STRAEGIES FOR ENHANCEMENT OF BIOAVAILABILITY OF MEDICINAL AGENTS WITH NATURAL PRODUCTS

Garima Jain and Umesh K. Patil *

Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar, Madhya Pradesh, India.

ABSTRACT: In Advances drug design technologies, a large no of drug molecules are being introduced in every year but many of these molecules have problems like their solubility, stability, bioavailability and its long lasting side effects. Low bioavailability is one of the serious but curable problems in case of the drug molecule. Low bioavailability happens because a lot of molecules unable to permeation the gastrointestinal epithelia. There are some other factors also which responsible for low bioavailability i.e. low lipophilicity and zwitterionic character at physiological pH, poor water solubility or efflux by P-glycoprotein (P-gp) etc. The object of this review is to explore the concept of bioavailability to achieve better therapeutic response in appropriate dose using natural drugs and natural products like ginger, caraway, aloe, quercetin, glycyrrhizin piperine, curcumin etc. The use of natural products is the most reliable means for bioavailability enhancement because these are safe, non-toxic, economical, easily procured, non-addictive, pharmacologically inert and non-allergenic in nature etc. This review explores the natural drugs from plant and animal sources with their mechanism, in-vivo study, marketed formulation and its future prospective.

INTRODUCTION: India is a country where a lot of variety of the herbs with various medicinal values is available. From past to current scenario, researchers are trying to evaluate biological activities in different plant’s parts like leaf, flower, stem, root etc for the treatment of various diseases. In ancient time, lot of herbal drugs were used for the treatment of the diseases in individually or in the combination with many other drugs in different dosage forms e.g. black pepper was used in case of coughing, while ginger was used for coughing, flavouring etc. Combination of long pepper (Piper longum Linn.), black pepper (Piper nigrum Linn.) and ginger (Zingiber officinale Roscoe) collectively called “Trikatu” means “three acrids”, was used for the treatment of the diseases. Combination of these drugs enhances the therapeutic efficacy by means to increase the bioavailability 1,2.

The term bioavailability is one of the principal pharmacokinetic properties of drugs. It shows the rate and extent of the active pharmaceutical ingredients in the blood. This helps in calculating that how much amount is absorbed from blood and how much is unabsorbed and first pass metabolized. When a drug is administered intravenously; its bioavailability is 100% means whole amount is reached into the blood circulation but when a drug is administered via. other routes such as oral, parental, muscular, subcutaneous etc.,
due to incomplete absorption or first pass metabolism its bioavailability is decreased 3. Because of the low bioavailability, insufficient amount of drugs is reached in to the circulation and unable to produce their therapeutic effects. This problem can be overcome by the uses of bioenhancers.

In 1929, Bose introduced firstly about the concept of bioenhancer. He used long pepper along with vasaka (Adhatoda vasica Nees.) leaves and determined that the antiasthmatic activity of vasaka leaves was enhanced when long pepper was used with it 4.

Bioenhancers are the substances which increase the therapeutic effectiveness of the drug by increasing availability of the drugs in blood in combination with drugs without affecting its properties away 5,6. The use of bioenhancers has expanded the therapeutic effectiveness of the number of drugs that can be administered non-intravenously with improving bioavailability. This approach has been worked by alter the enzymatic system, improve GIT absorption, stimulating gamma glutamyl transpeptidase (GGT) and by drug targeting etc. Extensive research during the past decades has revealed that bioenhancing approach has attracted considerable attention as regards of its many potential advantages. It offers comfortable, convenient, and noninvasive way to administer drugs due to following advantages of it.

1. Dose reduction
4. Ecological benefit.
5. Safety of the environment 7.

The present review highlights the current status of natural products with significant bioenhancing activities.

Ideal properties of the bioenhancers: The contribution of bioenhancers have been reviewed which states that the ideal bioenhancers 8,9,10.

1. Should be nontoxic, non-allergenic and non-irritating.
2. Should not produce own pharmacological effects.
3. Should be rapid-acting with predictable and reproducible activity.
4. Should be unidirectional in action.
5. Should be compatible with other active pharmaceutical ingredients.
6. Should be stable with time and environment.
7. Should be easily formulated into a various dosage form.
8. Should be easily available and cost effective.

<table>
<thead>
<tr>
<th>S. no.</th>
<th>Drug</th>
<th>Class</th>
<th>Experimental model</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Rifampicin</td>
<td>Antituberculous</td>
<td>Human (in vitro)</td>
<td>11,12,13</td>
</tr>
<tr>
<td>2.</td>
<td>Phenytoin Pentobarbital Barbiturate</td>
<td>Anticonvulsant</td>
<td>Human, Rats</td>
<td>14</td>
</tr>
<tr>
<td>3.</td>
<td>Propranolol</td>
<td>Antihypertensive</td>
<td>Human</td>
<td>15,16</td>
</tr>
<tr>
<td>4.</td>
<td>Nimesulide, Diclofenac sodium</td>
<td>NSAID</td>
<td>Mice, Human</td>
<td>17,18</td>
</tr>
<tr>
<td>5.</td>
<td>Beta lactams</td>
<td>Antibiotics</td>
<td>Rats</td>
<td>19</td>
</tr>
<tr>
<td>6.</td>
<td>Epigallocatechin Gallate (Green tea)</td>
<td>Anticancerous</td>
<td>In albino mice</td>
<td>20</td>
</tr>
<tr>
<td>7.</td>
<td>Ciprofloxacin, Oxytetracycline</td>
<td>Antibiotics</td>
<td>In vitro, WLH hens</td>
<td>21,22</td>
</tr>
<tr>
<td>8.</td>
<td>Saquinavir mesylate, Nevirapine</td>
<td>Antiretroviral agents</td>
<td>Human Caco-2 cells line & male Sprague -Dawley rats</td>
<td>23,24</td>
</tr>
<tr>
<td>9.</td>
<td>Theophylline</td>
<td>Antiasthmatic</td>
<td>Rabbit</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S. no.</th>
<th>Class</th>
<th>Examples</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Herbal compounds</td>
<td>Boswellic acid (Boswellia serrata Triana & Planch.), Ginsenosides (Gingko biloba Linn.), Withanoloids (Withania somnifera Linn.), Curcuminooides (Curcuma longa Linn.) and Pycnogenol (Pinus pinaster Aiton.)</td>
<td>7,26</td>
</tr>
<tr>
<td>2.</td>
<td>Minerals</td>
<td>Iodine, Calcium, Iron, Zinc, Copper, Selenium, Magnesium, Potassium and manganese</td>
<td>27</td>
</tr>
<tr>
<td>3.</td>
<td>Amino acids</td>
<td>Lysine, Isoleucine, Leucine, Threonine, Valine, Tryptophan, Phenylalanine and Methionine</td>
<td>28</td>
</tr>
</tbody>
</table>
Classification: Bioenhancers are classified into two classes on the basis of their origin;

Bioenhancers from herbal sources:
1. These bioenhancers are derived from various parts of botanicals. Secondary metabolites of various medicinal and aromatic plants are considered as rich source of bioenhancers (Table 3).

Bioenhancers from non herbal sources:
1. These bioenhancers are obtained and synthesized with non herbal and synthetic chemical substances.

I. Bioenhancers from herbal sources:

<table>
<thead>
<tr>
<th>S.no.</th>
<th>Drug</th>
<th>Biological source</th>
<th>Mechanism</th>
<th>Dose of drug</th>
<th>Drug</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Piperine (1-piperoyl piperidine)</td>
<td>Seeds of Piper longum Linn. and Piper nigrum Linn. Family- Piperaceae</td>
<td>Methylene dioxyphenyl ring in piperine helps in the inhibition of the drug metabolizing enzymes including CYP 450 enzymes and UDP glucuronyl transferase. It also inhibits P-GP and then efflux of absorbed drug from enterocytes.</td>
<td>15 mg/kg.</td>
<td>Piperine is used in combination with various drugs and increases the efficacy of these drugs (Table 1, 2)</td>
<td>10</td>
</tr>
<tr>
<td>2.</td>
<td>Curcumin</td>
<td>Dried and fresh rhizomes of Curcuma longa Linn. Family- Zingiberaceae.</td>
<td>Curcumin suppresses drug metabolizing enzymes (CYP3A4) in the liver as well as inducing changes in the drug transporter P-glycoprotein, hence increase the C\text{max} and AUC of celiprolol and midazolam in rats.</td>
<td>12g/day</td>
<td>Celiprolol and Midazolam</td>
<td>32, 33, 34, 35</td>
</tr>
<tr>
<td>3.</td>
<td>Ginger (Whole Part)</td>
<td>Rhizome of the perennial plant Zingiber officinal Roscoe., Family- Zingiberaceae.</td>
<td>Due to the presence of saponins, flavonoids, and alkaloids, Ginger acts powerfully on GIT mucous membrane. The role of ginger is to regulate intestinal function to facilitate absorption.</td>
<td>10-30 mg/kg</td>
<td>Antibiotics like Azithromycin, Erythromycin, Cephalaxin, Cefadroxil, Amoxyccillin and Cloxacinll</td>
<td>36</td>
</tr>
<tr>
<td>4.</td>
<td>Caraway (Seeds)</td>
<td>Dried ripe seeds of Carum carvi Linn., Family- Apiaceae.</td>
<td>Due to a novel flavonoid glycoside it enhances the peak concentration (C\text{max}) and area under the curve (AUC) of rifampicin</td>
<td>1-55mg/kg</td>
<td>Antibiotics, antifungal, antiviral and anticancerous drugs. Therapeutic activity of Anti-TB drugs like Rifampicin, Pyrazinamide and Isoniazid</td>
<td>37, 38</td>
</tr>
<tr>
<td>5.</td>
<td>Glycyrrhizin</td>
<td>Dried root and stolon of Glycyrrhiza glabra Linn., Family- Leguminosae.</td>
<td>It enhances cell division inhibitory activity of anticancerous drug. It also enhances (2 to 6 fold) transport of antibiotics</td>
<td>1 μg/ml</td>
<td>Taxol and antibiotics like Rifampicin, Tetracycline, Nadidixic acid, Ampicillin and Vitamins B1 and B12 as bioenhancer</td>
<td>39</td>
</tr>
<tr>
<td>6.</td>
<td>Indian aloe (Leaves)</td>
<td>Dried juice of the leaves of Aloe barbadensis Mill.,</td>
<td>Aloe in combination with vitamins, perform the absorption slower and last</td>
<td></td>
<td>Vitamin C and E</td>
<td>40, 41</td>
</tr>
</tbody>
</table>
7. **Quercetin**
 Family-Liliaceae
 It is a flavonoid found in many fruits (apples, citrus fruits like red grapes, raspberries, and cranberries), green leafy vegetables and black and green tea. It is longer in the plasma and increases bioavailability of Vitamin C and E in human. It is also capable of inhibiting the release of reactive oxygen free radicals from activated human neutrophils. It inhibits the p-glycoprotein efflux pump and metabolizing enzyme, CYP 3A4 in the intestinal mucosa and restrain the metabolizing enzyme CYP3A4.

8. **Allicin**
 Aeromatic bulb of *Allium sativum* Linn. Family-Liliaceae
 Allicin enhances Amb-induced vacuole membrane damage by inhibiting ergosterol trafficking from the plasma membrane to the vacuole membrane.
 120 μM allicin or a non-lethal concentration of Amb (0.5 μM)
 Fungicidal activity of Amphotericin B

9. **Naringin**
 It is a flavanone-7-O-glycoside occurs naturally in citrus fruits, especially in grapefruit. It inhibits the CYP3A1/2 enzymes and p-glycoprotein is modulated in rats.
 3.3 and 10 mg/kg
 Paclitaxel, Verapamil, Diltiazem

10. **Tea (Leaves and Buds)**
 Leaves and leaf buds of *Thea sinensis* Linn. Family-Theaceae
 The thermogenic properties of tea extract shows a synergistic interaction between caffeine and catechin polyphenols that appears to prolong sympathetic stimulation of thermogenesis. Green tea also promotes fat oxidation and decreased the absorption rate of zinc while black tea increased the rate. Both teas promote the absorption of manganese and copper as nutrients in the blood circulation.
 -

11. **Niaziridin**
 Niaziridin a nitrile glycoside is isolated from the pods of *Moringa oleifera* Lam., Family-Moringaceae
 Commonly act with antibiotics against gram-positive bacteria like *Mycobacterium smegmatis*, *Bacillus subtilis* and gram-negative bacteria like *E. coli* to increase the absorption of it.
 -
 Vitamin B12, rifampicin, ampicillin, nalidixic acid, azole antifungal drugs such as clotrimazole

12. **Lysergol**
 It is isolated from higher plants like *Rivea corymbosa* Linn., *Ipomoea violacea* Linn. and *Ipomoea muricata* Linn.
 It promotes the killing activities of different antibiotics on bacteria. Lysergol enhances the transport of antibiotics across the intestinal gut and cell membrane.
 10 μg/ml
 Broad-spectrum antibiotics

13. **Genistein**
 It is an isoflavone found in a number of dietary plants like soybean (*Glycine max* Linn.) and kudzu (*Pueraria lobata* Willd.). Genistein is reported to be able to inhibit P-gp, BCRP and MRP-22 efflux functions.
 3.3 mg/kg or 10 mg/kg
 Paclitaxel, *Epigallocatechin gallate* the
<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Description</th>
<th>Effect/Action</th>
<th>Concentration</th>
<th>Other Medications</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.</td>
<td>Sinomenine</td>
<td>Root of the climbing plant Sinomenium acutum Thunb., Family-Menispermaceae.</td>
<td>The mechanism underlying the increase in bioavailability of paeoniflorin is explained as sinomenine could decrease the efflux transport of paeoniflorin by P-gp in the small intestine.</td>
<td>90mg/kg</td>
<td>Paeoniflorin</td>
</tr>
<tr>
<td>15.</td>
<td>5’ methoxy hydnocarpin (5’-MHC)</td>
<td>Leaves of Barberis fremontii Torr., Family-Berberidaceae.</td>
<td>5’-MHC has no antimicrobial activity but it inhibits the MDR-dependent efflux of berberine from S. aureus cells and effectively disabled the bacterial resistance mechanism against the berberine antimicrobial action.</td>
<td>100 µg/ml</td>
<td>Berberine</td>
</tr>
<tr>
<td>16.</td>
<td>Hydnocarpic acid</td>
<td>Seeds of Hydnocarpus wightiana Family-Achariaceae.</td>
<td>It acts by blocking the synthesis and coenzymatic activity of biotin.</td>
<td>4 µg/ml</td>
<td>Biotin</td>
</tr>
<tr>
<td>17.</td>
<td>Stevia</td>
<td>Leaves of Stevia rebaudiana Bertoni., Family- Asteraceae.</td>
<td>Components of stevia called Stevioside and steviol stimulates insulin secretion via a direct action on beta cells. Due to the activity for reducing vascular tension it is used for patients with hypertension.</td>
<td>30 mg/kg</td>
<td>Antibiotics, antiobese drugs, anti diabetic drugs, antifungal drugs, antiviral drugs, anticancer drugs, cardiovascular drugs, anti-inflammatory, antiarthritic agents, antituberculosis/ antileprosy drugs, anthelmintic/respiratory drugs, immune-modulators, antiulcer drugs, and herbal products or drugs.</td>
</tr>
<tr>
<td>18.</td>
<td>Capsaicin</td>
<td>Fruit of Capsicum annuum Linn., Family- Solanaceae</td>
<td>The absorption of capsicum increases AUC of the drugs.</td>
<td>-</td>
<td>Theophylline</td>
</tr>
<tr>
<td>19.</td>
<td>Cumin seeds</td>
<td>Dried seeds of Cuminum cyminum Linn., Family- Apiaceae.</td>
<td>Possible mechanisms may be the Aquous extract of cumin seeds stimulate β-adrenoceptors and/or inhibit histamine H1 receptors. It also worked in the opening of potassium channels and inhibition of calcium channels.</td>
<td>0.5 to 25 mg/kg</td>
<td>Erythromycin, Cephalexin, Amoxycillin, Fluconazole, Ketoconazole, Zidovudine and 5-Fluorouracil</td>
</tr>
<tr>
<td>20.</td>
<td>Ammaniol</td>
<td>Methanolic extract of Ammannia multiflora Roxb., Family-Lythraceae</td>
<td>Ammaniol have the property to increase glucose uptake and shows potent antihyperglycemic activity.</td>
<td>-</td>
<td>Antimicrobial drugs like Nalidixic acid</td>
</tr>
<tr>
<td>21.</td>
<td>Gallic acid</td>
<td>Gallic acid is a type of phenolic acid, found in gallnuts, tea leaves and oak bark etc.</td>
<td>Gallic acid increases net drug absorption and decrease drug biotransformation in the gut wall by inhibiting cytochrome P450 drug metabolism preference in other locations, such as the liver, which was the primary site of drug metabolism.</td>
<td>-</td>
<td>Acetanilides, Aminoquinolines, Benzodiazepines, benzofurans, cannabinoids, digitalis glycosides, ergot alkaloids, flavonoids, imidazoles, quinolines, macrolides, naphthalenes, opiates, oxazoles, phenylalkylamines, piperidines, polycyclic aromatic hydrocarbons,</td>
</tr>
</tbody>
</table>
II. Bioenhancer from non herbal sources:

1. Capmul:
 Source: Capmul (mono-, di- and triglyceride) are prepared by the glycerolysis of select fats and oils and/or esterification of glycerin with specific fatty acids.

 Mechanism: Due to Lipophilic nature of capmul, it acts as very effective carriers and solubilizers of active compounds. Because of its mono-diglyceride medium chain esters which are recommended for the dissolution of difficult compounds such as sterols, it also exhibited bacteriostatic activity.

 Drugs: Lipophilic nature of capmul is helped to increase the solubility of Ceftriaxone.

2. Cow urine distillate:
 Cow urine distillate is more effective as bioenhancer than cow urine. Its *Rasayana*’ tatva is responsible for modulation of the immune system and act as a bioenhancer.

 Drugs:
 - It increases the effectiveness of antimicrobial, antifungal, and anticancer drugs.
 - Cow urine can be used as a bioenhancer of zinc because it has antitoxic activity against the cadmium chloride toxicity.
 - Cow urine distillate increased the activity of rifampicin against *Escherichia coli* and against gram-positive bacteria. It probably acts by enhancing the transport of antibiotics across the membrane of gastrointestinal tract.
 - Due to immunomodulatory properties of cow urine distillate, it is significantly enhanced the effect of gonadotropin releasing hormone on the gonadosomatic indices, sperm motility, sperm count, and sperm morphology, especially in 90- and 120-day-treated groups in male mice.
 - It also enhances the potency of taxol against MCF-7 cell lines.
 - It enhances the bioavailability of ampicillin in 0.05 μg/ml concentrations and clotrimazole in 88 μg/ml concentration by facilitating the absorption of drugs across the cell membrane.

 Common mechanism of action of Bioenhancers:

 1. Alteration in the activity of the enzymatic system:
 (a) **Suppressors of CYP -450 enzyme and its isoenzymes:** Bioenhancers inhibit CYP -450 enzyme and its isoenzymes *i.e.* CYP3A4 enzymes which are presented in enterocytes and hepatocytes and contribute to major extent to first-pass elimination of many drugs. This indicates that dietary bioenhancer could affect plasma concentrations of CYP3A4 substrates in humans, in particular if these drugs are administered orally. Some of the metabolizing enzymes *i.e.* CYP1A1, CYP1B1, CYP1B2, CYP2E1, CYP3A4 etc are inhibited or induced by bioenhancer. Most of the drugs metabolized by these enzymes are influenced by bioenhancer.

 Example: Piperine, Naringin, Gallic acid, Quercetin

 (b) **Inhibitors of P-gp efflux pumps:** Efflux transporters such as P-glycoprotein play an important role in drug transporting in many organs. In the gastrointestinal track, P-glycoprotein pumps decrease the rate of absorption of the drug by taking back drug into the lumen. P-glycoprotein inducer, such as rifampicin, can reduce the bioavailability of some other drugs and inhibitors of P-glycoprotein increase the bioavailability of susceptible drugs by influencing absorption, distribution, metabolism and elimination of P-gp substrates in the process of modulating pharmacokinetics.

 Example: Caraway, Sinomenine, Genistein

2. Regulation of GIT to facilitate better absorption
 Herbal drugs increase the drug absorption via paracellular route by redistribution of the cytoskeletal F-actin, causing the opening of the tight junctions.
They also increase the solubility of hydrophobic drugs in the aqueous layer and increase the fluidity of the apical and basolateral membranes. Bioavailability enhancing activity of drugs is also found to be partly due to the increase in the blood supply to the intrinsic vessels as a result of local vasodilation. Increased blood supply to the gastrointestinal tract is one of mechanism of bioenhancer.

Example: Aloes, Niaziridin, Ginger, Liquorice

3. Cholagogous effect: Bioenhancers promote the flow of bile into the intestine by the contraction of the gallbladder.

Example: Liquorice

4. Thermogenic properties: Bioenhancers, having thermogenic property, increase the rate of metabolism by increasing the temperature. In this way it also improves the gastric mobility and hinders the absorption of cholesterol.

Example: Garlic, Ginger, Turmeric

5. Stimulation of gamma glutamyl transpeptidase (GGT) activity: Gamma glutamyl transpeptidase is a membrane-bound glycoprotein located on the outer surface of the cell membrane and used as marker for the liver, biliary system and pancreatic diseases. It is responsible for the transport of amino acids across cell membranes. Bioenhancer stimulates the activation of gamma-glutamyl transpeptidase and transport of nutrients across the intestinal cells is augmented.

6. Alteration of gastrointestinal transit and intestinal motility: Saponins containing bioenhancers increase the permeability of intestinal mucosal cells in vitro and inhibit active mucosal transport. This facilitates uptake of those substances that are normally not absorbed. Saponins also lower transmural potential difference (TPD, the electrochemical gradient that acts as a driving force for active nutrient transport across the brush border membrane of the intestine) across the small intestine of rat.

Example: Alliums, Tea, Liquorice

7. Drug targeting: Bioenhancers helps to enhance the binding of the drug with the target sites such as receptors, proteins, DNA, RNA and in the pathogen also, increases GIT vasculature by vasodilation to increase absorption of drugs, modulation of the cell membrane dynamics to increase transport of drugs across cell membranes thus potentiate and prolong the effect lead to enhance activity of drugs.

8. Bioenhancers may also be useful in the control of diseases like cerebral infections, epilepsy and other CNS problems by promoting the transport of nutrients and the drugs across the blood brain barrier.

Marketed formulation:

Risorine: Risorine is a rifampicin containing fixed dose combination product, approved in India for the use as an antitubercular drug in place of rifampicin 450 mg and isoniazid 300 mg.

Composition: Each capsule of resorine contains: Rifampicin 200 mg IP, Isoniazid 300 mg IP, Piperine 10 mg

Dosage: For adult, one resorine capsule to be taken once daily, one hour before or two hours after meals with a full glass of water.

Indication: It is used for treatment of all forms of tuberculosis in which organisms are susceptible to rifampicin ad isoniazid.

Problems with bioenhancers: The concept of the bioenhancer is much demanded approach now a day in the society but there are lot of problems in research and development. In large scale production, there is a need to scale up laboratory or pilot technologies for commercialization. The challenges are related to toxicity, allergy and irritation. Its compatibility and stability with other active pharmaceutical ingredients for appropriate time and duration is also a matter.

Its agglomeration and the chemistry process are also creating hurdles in commercialization of bioenhancers. Some national and international agencies i.e. The United States Food and Drug Administration and the European Medicines Evaluation Agency are taking the initiative steps to identify possible scientific and regulatory challenges along with their solution.
By overcoming all hurdles this concept can be used for a lot of patients with highly valuable and versatile results.

CONCLUSION: The bioenhancement technology is based on traditional system of medicine but a rapidly developing field now days. New drug development technologies are also rapidly developing field but there is concerned about the economics of drug development. Bioenhancement technique would significantly increase the number of drugs suitable for diseases in which amount of drug and doses are more and more. The researchers are now aimed at methods of reduction of drug dosage and thus drug treatment cost and making treatment available to a wider section of the society including the financially sport to the country. Bioenhancing phenomenon is helpful in various challenge and relief the society due to its side effect e.g. cancer. This review will be helpful to scientists engaged in research related to bioenhancers of herbal and non-herbal origins.

ACKNOWLEDGEMENT: The financial assistance of SERB, Department of Science and Technology (Govt. of India) under project no. SB/EMEQ-376/2014 is gratefully acknowledged.

REFERENCES:

64. Bourouei A, Toumi A, Mustapha HB and Brazier Jl: Effects of capsicium fruit on theophylline absorption and
86. Badmaev V, Majeed M and Prakash L: Piperine derived from black pepper increases the plasma lev...