammatory activity</td>
</tr>
<tr>
<td>Whole plant / ME and WE</td>
<td>200 mg/kg bo for 28 days Adult male wistar rats</td>
<td>Normal and STZ NAD induced diabetic</td>
<td></td>
<td>Significant hypoglycemic effect (possibly due to pancreatic beta-cell stimulating action)</td>
</tr>
<tr>
<td>Whole plant / PE, CE, ME and WE</td>
<td>B. subtilis, S. aureus, Strep. pneumonia, K. pneumoniae, Salm. typhi, P. vulgaris, and E. coli</td>
<td>Agar well diffusion method</td>
<td></td>
<td>Methanol and acetone extracts showed significant antioxidant activity</td>
</tr>
<tr>
<td>Whole plant / PE, CE, ME and WE</td>
<td>E. coli, K. pneumonia, P. aeruginosa, S. aureus, S. viridians.</td>
<td>Disc diffusion method</td>
<td></td>
<td>Significant antidiabetic activity</td>
</tr>
<tr>
<td>Leaves / Acetone extract</td>
<td>A. fumigatus, A. niger, C. neoformans</td>
<td>Disc diffusion method</td>
<td></td>
<td>Significant anti-inflammatory activity</td>
</tr>
<tr>
<td>Whole plant / Hydroalcoholic extract</td>
<td>1 mg/ml/kg bo/ Wistar rats</td>
<td>Isolated wistar rat tissue (aorta rings)</td>
<td></td>
<td>Non-competitively antagonized calcium chloride and high-K⁺-induced aorta contractions in a concentration-dependent manner, have significant hypothensive effect which may result from inhibition of calcium influx via both voltage- and receptor-operated calcium channels</td>
</tr>
<tr>
<td>Aerial parts / ME and WE</td>
<td>Wistar rats</td>
<td>Carrageenin induced rat paw oedema</td>
<td></td>
<td>Water extract showed significant activity</td>
</tr>
<tr>
<td>Whole plant / ME</td>
<td>100 and 200 mg/kg / Wistar rats</td>
<td>Carrageenin-induced, histamine-induced and dextran-induced paw oedema</td>
<td></td>
<td>Reduced the levels of alkaline phosphatase (ALP), glutamate pyruvate transaminase (GPT) and lipid peroxide (LPO) levels, and enhanced glutathione</td>
</tr>
<tr>
<td>Amentoflavone / Roots</td>
<td>10 and 50 mM of amentoflavone</td>
<td>In vitro</td>
<td></td>
<td>IC_{50} value -12.4 mM and selective inhibitor of cyclooxygenase (COX)-1 catalyzed prostaglandin biosynthesis</td>
</tr>
<tr>
<td>Radio-protective effect</td>
<td>50 mg/kg b.w Swiss albino Mice</td>
<td>Gamma irradiation Model (6 Gy/animal)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hypocholesterolemic Effect

Leaves / WE
- 200 mg/kg body weight/day for 28 days/ Male albino mice
- 200 mg/kg body weight/day for 15 days/ Wistar rats

Whole plant / ME
- Wistar rats/ 100 and 200 mg/kg bo
- Adult albino rats/ 100 and 200 mg/kg

Whole plant / ME
- 50, 100, 150, 200 and 250 mg/l

Female wistar albino rats

S. aureus, S. pneumonia, K. pneumoniae, Salm. typhi, P. vulgaris, E. coli, Aspergillus fumigatus, A. niger

Toxicity Studies:

Acute toxicity of *B. sensitivum* extracts was studied in rodents. The aqueous extract of leaves of the plant was studied and found non-toxic at the dose levels of 100, 200 and 300 mg/kg body weight by oral route in mice. The methanolic extract of the *B. sensitivum* whole plant is well tolerated up to an oral dose of 4000 mg/kg of body weight as no mortality was observed within a period of 24 h. The median lethal dose (LD₅₀) of the hexane, chloroform, ethyl acetate, n-butanol and ethanol extracts of the plant were found to be greater than 1g/kg when administered by intraperitoneal route to rats.

Anti-pyretic effect

Whole plant / ME
- Wistar rats/ 100 and 200 mg/kg bo
- Tail flick method and acetic acid induced writhing method

Female wistar albino rats

Caste quinquefasciatus

High fat diet induced pyrexia in rats

** Significant antipyretic property and considerably reduces the febrile response in rats.

Analgesic activity

Leaves / Acetone extract
- 10, 15 and 25 mg/l

Aedes aegypti mosquito

**Effective larvicidal, pupicidal and also interfered with the normal development and emergence of adult mosquitoes.

Larvicida activity

Whole plant / ME
- 50, 100, 150, 200 and 250 mg/l

Culex quinquefasciatus

Moderate Larvicidal activity against Culex quinquefasciatus with LC₅₀=215.34 mg/ml

Antifertility Activity

Whole plant / CE, ME and n-butanol extracts
- 400 mg/kg/

Female wistar albino rats

Methanol extract exhibited maximum (100%) antifertility activity and the activity was reversible on withdrawal of the treatment of the extract.

Hypolipidemic and Antiobesity Activity

Stems / Ethyl acetate and ME
- 200 and 400mg/Kg bo/
- Adult albino rats

High fat diet induced rats

Both extracts significantly reduced the elevated levels of (TC), (TG), LDL-cholesterol and VLDL-cholesterol, AST and ALT and elevate the decreased level of HDL-cholesterol and possess good hypolipidemic and anti-obesity activity but ethylacetate extract was found to be more active than methanol extract.

Antiepileptic activity

Leaves / ME
- 50, 100 and 200 mg/kg p.o. / Wistar rats

MES test and PTZ induced seizures

Significantly and dose-dependently reduced the duration of tonic hind limb extension in both experimental models and also delayed the onset of tonic-clonic convulsions induced by pentylenetetrazol in mice.

Anti-urolithiatic activity

Whole plant / ME
- 100, 200, and 400 mg/kg bo for 7 days/
- Male wistar albino rats

Zinc disc implantation induced urolithiasis

Significantly prevent the formation of urinary stones and the possible mechanism underlying this effect is mediated collectively through diuretic, antioxidant and anti-inflammatory effects of the plant.

Anti-ulcer Activity

Leaves / ME
- 250mg/kg body weight
- Wistar albino rats
- 1g and 2g for 15 days

Excision wound Model

Aspirin induced models

Showed significant anti-ulcer property, and it may be due to the presence of tannins.

Wound Healing property

Aerial parts / ME
- 1g and 2g for 15 days

Excision wound Model

Significant wound healing activity and showed higher rate of wound contraction, increased level of Hydroxy proline, hexosamine content, super dismutase, ascorbic acid and decreased lipid.

8. Toxicity Studies:

Acute toxicity of *B. sensitivum* extracts was studied in rodents. The aqueous extract of leaves of the plant was studied and found non-toxic at the dose levels of 100, 200 and 300 mg/kg body weight by oral route in mice. The methanolic extract of the *B. sensitivum* whole plant is well tolerated up to an oral dose of 4000 mg/kg of body weight as no mortality was observed within a period of 24 h. The median lethal dose (LD₅₀) of the hexane, chloroform, ethyl acetate, n-butanol and ethanol extracts of the plant were found to be greater than 1g/kg when administered by intraperitoneal route to rats.

9. Clinical Studies:

Biophytm sensitivum is used in the treatment of diabetes in the Ayurvedic system of medicines. Traditionally it is said to have a insulin like compound. The mechanism of action is not well understood but appears to have insulinotropic properties. Clinical studies have been reported on the formulation containing *B. sensitivum*. DB14201 has been marketed since 2002 under Ayurvedic license issued by Drug Controller of the State of Kerala, under the trade name Diabetic. It is a combination of 16 herbs used in Ayurveda.
It contains *Zizyphus jujube*, *Terminalia chebula*, *Mangifera indica*, *Emblica officinalis*, *Embelia ribes*, *Curcuma longa*, *Aerva lanata*, *Syzygium cumini*, *Coscinium fenestratum*, *Salacia Oblonga*, *Cyclea peltata*, *Biophytum sensitivum*, *Strychnos potatorum*, *Cyperus rotundus*, *Vetiveria zizanioides*, and *Centella asiatica* as ingredients. Subject blinded, placebo controlled, randomized clinical studies have been reported on 30 patients suffering from Type 2 Diabetes in the ages of 29-71 of both gender which were on single oral hypoglycemic agent Glibenclamide, since more than three months but with inadequately controlled blood sugar levels (FBS level >120 mg/dl and/or PPBS levels >200 mg/dl) on the day of recruitment.

The study period for each subject was 90 days with a follow-up of 15 days thereafter. The entire evaluation was completed in 11 months. It is reported that the herbal formulation DB14201 is safe in T2DM patients when administered along with glibenclamide and improves the effectiveness of glibenclamide in offering better glycemic control. It also provides significant improvement in fasting and post prandial blood sugar levels in comparison to addition of placebo and also significantly reduces HbA1c levels.

10. Formulations of *Biophytum sensitivum*: Herbal creams and gels were prepared by incorporating the dry methanolic extract of whole plant of *B. sensitivum* into emulsifying cream and aqueous washable gel base. It was evaluated for *in vitro* antibacterial efficacy against four different bacterial strains (*Salmonella typhi*, *Staphylococcus aureus*, *Escherichia coli* and *Bacillus subtilis*) using the agar well diffusion method. The results showed that *B. sensitivum* has high potential as antibacterial agent when formulated as cream and gel for topical use. An optimized tablet formulation was prepared of *B. sensitivum* using the dried whole plant methanolic extract.

It was evaluated for their antioxidative properties *in vitro* based on their total flavonoid content (TFC) against a standard flavonoid, Quercetin and also *in vivo* for antidiabetic activity in Streptozotocin (STZ) induced diabetic rats against Glibenclamide, an antidiabetic drug. The drug exhibited antioxidant and antidiabetic properties of the formulation.

11. Patent Related to *Biophytum sensitivum*: Herbal formulation comprising of extracts from selected Indian medicinal plants *Zizyphus jujube*, *Terminalia chebula*, *Mangifera indica*, *Emblica officinalis*, *Embelia ribes*, *Curcuma longa*, *Aerva lanata*, *Syzygium cumini*, *Coscinium fenestratum*, *Salacia Oblonga*, *Cyclea peltata*, *Biophytum sensitivum*, *Strychnos potatorum*, *Cyperus rotundus*, *Vetiveria zizanioides*, and *Centella asiatica* as ingredients used for prevention and treatment of diabetes and associated complications has been patented.

CONCLUSION: Traditionally the parts of the plant have been known to possess a wide spectrum of medicinal properties namely antiseptic properties, including positive effects in variety of skin infections and in the treatment of diabetes. Antibacterial, antifungal and antidiabetic activities have been proved by the scientific research work. *Biophytum sensitivum* is widely prescribed for the treatment of diabetes in Ayurvedic system of Medicine. The whole plant is also used traditionally in the treatment of various ailments.

The plant has been evaluated exhaustively for various pharmacological activities and reported to possess anti-inflammatory, antipyretic, antimicrobial, antiobesity, antioxidant, anti-diabetic, anti-fungal, anti-cancer, larvicide, anti-obesity, anti-hypertensive, antiepileptic, wound healing and antifertility activities.

No systematic work has been carried out to isolate bioactive constituents responsible for aforementioned bioactivities. The plant contains phytocconstituents like flavonoids, steroids, phenolic compounds but till now only nineteen phytocconstituents have been isolated. Amongst these constituents, only flavonoids (amentoflavone) have been suggested to possess most of pharmacological activities. These observations suggest that detailed investigations are needed with a view to isolate bioactive constituents, and to standardize the plant on the basis of isolated bioactive markers. Only one formulation containing *B. sensitivum* as one of the ingredients has been patented which is used in the treatment of diabetes and diabetic complications. It has been found to be safe in a toxicity studies.
Clinical studies on 30 type 2 diabetic patients have been conducted to observe antidiabetic potential of the plant showed beneficial effects in diabetic patients. Finally, it is concluded that Biophytm sensitivum is the source of plenty of bioactive constituents which has the potential to be developed as efficacious and safer drugs.

ACKNOWLEDGEMENT: Authors are thankful to Hindu College of Pharmacy, Sonipat, for providing necessary facilities during the work.

CONFLICT OF INTEREST: The authors declare no conflict of interest.

REFERENCES:

E-ISSN: 0975-8232; P-ISSN: 2320-5148

Manisha and Kumar, IJPSR, 2018; Vol. 9(1): 27-36.

60. Krishnan G and Gopalakrishna P: Pharmacological Integration: Adjunct effect of DB14201, a new herbal formulation developed based on ayurvedic principles, when co-administered with Glimepiride: Results of a placebo-controlled trial. AGEMS 2015; 2(1): 2-10.

