SYNTHESIS AND CHARACTERIZATION OF POTENTIAL IMPURITIES OF ARIPIPRAZOLE

Jitendra Verdia*, Pankaj Kumar and Narendra S. Joshi

Research and Development Centre, Amoli Organics Pvt. Ltd., Block No. 422, ECP Canal Road, Village Luna, Padra, Vadodara-391440, Gujarat, India.

ABSTRACT: Aripiprazole is an anti-psychotic drug used in the treatment of psychosis including schizophrenia, and during process development for Aripiprazole, we observed two related substances. This paper describes the preparation, identification and proposed structures of the impurities 7-(4-(4-(2-chlorophenyl) piperazin-1-yl)butoxy) - 3, 4 – dihydroquinolin - 2(1H) - one and 7- (4-(4-(3-chlorophenyl)piperazin-1-yl) butoxy)-3,4-dihydroquinolin-2(1H)-one formed during reaction of 7-(4-bromobutoxy)-3, 4-dihydroquinoline-2(1H)-one with 1-(2, 3-dichloro phenyl) Piperazine Hydrochloride to form Aripiprazole.

INTRODUCTION: Aripiprazole chemically known as 7-(4-(4-(2,3-Dichlorophenyl)piperazin-1-yl)butoxy)-3,4-dihydroquinolin-2(1H)-one is an anti-psychotic drug 1,2 used in the treatment of psychosis including schizophrenia. Aripiprazole was developed by Otsuka Pharmaceutical Co. Ltd. Schizophrenia is a most common type of psychosis caused by an excessive neurotransmission activity of the dopaminergic nervous system in the CNS. Aripiprazole, a carbostyril derivative, functions as a partial agonist 4-7 at the dopamine D2 and serotonin 5 HT1A receptors and as an antagonist at serotonin 5-HT2A receptor. It is a novel antipsychotic agent which is an agonist of dopamine (DA) auto receptors and an antagonist of postsynaptic DA receptors. Aripiprazole is known to be effective towards reducing the positive symptoms of schizophrenia with fewer side effects as compared to the psychotic drugs known in the literature. Aripiprazole induced catalepsy is at 10 time higher dose than that required for the antagonism of APO-induced stereotypy (ED50 value of 7.8 mol/kg po).

Aripiprazole showed lower potential to induce catalepsy than the standard agent and did not show α1-adrenoreceptor antagonist activity. In addition to the dual activities, Aripiprazole reversed reserpine-induced increase in tyrosine hydroxylase activity in mouse and rat brain. Aripiprazole was also approved for acute manic and mixed episodes associated with bipolar disorder; as an adjunct for major depressive disorder 8 and to treat irritability in children with autism. 9

The presence of impurities in active pharmaceuticals ingredients (API) can impact the quality and safety of drug products. International Conference on Harmonization (ICH) guidelines recommends identifying and characterizing all...
impurities present in an API at a level of < 0.15%10. This limit is calculated on bases of daily dosage. However in Aripiprazole the limit is further tightening to 0.1%. These impurities are required in pure form to check the analytical performance characteristic such as specificity, linearity, range, accuracy and precision, limit of detection (LOD), limit of quantification (LOQ), robustness, system suitability testing and relative retention factor.11

Number of impurities are possible in final Aripiprazole, some of which are starting material (like 7-hydroxy-3, 4-dihydroquinolin-2(1H)-one and 1 - (2, 3-dichloro phenyl) piperazine Hydrochloride. Other impurities like Aripiprazole-1-N-oxide, 7-[4-\{(2, 3-dichlorophenyl)-1-piprazinyl\} butoxy] - 3, 4-dehydro-2-(1H)-quinolinone are also reported in literature.12 1-(2, 3-dichloro phenyl) piperazine hydrochloride is our key starting material for synthesis of Aripiprazole. In this there is possibility of presence of 1-(2-chloro phenyl) piperazine hydrochloride and 1-(3-chloro phenyl) piperazine hydrochloride as impurities, although their limit is NMT 0.1%. These also react with 7-(4-(bromobutoxy)-3, 4-dihydroquinoline-2(1H)-one in same fashion as 1-(2, 3-dichloro phenyl) piperazine hydrochloride and form impurities 7-[4-\{(2-chlorophenyl)piprazin-1-yl\}butoxy]-3, 4-dihydroquinolin-2(1H)-one and 7-[4-\{(3-chlorophenyl)-piprazin-1-yl\}butoxy]-3, 4-dihydroquinolin-2(1H)-one as shown below:

\[
\text{7-(4-bromobutoxy)-3,4-dihydroquinolin-2(1H)-one} + \text{1-(2-chlorophenyl)piperazine hydrochloride} \rightarrow \text{7-(4-(2-chlorophenyl)piprazin-1-yl)butoxy)-3,4-dihydroquinolin-2(1H)-one}
\]

\[
\text{7-(4-bromobutoxy)-3,4-dihydroquinolin-2(1H)-one} + \text{1-(3-chlorophenyl)piperazine hydrochloride} \rightarrow \text{7-(4-(3-chlorophenyl)piprazin-1-yl)butoxy)-3,4-dihydroquinolin-2(1H)-one}
\]

In our current work, we identified these two related substances in Aripiprazole API. Their detection, origin, synthesis and characterization are described in this article.

EXPERIMENTAL:
Solvents and reagents were obtained from commercial sources and used without purifications. The IR spectra (\(\nu\) max cm-1) were recorded in solid state KBr dispersion using a FTIR (Shimadzu FTIR Prestige 21 Spectrophotometer operating range 400-4000 cm-1 with a resolution of 5 cm-1). The \(^1\)H NMR and \(^13\)C NMR spectra recorded on a Bruker AB-400 instrument frequency 400 MHz instrument and Bruker 400 MHz instrument. The mass spectra were recorded on a Thermo Scientific LCQFLEET ion trapped instrument. We have synthesized all these compounds as described in this experimental section.

Preparation of 7- (4-(4-(2-chlorophenyl)-piprazin-1-yl) butoxy)-3, 4-dihydroquinolin-2(1H)-one:
A mixture of Acetonitrile (100mL), 7-(4-bromobutoxy)-3, 4-dihydroquinoline-2(1H)-one (10 g), Potassium Carbonate (13.5 g), 1-(2-chloro phenyl) piperazine hydrochloride (9.0 g) and sodium iodide (1 g) heated to 80°C. Reaction mass maintained at this temperature for 3-4 h. After completion of reaction, mass is cooled to 50-55°C. Maintain at this temperature for further 30 minute. Reaction mass is filtered to remove insoluble, if
any. Clear filtrate, cool to 25-30°C. Product is precipitated and stirs the mass for 30 minute. Filter and dry to get pure 7-(4-(4-(2-chlorophenyl)piperezin-1-yl) butoxy) - 3, 4-dihydroquinolin-2(1H)-one.

Weight: 9.0 g (Yield: 64.8 %); HPLC purity: 99.46%

Off White Solid, Melting Point: 100-107°C; IR (KBr) v_{max} (cm$^{-1}$) 1678 (-C=O), 1232 1037.7 (-C-O-C), 1182.36 (C-N), 1141.8 (C-Cl), 2951, 2823 (Aliphatic C-H); Mass (%): M+ 414.24 (100); 1H NMR (MeOD): δ 1.57 (4 H Aliphatic), 2.43 (2 H Aliphatic near to N, 2 H quinolinone), 2.54 (4 H of piperazine), 2.73 (2 H quinolinone), 3.2 (4 H of piperazine), 3.96 (2 H Aliphatic near to N), 6.34, 7.24 (H Aromatic); 13C NMR (MeOD): δ 24.16, 25.43, 68.82, 54.44 (Aliphatic C), 174.01 (amide C), 28.43, 31.96 (quinolinone C), 103.29,160.05 (aromatic C), 48.4,54.4 (piperazine C).

Preparation of 7 - (4-(4-(3-chlorophenyl)piperezin-1-yl) butoxy) - 3, 4-dihydroquinolin-2(1H)-one:

A mixture of Acetonitrile (100 mL), 7-(4-bromobutoxy)-3, 4-dihydroquinoline-2(1H)-one (10 g), Potassium Carbonate (13.5 g), 1-(2-chloro phenyl) piperazine hydrochloride (9.0 g) and Sodium Iodide (1 g) heated to 80°C. Reaction mass maintained at this temperature for 3-4 h. After completion of reaction, mass is cooled to 50-55°C.

Maintain at this temperature for further 30 minute. Reaction mass is filtered to remove insoluble, if any. To the clear filtrate add 150 mL water at room temperature. Product is precipitated and stirs the mass for 30 minute. Filter and dry to get 7-(4-(2-chlorophenyl)piperezin-1-yl) butoxy) - 3, 4-dihydroquinolin-2(1H)-one. Product is further recrystallized in ethanol to get pure compound.

Weight: 8.0 g (Yield: 57.6 %); HPLC purity: 98.70%

Off White Solid, Melting Point: 97-99°C. IR (KBr) v_{max} (cm$^{-1}$) 1678 (-C=O), 1232 1028 (-C-O-C), 1176.58 (C-N), 1151 (C-Cl), 2941, 2819 (Aliphatic C-H); Mass (%): M+ 414.21(100); 1H NMR (MeOD): δ 1.57 (4 H Aliphatic), 2.42 (2 H Aliphatic near to N, 2 H quinolinone), 2.49 (4 H of piperazine), 2.72 (2 H quinolinone), 3.2 (4 H of piperazine), 3.94 (2 H Aliphatic near to N), 6.34, 7.07 (H Aromatic); 13C NMR (MeOD): δ 24.17, 25.43, 68.82, 59.35 (Aliphatic C), 174.07 (amide C), 28.40, 31.97 (quinolinone C), 103.30,160.03 (aromatic C), 48.4,54.1 (piperazine C).

RESULTS AND DISCUSSION:

Aripiprazole was synthesized by the known literature synthetic procedure. One key starting material, 7-hydroxy-3, 4-dihydroquinolin-2(1H)-one was reacted with 1,4-dibromobutane in Dimethyl formamide and Potassium Carbonate and quench in water to form 7-(4-bromobutoxy)-3,4-dihydroquinolin-2(1H)-one. 7-(4-bromobutoxy)-3, 4-dihydroquinoline-2(1H)-one is reacted with second key starting material 1-(2, 3-dichloro phenyl) piperazine hydrochloride in presence of Acetonitrile and Potassium Carbonate to form Aripiprazole (Scheme 1).
This second key starting material 1-(2, 3-dichloro phenyl) piperazine hydrochloride may contain 1-(2-chloro phenyl) piperazine hydrochloride and 1-(3-chloro phenyl) piperazine hydrochloride as impurities. 1 - (2-chloro phenyl) piperazine hydrochloride present in second key starting material as an impurity also react with 7- (4-bromobutoxy)-3, 4-dihydroquinolin-2(1H)-one in presence of Acetonitrile and Potassium Carbonate to form impurity 7 - (4-(4-(2-chlorophenyl) piperazin-1-yl) butoxy) - 3, 4-dihydroquinolin-2(1H)-one (Scheme 2).

SCHEME 2: Synthetic scheme of 7-(4-(4-(2-chlorophenyl) piperazin-1-yl) butoxy)-3, 4-dihydroquinolin-2(1H)-one

The mass spectra of 7-(4-(4-(2-chlorophenyl) piperazin-1-yl) butoxy) - 3, 4-dihydroquinolin-2(1H)-one showed the molecular ion peak at m/z 414.21. The IR spectrum (cm⁻¹) displayed (-C-O-C) at 1232 and (C-Cl) displayed at 1151. 1-(3-chloro phenyl) piperazine hydrochloride present in second key starting material as impurity

Also react with 7 - (4-bromobutoxy)-3, 4-dihydroquinolin-2(1H)-one in presence of Acetonitrile and Potassium Carbonate to form impurity 7-(4-(4-(3-chlorophenyl) piperazin-1-yl) butoxy)-3, 4-dihydroquinolin-2(1H)-one (Scheme 3).

SCHEME 3: Synthetic scheme of 7-(4-(4-(3-chlorophenyl) piperazin-1-yl) butoxy)-3, 4-dihydroquinolin-2(1H)-one

The mass spectra of 7-(4-(4-(3-chlorophenyl) piperazin-1-yl) butoxy) - 3, 4-dihydroquinolin-2(1H)-one showed the molecular ion peak at m/z 414.24. The IR spectrum (cm⁻¹) displayed (-C-O-C) at 1176.58 and (C-Cl) displayed at 1151. Both the impurities 7-(4-(4-(2-chlorophenyl) piperazin-1-yl) butoxy) - 3, 4-dihydroquinolin-2(1H)-one and 7-(4-(4-(3-chlorophenyl) piperazin-1-yl) butoxy) - 3, 4-dihydroquinolin-2(1H)-one are well controlled below 0.1 % after final purification.

CONCLUSION: To have a thorough understanding of formation of impurities during manufacturing of Aripiprazole, it is essential to have detailed information about the impurities, their origin and synthetic route. In view of regulatory importance of the impurities in API, a detailed study on these impurities, which are novel, in Aripiprazole was studied and these impurities were synthesized and controlled well within a limit ≤ 0.10%. They were characterized using various spectroscopic techniques such as Mass, ¹H NMR, ¹³C NMR and IR.

ACKNOWLEDGMENTS: The authors are thankful to the management of Amoli Organics Pvt. Ltd. for providing necessary facilities to carry out this research work. The authors are also thankful to the colleagues of the synthetic research and analytical research department for their cooperation.

REFERENCES:

2. C.P. Lawler; C.Prioleau; M.M. Lewis; C. Mak; D. Jiang; J.A. Schetz; A.M. Gonzalez; D.R. Sibley; R.B. Mailman: Interactions of the novel antipsychotic aripiprazole (OPC-

4. S. Jordan; V. Koprivica; R. Chen; K. Tottori; T. Kikuchi; C.A. Altar: The antipsychotic aripiprazole is a potent, partial agonist at the human 5-HT1A receptor. European Journal Pharmacol. 2002; 441 (3): 137.

