EVALUATION OF ANTIDYSLIPIDEMIC EFFECT OF MANGIFERIN AND AMAROGENTIN FROM SWERTIA CHIRAYITA EXTRACT IN HFD INDUCED CHARLES FOSTER RAT MODEL AND IN VITRO ANTIOXIDANT ACTIVITY AND THEIR DOCKING STUDIES

Rakesh Kumar Asthana 1, Rasna Gupta 2, Nidhi Agrawal 2, Atul Srivastava 3, Upma Chaturvedi 3, Sanjeev Kanojiya 2, Ashok Kumar Khanna 3, Gitika Bhatia 3 and Vishnu Lal Sharma 1

Medicinal and Process Chemistry Division 1, CSIR-Central Drug Research Institute, Lucknow, U.P., India
SAIF Division 2, CSIR-Central Drug Research Institute, Lucknow, U.P., India
Biochemistry Division 3, CSIR-Central Drug Research Institute, Lucknow, U.P., India

Keywords: Swertia chirayita, cardiovascular diseases, Mangiferin, Amarogentin, Antidyslipidemic, Antioxidant

Correspondence to Author: Rakesh Kumar Asthana, Principal Technical Officer, Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow - 226031, U.P., India
E-mail: asthanacdri@gmail.com

ABSTRACT: Swertia chirayita (SC) has been traditionally used for the treatment of several metabolic disorders related health problems. We have investigated antidyslipidemic and antioxidant potential of Swertia chirayita (SC) plant, a potent antidiabetic and its isolated markers. The LC-ESI-MS standardized hot water extracts of different batches from whole plant of Swertia chirayita, were tested in vivo for their antidyslipidemic activity in Triton (WR-1339) and high fat diet (HFD) induced dyslipidemic Charles Foster rats and in vitro for their antioxidant activity. Further solvent fractionation and isolation resulted in identification of antidyslipidemic Mangiferin (MG) and Amarogentin (AM). Treatment of hyperlipidemic rats with MG and AM at 100 and 200μg/kg doses caused reduction in plasma levels of Low density lipoprotein (LDL) 24, 26% and very low - density lipoprotein (VLDL) 19, 25% as well as increase in levels of High density lipoprotein (HDL) 18, 22% respectively. In rats with HFD, MG and AM significantly reduced levels of VLDL lipids (26% and 27%) as well as Low density lipoprotein-Total cholesterol (LDL-TC) 27% and 30% in hyperlipidemic rats at 100 and 200 mg/kg doses. This is first report of AM demonstrated as antidyslipidemic agent. MG and AM also showed inhibition of superoxide anion, hydroxyl free radicals and microsomal lipid peroxidation by 24 & 28%, 25 & 31% and 27 & 25%, respectively. In addition, both MG and AM also demonstrated more effective inhibition at 5 μM and 10 μM of HMGR (HMG-CoA reductase) in comparison to Pravastatin, which was further confirmed by docking studies.

INTRODUCTION: Cardiovascular disease (CVD) remains the leading cause of death in the developed countries and is major cause of mortality and disease in the Indian subcontinent. The World Health Organization (WHO) estimates that CVD is today the largest single contributor to global mortality and will continue to dominate mortality trends in the future1. Increase in low-density lipoprotein (LDL), triglyceride (TG) and total cholesterol (TC) levels with decrease of high-density lipoprotein (HDL) levels have been established as one of the risk factors for CVD2. Clinical and epidemiological studies have consistently shown that low plasma levels of high-density lipoproteins cholesterol (HDL-C) are...
strongly and independently associated with an elevated risk of CVD\(^3\).

Reactive oxygen species (ROS) and oxidative stress are also important contributors of CVD\(^4\). Oxidative stress followed by elevated blood lipid levels, especially of LDL and TG, is recognized as a primary cause in the initiation and progression of CVD\(^5\). Enhanced lipid peroxidation acts as potential contributor to increase cardiovascular risk in low HDL phenotype\(^6\). Normal functional HDL has high antioxidant potential\(^7\). Therefore, agents that increase HDL cholesterol concentration in the blood and thereby ratio of HDL-C to TC (HDL-C/TC) and reduce oxidative stress would have promising therapeutic utility as antidyslipidemic and antioxidant agents.

In continuation of our research programs on bio evaluation of medicinal plants in India, we have investigated antidyslipidemic and antioxidant potential of *Swertia chirayita* (Roxb. ex Flem., Family: Gentianaceae). It is an indigenous medicinal plant of temperate Himalaya. The decoction of the plant has been used traditionally for the treatment of liver disease, febrifuge, anthelmintic, laxative and for malarial fever \(^8\,\,9\). Studies on the biological activities of different extracts of SC revealed that the plant possesses antioxidant\(^1^0\), anti-inflammatory\(^1^1\,\,1^2\), anticarcinogenic\(^1^3\), analgesic\(^1^4\), antimicrobial\(^1^5\) properties.

The liquid chromatography-electron spray ionization-mass spectroscopy (LC-ESI-MS) standardized hot water extract its, solvent fractions and two glycosides, of SC, a potent antidiabetic\(^1^6\), were studied in Triton (WR-1339) and HFD induced hyperlipidemic rats model. Their effect on cholesterol biosynthesis and antioxidant activity was also studied in the *in vitro* system which was confirmed by molecular docking.

MATERIALS AND METHODS:

Chemical and Reagents: Triton (WR-1339), standard drug gemfibrozil and test kit for HMGR along with other chemicals were procured from Sigma Chemical Company St Luis, MO, (USA).

Plant material and preparation of extract: Whole plant materials of SC were collected during Sep-Oct 2002 (Botany Reg. No. 8359, Batch No. 46 and 47 and Sep-Oct 2007 Botany Reg. No. 8563, Batch No. 48) from Simana Darjeeling (West Bengal) India and authenticated by Botany Division of CDRI, Lucknow, where the specimens are preserved. The process comprises the steps of hot extraction of powdered whole plant material (1.0 Kg) of SC for 2 h in de ionized boiling water (8L x 4). The combined extract was filtered with fine cloth and the filtrate was concentrated under reduced pressure at 45\(^\circ\)C. These hot water extracts \((i.e., 46/A1, 47/A1 and 48/A1)\) were used for the biological evaluation and separation of fractions as well as isolation of compounds.

Isolation of fractions and compounds: The extract was fractionated with hot methanol (500mL x 4) and combined fractions were concentrated to complete removal of solvent (F2). The residue (F3) was then fractionated with 10% methanol in water (200mL x 4) which on concentration to dryness gave (F4) and the remaining residue (F5) which was dried in oven at 50\(^\circ\)C for 4-5 h and then used for the experiment. F2 was dissolved in methanol and concentrated up to half of its volume and kept in a conical flask at 10\(^\circ\)C for 24 h, a yellowish amorphous compound settled at bottom of the flask which was filtered and passed through Sephadex LH-20 column in Water (H\(_2\)O), H\(_2\)O-methanol (8:2, 6:4, 5:5, 4:6, 2:8) and methanol. Eluted fractions were monitored on reverse phase-18 (RP-18) TLC plate in H\(_2\)O: methanol and H\(_2\)O: acetonitrile (6:4 and 5:5) and TLC plates were spraying with 5% ceric sulphate and spots were developed by heating at 110\(^\circ\)C. MG (Fig.1) was isolated after repeated crystallization from methanol in 0.4% yield. The methanol fraction was subjected to repeated column chromatography over silica gel in 5-10% methanol-chloroform mixture gave AM (Fig.1) in 0.2% yield.
Sample analysis LC-ESI-MS and MS/MS analysis
The LC-ESI-MS and MS/MS analysis of hot water extract (46-A1) of plant was performed on Waters TQD triple quadruple mass spectrometer (USA) equipped with Waters H-Class Acquity UPLC system and electron spray ionization source. Mobile phase (A) acetonitrile and (B) 5 mM ammonium acetate buffer was used and linear gradient elution performed at the flow rate of 0.350 mL min⁻¹ (as 90-80% B in 0-4 min; 80-50% B in 4-6 min; 50-20% B in 6-8 min.). Waters BEH C-18 100 x 2.1 mm, 1.7µm column was used and ESI source potentials were capillary voltage 3.5 kV; cone potential at 30 V for LC-ESI-MS experiments. Nitrogen was used as the nebulizing and drying gas at flow rates of 50 and 650 L h⁻¹ respectively. Online collision induced dissociation (CID) experiments were performed at 25 eV and argon used as collision gas. Data acquisition and processing were carried out using Mass Lynx V4.1 SCN 714 software. The spectra were accumulated from the top of Extracted ion chromatogram (EIC) peak Fig.2.

Experimental animals: Male adult rats of Charles Foster (CF) strain (100-150g) bred in the animal house of the institute were used after approval of Animal Ethics Committee (IAEC/2010/149). The animals were kept in controlled conditions of temperature (25-26 °C), relative humidity (60-80%) and 12/12h light/ dark cycle (light from 8:00 am to 8:00pm) and provided with standard pellet diet (Lipton India Ltd) and water ad libitum.

Experiment design for antidyslipidemic activity: In the first set of experiment, animals were divided into 14 groups i.e. 1. Control, 2. Triton treated, 3. Triton + 46/A1, 4. Triton + 46/F2, 5. Triton + 46/F3, 6. Triton + 46/F4, 7. Triton + 46/F5, 8. Triton + 47/A1, 9. Triton + 47/F2, 10. Triton + 47/F3, 11.Triton + 48/A1, 12.Triton + 48/F2, 13. Triton + 48/F3 and 14. Triton + gemfibrozil. In, another set of experiment, the animals were divided into seven groups i.e. 1. Control, 2. Triton treated, 3. Triton + MG 100mg/ kg b. w. (MG-1), 4. Triton + MG 200mg/kg b.w. (MG-2), 5. Triton + AM, 100mg/kg b.w. (AM-1), 6. Triton + AM 200mg/kg b. w. (AM-2) and 7. Triton + gemfibrozil.

Triton and HFD induced hyperlipidemia: The rats were divided into control, triton, and triton plus drug treated groups of six rats in each. In the acute experiment triton was administered (400mg/kg body-wt.) by intraperitoneal injection for 18 hours. These test material and gemfibrozil (Cipla Ltd, Bombay, India) were macerated with 0.2% aqueous gum acacia suspension and fed orally (200mg/kg body-wt.) simultaneously with triton. In the chronic experiment hyperlipidemia was produced by feeding with HFD once a day for 30 days. Drugs were administered (100 mg/kg body-wt.) orally simultaneously with HFD in drug treated groups. Control animals received the same amount of natural saline or ground nut oil. At the end of experiments rats were fasted overnight and blood was withdrawn. The animals were killed and the liver was excised immediately. The plasma was analyzed for TC, TG, PL (phospholipids) and lecithin cholesterol acyltransferase activity (LCAT) and post heparin lipolytic activity (PHLA) activity.

Biochemical analysis of plasma/serum: LCAT and PHLA activity were assayed by reported procedure. Serum was fractionated into VLDL, LDL and HDL by poly anionic precipitation methods. Serums as well as lipoproteins were analyzed for their TC, PL, and TG by standard procedures reported earlier.

Biochemical analysis of liver: Liver was homogenized (10% w/v) in cold 100mM phosphate buffer pH 7.2 and used for the assay of total lipolytic activity. The lipid extract of each homogenates was used for estimation of TC, PL, TG and TP (total protein).
Faecal bile acids: The rat faeces were collected from all groups throughout 30 days and processed for estimation of cholic and deoxycholic acid

Cholesterol biosynthesis: The effect of MG and AM on cholesterol biosynthesis was estimated as their effect on HMGR, in an in vitro experiment using protocol and reagents provided with standard test kit from Sigma Chemical Company.

Antioxidant Activity: The effect of test substances on generation of superoxide anions and hydroxyl free radical were measured in the in vitro enzymatic systems as described earlier.

Statistical analysis: Data were analyzed using student’s t test. Hyperlipidemic groups were compared with control, hyperlipidemic and drug treated with hyperlipidemic group P=<0.05 was considered as significance.

In vitro HMGR inhibitory activity: The HMGR assay was performed using the HMGR assay kit from Sigma-Aldrich. HMG-CoA (substrate), NADPH, assay buffer and enzyme HMGR were applied with the supplied assay kit.

Molecular modeling: Three dimensional coordinates of MG and AM were extracted from PUBCHEM compound data base (Pub chem compound Id. 5464041 and 115149 respectively) for docking purposes against Human HMGR (pdb id: 1Hw9) using Flex X implemented in Sybyl 7.1. Flex X applies incremental building method for flexible docking of small molecules. Gasteiger-Huckel charges were assigned to all the ligands prior to docking calculation. All the values were kept default for docking studies. Docking parameters were validated through redocking of crystallized Simvastatin (6c).

RESULTS AND DISCUSSION:
Effect of SC extract on triton-induced hyperlipidemia:
The effect of triton was found to be reversed by the hot water extracts and fractions of SC (Fig. 3).

Treatment of hyperlipidemic animals with MG and AM caused reduction in plasma levels of TC (20, 23%), TG (19, 25%), PL (21, 21%), TP (23, 20%), LDL (24, 26%), VLDL (19, 25%) and atherogenic index (35, 39%) as well as increase in levels of HDL (18, 22%), HDL/LDL ratio at 100 and 200mg/kg doses respectively (Fig. 4a, b). MG and AM have demonstrated better effect on HMGR inhibition at 5µM and at 10µM concentration in comparison to pravastatin, a potent inhibitor of HMGR (Fig. 4c) and activated LCAT (20, 24%) and PHLA (22, 21%), (Fig. 4d).
Effect of SC extract on high fat diet-induced dyslipidemia: Further studies on MG and AM hyperlipidemic rats model is more suitable for study, because the rats consume the diet and water ad libitum, similar to human eating patterns, rather than being force-fed. The results of feeding of HFD were carried out using HFD - induced hyperlipidemic rats. The HFD induced in rats suggested an increase in their serum levels of TC, PL, and TG by 131%, 91% and 89% respectively (Table: A1).

TABLE A1: EFFECT OF MG AND AM ON LIPOPROTEIN COMPOSITION IN SERUM LIPOPROTEINS IN HFD INDUCED HYPERLIPIDEMIC RATS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control</th>
<th>HFD treated</th>
<th>HFD+MG1</th>
<th>HFD+MG2</th>
<th>HFD+AM1</th>
<th>HFD+AM2</th>
<th>HFD + Gemfibrozil</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A1) Serum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TG^a</td>
<td>86.66±5.</td>
<td>200.58±15.12</td>
<td>160.00±13.0</td>
<td>169.00±13.82</td>
<td>150.00±15.00*</td>
<td>138.00±10.00</td>
<td>195.20±13.48***(-35)</td>
</tr>
<tr>
<td>10</td>
<td>100.80±7.</td>
<td>168.80±12.30</td>
<td>130.00±8.90</td>
<td>135.00±11.00</td>
<td>125.00±12.00**</td>
<td>120.00±10.82</td>
<td>142.22±11.00**(-33)</td>
</tr>
<tr>
<td>TC^a</td>
<td>106.88±9</td>
<td>201.93±14.44</td>
<td>145.20±12.1</td>
<td>158.00±14.00</td>
<td>143.00±14.00**</td>
<td>140.00±10.77</td>
<td>152.60±11.66**(-34)</td>
</tr>
<tr>
<td>Protein^b</td>
<td>6.05±0.1</td>
<td>10.80±0.33**</td>
<td>8.60±0.17**</td>
<td>8.70±0.74(-20)</td>
<td>8.40±0.89**(-23)</td>
<td>7.60±0.40(-30)</td>
<td>8.48±0.32**(-30)</td>
</tr>
<tr>
<td>(A2) VLDL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC^a</td>
<td>3.03±0.3</td>
<td>10.87±1.00**</td>
<td>9.49±1.10*(13)</td>
<td>9.43±0.35*(-13)</td>
<td>9.50±0.41*(-14)</td>
<td>9.10±0.27*(-16)</td>
<td>8.70±0.18*(-20)</td>
</tr>
<tr>
<td>PL^a</td>
<td>8.00±0.0</td>
<td>18.14±1.03**</td>
<td>14.97±1.30*(-17)</td>
<td>14.84±1.00*(-19)</td>
<td>14.62±0.88*(-20)</td>
<td>14.50±0.92*(-22)</td>
<td>14.20±0.78*(-22)</td>
</tr>
<tr>
<td>TG^a</td>
<td>45.60±4.0</td>
<td>90.30±7.37**</td>
<td>73.37±5.12*(-19)</td>
<td>70.76±6.00**(-21)</td>
<td>70.29±5.00***(18)</td>
<td>69.61±4.12**(-25)</td>
<td>67.81±2.84**(-25)</td>
</tr>
<tr>
<td>Ap^b</td>
<td>6.03±0.5</td>
<td>12.12±1.80**</td>
<td>9.56±0.60*(-21)</td>
<td>9.30±0.70(-23)</td>
<td>9.15±0.25**(-26)</td>
<td>9.00±0.38***(-26)</td>
<td>8.80±0.31**(-27)</td>
</tr>
<tr>
<td>(A3) LDL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC^a</td>
<td>8.23±0.6</td>
<td>17.23±1.48**</td>
<td>13.28±1.00*(-16)</td>
<td>13.00±0.79*(-17)</td>
<td>12.80±1.10**(-26)</td>
<td>12.50±1.18**(-27)</td>
<td>12.00±1.00**(-30)</td>
</tr>
<tr>
<td>PL^a</td>
<td>8.14±0.4</td>
<td>15.73±1.77**</td>
<td>13.20±1.18*(-16)</td>
<td>13.00±1.00*(-17)</td>
<td>12.83±0.79*(-18)</td>
<td>12.63±1.08**(-20)</td>
<td>12.50±0.69**(-21)</td>
</tr>
<tr>
<td>TG^a</td>
<td>18.47±0.7</td>
<td>30.23±2.12**</td>
<td>25.60±2.00*(-15)</td>
<td>25.40±1.87*(-16)</td>
<td>25.10±1.66*(-20)</td>
<td>24.85±1.99**(-19)</td>
<td>24.40±1.64**(-19)</td>
</tr>
<tr>
<td>Ap^b</td>
<td>17.56±1.5</td>
<td>28.62±2.24**</td>
<td>24.00±2.00*(-16)</td>
<td>23.37±1.90*(-17)</td>
<td>23.10±1.79*(-17)</td>
<td>22.80±9.88**(-25)</td>
<td>22.20±1.43**(-22)</td>
</tr>
<tr>
<td>(A4) HDL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC^a</td>
<td>45.38±4.0</td>
<td>38.14±2.80*(-16)</td>
<td>44.00±3.87*(+13)</td>
<td>39.88±3.00NS(+4)</td>
<td>40.10±3.33NS(+5)</td>
<td>40.33±3.00NS(+5)</td>
<td>41.60±3.60NS(+8)</td>
</tr>
<tr>
<td>PL^a</td>
<td>37.40±3.0</td>
<td>28.60±2.00**</td>
<td>33.17±2.60*(-14)</td>
<td>34.10±2.70*(+16)</td>
<td>35.21±2.81*(+19)</td>
<td>35.28±2.17*(+19)</td>
<td>36.00±2.81**(+21)</td>
</tr>
<tr>
<td>TG^a</td>
<td>15.10±1.0</td>
<td>12.10±0.17*(-20)</td>
<td>15.10±1.10*(-20)</td>
<td>15.00±1.15*(-19)</td>
<td>15.27±1.00**(+21)</td>
<td>15.30±1.08**(+21)</td>
<td>15.68±1.30**(+23)</td>
</tr>
<tr>
<td>Ap^b</td>
<td>168.20±1.0</td>
<td>120.30±13.00**(-28)</td>
<td>140.37±13.00**(-28)</td>
<td>143.86±13.70*(+16)</td>
<td>144.17±12.14*(+17)</td>
<td>144.20±12.44**(+17)</td>
<td>145.00±14.00*(+17)</td>
</tr>
<tr>
<td>(A5) Plasma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCAT^c</td>
<td>68.00±6.0</td>
<td>38.81±3.00**</td>
<td>48.40±4.00*(+20)</td>
<td>49.16±3.87*(+21)</td>
<td>49.66±3.18*(+22)</td>
<td>50.00±3.97**(26)</td>
<td>52.88±4.39**(+26)</td>
</tr>
<tr>
<td>Activity</td>
<td>17.80±1.0</td>
<td>10.00±0.81**</td>
<td>13.85±0.87*(+20)</td>
<td>14.00±1.00*(+29)</td>
<td>14.17±0.79**(29)</td>
<td>15.00±1.48**(+22)</td>
<td>15.79±1.30**(+37)</td>
</tr>
</tbody>
</table>

Units- (a) mg/dl serum, (b) g/dl, (c) n mol cholesterol released/L plasma. (d) n mol free fatty acid formed/hours/ml plasmid value are means SD of six ratio P<0.005; P<0.01; P<0.05; HFD compound with control, cholesterol and drug treated with cholesterol. MG 1(100mg/kg), MG 2 (200mg/kg), AM1(100mg/kg), AM2(200mg/kg).

Feeding with these extracts, fractions, MG, AM and gemfibrozil reversed the level of these serum lipids (18-31%) in HFD and drug treated animals. The analysis of hyperlipidemic serum showed a marked increase in the levels of lipids and Apo proteins constituting β-lipoproteins and those effects were pronounced for VLDL-TG (198%) and LDL-TG (209%) and increase in level. Treatment with these test samples and gemfibrozil significantly reduced these levels of VLDL lipids (17-26% and 20-27%) as well as LDL-TG (22-27% and 30%), PL (16-20% and 27%), TG (15-17% and 19%) and Apo-LDL (16-20% and 22%) respectively (Table A2, A3), and at the same time
level of HDL and Apo-HDL in hyperlipidemic rats. HFD feeding caused the inhibition of plasma LCAT (44%), PHLA (41%) (Table A5), total lipolytic activity (45%) in liver and caused a significant decrease in faecal excretion of cholic acid (42%) and deoxycholic acid (56%). Treatment with MG and AM lowered the level of TC, PL, TG and protein in liver (52%, 55%, 52% and 45%) and simultaneously also showed to recovered the level of cholic and deoxycholic acid by MG and AM (21-23% and 33-38%) and gemfibrozil (26 and 41%) in HFD and drug fed animals.

Antioxidant activity of SC extract: The extracts (A1) and fractions (F2, F3, F4 and F5) of plant inhibited in vitro generation of superoxide anion and hydroxyl free radicals by 5.0-31.6% and 7.3-47.6%, respectively. The fraction 47/F2 showed maximum inhibition of superoxide anion generation at 200µg/mL concentration, whereas the generation of hydroxyl free radicals was maximally inhibited by the extract 46/A1 at 200µg/mL concentration. The microsomal lipid peroxidation was found to be inhibited by 3.9–28.7% in presence of test substances, which was maximum by the fraction 47/F2 at 200µg/mL concentration. MG and AM showed inhibition of superoxide anion, hydroxyl free radicals and microsomal peroxidation by 24 & 28%, 25 & 31% and 27 & 25%, respectively (Fig. 5).

Docking studies: Docking propose numerous conserved interactions between MG and AM and receptor. Both the MG and AM bind in same active site with several polar as well as hydrophobic interactions with the active site residues that are also consistent with the binding of co-crystallized ligand simvastatin. Polar side chains of Glu559, Arg590, Asp690 and Asn658 have been found to be steadily involved in polar interactions with both MG and AM molecules while major hydrophobic interactions are contributed by Met657, Leu853, Ala751, Ala856 (Fig. 6a).

![FIG. 6 INTERMOLECULAR INTERACTIONS OF ACTIVE SITE RESIDUES OF HMG- COA REDUCTASE (PDB ID 1HW9) WITH DOCKED CONFORMATION OF (A) MANGIFERIN AND(B) AMAROGENTIN (C) SUPERIMPOSITION OF DOCKED SIMVASTATIN (IN CYAN) OVER CO-CRYSTALLIZED SIMVASTATIN (IN GREEN) WITH HMG- COA REDUCTASE (1HW9). Several polar interactions are found with residues Asp690, Lys691and Ser684 which belongs to cis-loop, which is essential for the formation of HMG-binding site (Fig. 6b). Flex X docking score (Energy) was found to be -30.589 and -15.708 Kcal/mol for MG and AM respectively.

CONCLUSION: In conclusion, it was observed that standardized hot water extracts from different collection and two major markers (MG) and (AM) of SC were effective in in-vivo antidyslipidemic activity in both Triton and HFD-induced hyperlipidemic rat model and also demonstrated in-vitro antioxidant activity. Treatment of hyperlipidemic rats with MG and AM caused reduction in plasma levels of LDL and VLDL as well as increase in levels of HDL was also
observed. In rats with HFD, MG and AM significantly reduced levels of VLDL lipids as well as LDL-TC in hyperlipidemic rats at 100 and 200 mg/kg doses. The antidyshlipidemic activity of Amarogentin has been reported for the first time. MG and AM also showed significant inhibition of superoxide anion, hydroxyl free radicals and microsomal lipid peroxidation. In comparison to Pravastatin, MG and AM are found to be potential cholesterol lowering agents as they demonstrated much better inhibition of HMGR. The docking results suggested that modifications in MG and AM structure might improve its HMGR activity, which will be useful in structure-based design of new chemical entities. Thus, our results support that Swertia chirayita hot water extract has a therapeutic potential for treatment of cardiovascular disease and its related disorders.

ACKNOWLEDGEMENT: Authors are grateful to Miss. Priyanka Shah and Dr. M. I. Sidhiqui, Molecular and Structural Biology Division, CSIR-Central Drug Research Institute for their support in docking studies. We are also thankful to Mr. J K Joshi, Botany Division, CSIR-CDRI, for collection of plant materials. R.G. is thankful to MoES (DOD) for financial support. This is CDRI communication No.8668.

REFERENCES:

How to cite this article