Keywords:
Phyllanthus amarus, Phytochemicals, Pharmacological
activity, Traditional uses

Correspondence to Author:
Jyoti Meena
Ph.D Student,
Lab -14, Department of Botany,
University of Rajasthan, Jaipur - 302004, Rajasthan, India.
E-mail: meena.jyoti20@gmail.com

ABSTRACT: Phyllanthus amarus Schum and Thonn herb is in traditional
medicine for more than 3000 years. It belongs to a family of Euphorbiaceae and
commonly known by the name of carry me seed, stone breaker, gala of wind, etc. It is a branching annual herb of 30 - 60 cm height widely spread throughout tropics and sub-tropics as a weed. Phyllanthus amarus is gaining momentum for its hepatoprotective, anti-carcinogenic, anti-bacterial, anti-viral, anti-
inflammatory and more activities as it contains different combinations of secondary metabolites, which render them medicinal properties. The major class of bioactive compounds like alkaloids, flavonoids, lignans, sterols, tannins, triterpenes and volatile oils has been isolated. Lignans like phyllanthin and hypophyllanthin, flavonoids like quercetin were isolated from the leaves of P. amarus. This review is an effort to represent the phytochemicals and their pharmacological properties which constantly addresses a challenge because of a large number of compounds present as a mixture in the extract with trace amounts.

INTRODUCTION: The genus Phyllanthus is one of the most important groups of plants traded as a raw herbal drug in India. The genus Phyllanthus of family Euphorbiaceae, consists of approx. 1000 species, spread over tropical and sub-tropical continents like America, Africa, Australia and Asia. In India, Phyllanthus amarus is widely distributed as a weed in cultivated and waste lands. All three major habits i.e., trees, shrubs and herbs are seen amongst the Phyllanthus species. Ravikant et al., have also described southern India to be the genetic hotspot of Phyllanthus species. Phyllanthus amarus Schum. and Thonn. has a long history of usage by people, because of its rich medicinal values. Commonly known by the name of Bhumi amla, belongs to a large family of upright or prostrate herbs or shrubs, often with milky acrid juice. In Unani literature, it is described by the name of ‘Bhuti’ which means Bhum Amlak - Amla of Land. It plays important role in the development of green medicines which are safer to use and more dependable than costly synthetic drugs with no adverse effects. P. amarus has been described in Ayurveda by the Sanskrit name - Bhoomyaamlakee, Taamalakee and Bhoodha tree. P. amarus uses are gaining momentum because of their novel antiviral activity against hepatitis B virus and for several other biological activities such as kidney and gallbladder stones, for cold, flu, tuberculosis, liver diseases, etc.

Vernacular Names: The plant is known by different vernacular names in the different areas by the local people (Table 1). It is commonly called carry me seed, stone breaker, wind breaker, leaf flower or gale of wind. Phyllanthus means leaf and flower because of its appearance, where flower, fruit and leaf appear to be fused.
TABLE 1: NAMES USED WORLDWIDE OF *P. AMARUS* ARE AS FOLLOWS 8, 12

<table>
<thead>
<tr>
<th>S. no.</th>
<th>Language</th>
<th>Vernacular Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hindi</td>
<td>Bhumi amla, Jangli amli</td>
</tr>
<tr>
<td>2</td>
<td>English</td>
<td>Black catnip, Carry me seed, Child pick-a-back, Gale of wind, Gulf leaf flower, Hurricane weed, Shatterstone, Stone breaker</td>
</tr>
<tr>
<td>3</td>
<td>Tamil</td>
<td>Keelanelli (Keezhanelli)</td>
</tr>
<tr>
<td>4</td>
<td>Bengali</td>
<td>Bhui amla</td>
</tr>
<tr>
<td>5</td>
<td>Rajasthani</td>
<td>Gugario</td>
</tr>
<tr>
<td>6</td>
<td>Oriya</td>
<td>Bhuiaola</td>
</tr>
<tr>
<td>7</td>
<td>Telugu</td>
<td>Nela urika</td>
</tr>
<tr>
<td>8</td>
<td>Kannada</td>
<td>Nela-nelli, Kirunelli</td>
</tr>
<tr>
<td>9</td>
<td>Malayalam</td>
<td>Kilanelli</td>
</tr>
<tr>
<td>10</td>
<td>Sanskrit</td>
<td>Bhoomyaamlakee, Bhoodhatree, Tamalakee</td>
</tr>
<tr>
<td>11</td>
<td>French</td>
<td>Poudre de plomb (ivory coast)</td>
</tr>
<tr>
<td>12</td>
<td>America</td>
<td>Yerba de la nina 10, Chanca piedra 13, Hurricane weed</td>
</tr>
<tr>
<td>13</td>
<td>Spanish</td>
<td>Yerba magica</td>
</tr>
</tbody>
</table>

Botanical Characteristics: *Phyllanthus amarus* is a branching annual glabrous herb which is 30 - 60 cm high and has slender leaf bearing branchlets, distichous subsessile leaves with elliptic-oblong, obtuse, rounded base (Fig. 1). Flowers are axillary and yellowish, whitish or greenish. Male flowers are in groups of 1 - 3 whereas females are solitary. Fruits are depressed-globose like smooth capsules present underneath the branches and seeds are trigonous, pale brown with longitudinal parallel ribs on the back 14. Capsules on stalks are 1 - 2 mm long, round, smooth, 2 mm wide six seeds. The plant has explosive seed capsules that propel the seeds some distance from the plant. Seeds are triangular, light brown, 1 mm long with 5 - 6 ribs on the back 10, 15.

Distribution: *P. amarus* is a common pantropical weed that grows well in moist, shady and sunny places. It is widely spread throughout tropics and subtropics 11, 16. The taxonomic revision of genus *Phyllanthus* by Webster included closely-related genera *P. amarus*, under the sub-section Swartiziani of the section *Phyllanthus*. The nomenclature, taxonomic distinctness and close relatives of *P. amarus* were addressed in detail based on morphology and geographical distribution 17-19. It is said to be related to *P. abnormis*, which is endemic to sandy areas in Texas and Florida of southern USA.

It is, therefore, most likely that *Phyllanthus amarus* originated in the Caribbean area as a vicarious species of *P. abnormis* of the southern United States and has spread around the tropics by trading vessels 17. Among approx. 1000 species of genus Phyllanthus, 53 species are found in India, of which

FIG. 1: *PHYLLANTHUS AMARUS* FOUND IN RAJASTHAN IN ITS HABITAT
23 species are endemic. These are distributed throughout the Indian subcontinent, with higher densities in the southern region. Among 53 species of Phyllanthus, 37 are shrubs, 13 are herbs and 3 are trees

Jain et al., 2003 assessed the molecular diversity of *P. amarus* across India using RAPD (random amplified polymorphic DNA) markers. The genetic variability was assessed across 33 locations covering the states of Tamil Nadu, Karnataka, Maharashtra, Gujarat, Assam, Tripura, Uttar Pradesh, Punjab and Haryana. Intra population variation was larger in accessions from southern India compared to other parts of the country. *P. amarus* grows wildly in all drier parts of Rajasthan.

Phytochemical Properties: Phytochemistry is regarded as the heart of herbal therapy and the phytochemical research plays an important role in the development of green medicines, which are safer to use (Table 2). The major class of bioactive compounds like alkaloids, flavonoids, lignans, phenols, tannins, terpenes and volatile oils has been isolated. These bioactive compounds further include their respective phytoconstituents. Alkaloids possess securinine, nor-securinine, epibubbiahine, isobubbiahine, dihydrosecurinine, phenazine derivatives, 2Z, 6Z, 10Z, 14E, 18E, 22E. Likewise, Tannins include Amarulone, geraniin, amariin, furosin, corilagin, melatonin, phyllanthusin D. Lignans contains important pharmacological activities because of its phytoconstituents such as Phyllanthin, hypo-phyllanthin, 5-dimethoxy-niranthin, nirtetralin, phytetralin, hinokinin, 4-(3,4-dimethoxy-phenyl)-1-(7-methoxybenzo[1,3]dioxol-5-yl)-2,3-bismethoxymethyl-but-\-an-I-ol. Sterols include Amarosterol A, amarosterol B. Triterpenes like Phenzine and phenazine derivatives, 2Z, 6Z, 10Z, 14E, 18E, 22E-farnesyl farnesol and volatile oils such as Linalool, Phytol.

<table>
<thead>
<tr>
<th>S. no.</th>
<th>Secondary Metabolite</th>
<th>Structural Definition</th>
<th>Some Important Phytochemicals</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Alkaloids</td>
<td>Alkaloids are a group of naturally occurring nitrogenous organic compounds of plant origin.</td>
<td>Securinine, nor-securinine, epibubbiahine, isobubbiahine, dihydrosecurinine.</td>
<td>22, 23</td>
</tr>
<tr>
<td>2.</td>
<td>Flavonoids</td>
<td>Flavonoids are polyphenolic molecules containing 15 carbon atoms and are soluble in water.</td>
<td>Quercetin, kaempferol, astragalin, quercetin-3-O-glucoside, quercitrin.</td>
<td>10, 13, 24-26</td>
</tr>
<tr>
<td>3.</td>
<td>Tannins</td>
<td>Tannin is a polyphenolic biomolecule that binds to precipitate proteins and various other organic compounds like amino acids and alkaloids.</td>
<td>Amarulone, geraniin, amariin, furosin, corilagin, melatonin, phyllanthusin D.</td>
<td>13, 24, 25</td>
</tr>
<tr>
<td>4.</td>
<td>Lignans</td>
<td>Plant lignans are also polyphenolic compounds derived from phenylalanine via dimerization of substituted cinnamic alcohols.</td>
<td>Phyllanthin, hypo-phyllanthin, 5-dimethoxy-niranthin, nirtetralin, phytetralin, hinokinin, 4-(3,4-dimethoxy-phenyl)-1-(7-methoxybenzo[1,3]dioxol-5-yl)-2,3-bismethoxy methyl-butanol-1-ol.</td>
<td>10, 23, 27-32</td>
</tr>
<tr>
<td>5.</td>
<td>Sterols</td>
<td>Phytosterols, which encompass plant sterols and stanols, are phytosteroid similar to cholesterol which occur in plants and vary only in carbon side chains and/or presence or absence of a double bond.</td>
<td>Amarosterol A, amarosterol B.</td>
<td>34</td>
</tr>
<tr>
<td>6.</td>
<td>Triterpenes</td>
<td>Triterpenes are a class of chemical compounds having three terpene units with the molecular formula C30H48 or consists of six isoprene units.</td>
<td>Phenzine and phenazine derivatives, 2Z, 6Z, 10Z, 14E, 18E, 22E-farnesyl farnesol.</td>
<td>24, 30</td>
</tr>
<tr>
<td>7.</td>
<td>Volatile Oils</td>
<td>A volatile oil is a concentrated hydrophobic liquid containing volatile aroma compounds from plants.</td>
<td>Linalool, Phytol.</td>
<td>34</td>
</tr>
</tbody>
</table>
Ethno-pharmacological Uses: If the selection of plants is made on the grounds of their traditional use, the chance of research success is greater. This herb is in traditional medicine for more than 3000 years.

- **Phyllanthus amarus** herb has found its traditional uses in several health problems because of its efficacy in the field of gastrointestinal disorders.
- It is used in several female problems such as leucorrhea, menorrhagia and mammary abscess and can act as galactagogue.
- Fresh leaf paste has the capacity to cure white spots on skin, diabetes, and jaundice.
- Whole plant extract is used in urinary problems, liver disease, dyspepsia, anorexia, constipation and dysentery.
- Gonorrhea and syphilis can be treated by a decoction of leaves, sugar and cumin seeds.
- Treatment of malaria has been successful by *P. amarus* whole plant extract.

It is an ingredient of one of the most popular formulations of Ayurveda Chyawanprash, which is consumed at large scale not only in India but also throughout the world because of its anti-inflammatory activity.

Pharmacological Activities: Plants as a source of new drugs are still poorly explored of all plant species. Only a small percentage has been investigated phytochemically and even a smaller percentage has been properly studied in terms of their pharmacological properties.

Antioxidant Activity: Methanolic extract of *P. amarus* was found to have potential antioxidant activity as it could inhibit lipid peroxidation and scavenge hydroxyl and superoxide radicals in vitro. The amount required for 50% inhibition of lipid peroxide formation was 104 μg/ml and the concentrations needed to scavenge hydroxyl and superoxide radicals were 117 and 19 mg/ml respectively. Different drying treatments led to a significant reduction (P<0.05) in antioxidant properties of *P. amarus* methanolic extracts, with microwave drying causing the highest decrease in TPC and antioxidant activity exhibited by the reduction in both radical scavenging activity and FRAP. On the other hand, boiling water extracts appeared to exhibit significantly stronger antioxidant potentials (P<0.05) even in dried plant materials due to greater solubility of compounds, the breakdown of cellular constituents as well as hydrolysis of tannins.

The antioxidant activity of some of the principal constituents, namely amaritin, 1-galloyl-2,3-dehydrohexahydroxydiphenyl (DHHD)-glucose, repandusic acid, geraniin, corilagin, phyllanthusin D, rutin and quercetin 3-O-glucoside were examined for their ability to scavenge free radicals in a range of systems including DPPH, 2,2-azobis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS)/ferrylmyoglobin, ferric reducing antioxidant power (FRAP) and pulse radiolysis.

The compounds showed significant antioxidant activities with differing efficacy depending on the assays employed. Amaritin, repandusic acid and phyllanthusin D showed higher antioxidant activity among the ellagitannins and were comparable to the flavonoids, rutin and quercetin 3-O-glucoside. *P. amarus* extracts appear to act as an in vivo natural antioxidant and an effective gastro-protective agent that is as effective as cimetidine. *Phyllanthus amarus* may also offer protection against toxic effects of alcohol to the liver. Phyllanthin, one of the active lignin present in *P. amarus* was isolated from the aerial parts, by silica gel column chromatography employing gradient elution with hexane-ethyl acetate solvent mixture.

Characterization of Phyllanthin was done by mass spectrophotometry, UV-visible spectrophotometry, elemental analysis, FTIR, HNMR, CNMR and mass spectral analysis. Free radical scavenging activity of *P. amarus* extract and phyllanthin was also examined using DPPH assay. The CCl4 treatment caused a significant decrease in cell viability. It was observed that phyllanthin effectively alleviated the changes induced by CCl4 in a concentration-dependent manner, with much smaller strengths as compared to *Phyllanthus amarus* extract.

To study the improved antioxidant status and reduction in the risk of oxidative stress, rats were treated with *P. amarus* aqueous extract (PAAEt) at a dose of 200 mg/kg body wt/day for 8 weeks along with the assay of lipid peroxidation (LPO), Vitamin C, uric acid and reduced glutathione (GSH) and...
antioxidant enzymes: Glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD). PAAEt treated rats showed a significant decrease in plasma LPO and a significant increase in Plasma Vitamin C, uric acid, GSH levels and GPx, CAT and SOD activities 53.

Using DPPH (1,1-diphenyl-2-picrylhydrazyl) method, free radical scavenging activity was evaluated using in-vitro callus which showed that the methanol extract of P. amarus, contains the highest amount of phenolic compounds and exhibits the greatest antioxidant activity in comparison to other extracts and even more as compared to in-vivo plant extraction 54.

Anti-diabetic Activity: The methanolic extract of P. amarus was found to reduce the blood sugar in alloxan diabetic rats by 6% at a dose level of 200 mg/kg body weight and 18.7% reduction in blood sugar 49. Anti-diabetic effect of an aqueous and hydroalcoholic extract of P. amarus used in Togo for treating diabetes and many other diseases. Two doses (500 and 1000 mg/kg) of the both extracts were administered orally to diabetic rats. Consequently, aqueous and hydroalcoholic extract of P. amarus decreases significantly blood glucose level after 15 days of administration 55. A study by Shetti, oral administration of ethanolic leaf extract (400 mg/kg body weight) for 45 days resulted in significant decline in blood glucose and increase in the activity of glucokinase in the liver of diabetic mice 56.

Antimicrobial Activity: Antimicrobials of plant origin have an extremely large therapeutical potential. They are effective in the treatment of infectious diseases, while simultaneously alleviating many of the side effects that are often connected with synthetic antimicrobials 57. The effect of norsecurine, an alkaloid isolated from Phyllanthus amarus was studied against spore germination of some fungi (Alternaria brassicae, Alternaria solani, Curvularia penisseti, Curvularia sp., Erysiphe pisi, Helminthosporium frumentacei) as well as pea powdery mildew (E. pisi) under glasshouse conditions. The sensitivity of fungi to nor-securine varied considerably. Nor-securine was effective against most of the fungi. Pre-inoculation treatment showed greater efficacy than post-inoculation in inhibiting powdery mildew development on pea plants in a glasshouse. Maximum inhibition occurred at 2000 μg/mL 58.

Six intestinal organisms were isolated and identified: K. pneumoniae, P. aeruginosa, S. aureus, E. coli, P. mirabilis and E. faecalis. Both agar diffusion and broth dilution methods were used to assay antimicrobial activity against the organisms. Phyllanthus amarus showed bacteriostatic action at this concentration because subculture yielded growth except on plate of K. pneumoniae. Alcoholic extract of P. amarus showed the maximum zone of inhibition and minimum inhibitory concentration against all the microorganisms. The minimum zone of inhibition and comparatively greater inhibitory concentration were determined in petroleum ether, and the aqueous extract of P. amarus showed less antimicrobial activity against all the experimental strains 59. The antimicrobial analysis was carried out using disc diffusion method as described by Boer et al., 15.

The crude extract and fractions were tested against the Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, and Candida albicans for their antimicrobial and antifungal activities. The results showed that the dichloromethane fraction had activity against all the test organisms with MIC at 100 μg/ml while the hexane, ethyl acetate and aqueous methanol fractions showed no activity against the organisms. The results of the antifungal study showed that the fractions have activity against the organism Candida albicans as the plates did not show growth of any organism after incubation at 37°C for 21 days 60. This suggests that the fraction is active against the fungus, Candida albicans. This is in agreement with a previous report by Foo and Wong, 1992 13.

The significant antibacterial activity of ethanol extracts of the P. amarus and P. niruri against E. coli is an indication of their therapeutic potential in the management of UTI. Results obtained in this work agree with the findings of previous authors on the anti-microbial status of P. amarus 61 - 62. The inhibitory activities of P. amarus and P. niruri extracts were the same against four of the five E. coli isolates. It could be suggested that a decoction or an infusion of either of the two herbs could help in the treatment of UTI 64.
Anti-viral Activity: Study on 25 compounds isolated from *P. amarus*, *P. multiflorus*, *P. tenellus* and *P. virgatus* found that niranthin, nirtetralin, hinokinin and geraniin at the non-cytotoxic concentration of 50 µm, suppressed effectively both HBsAg and hepatitis B effective antigen (HbeAg) expression, of these, niranthin showed the best anti-HBsAg activity, while the most potent anti-HBeAg activity was observed with hinokinin \(^5\). *In-vitro* culture of hairy roots of *P. amarus* induced by *Agrobacterium rhizogenes* was shown to possess 85% inhibition (in contrast to 15% in the control) in binding of Hepatitis B Surface Antigen (HBsAg) to its antibody (anti-HBs) after 24 h of incubation with HbsAg-positive sera *in-vitro* at 37 °C \(^6\). The aqueous extract of *P. amarus* showed partial antiviral activity against white spot syndrome virus in shrimp at the concentration of 150 mg/kg of animal body weight for 30 days \(^7\). Effect on viral RNA replication was investigated by using Taq Man Real time RT-PCR. *P. amarus* root extract showed significant inhibition of HCV-NS3 protease enzyme; whereas *P. amarus* leaves extract showed considerable inhibition of NS5B in the *in-vitro* assays. Results suggested the possible molecular basis of the inhibitory activity of *P. amarus* extract against HCV which would help in optimization and subsequent development of specific antiviral agent using *P. amarus* as a potent natural source \(^8\).

Anti-cancer Activity: The methanolic extract of *P. amarus* hairy roots revealed potent antiproliferative activity in the MCF-7 cells through induction of apoptosis mediated by increased intracellular reactive oxygen species (ROS) in conjunction with decreased mitochondrial membrane potential \(^9\). The effects of aqueous extract of the whole plant of *P. amarus* against Cr (VI)-induced oxidative toxicity *in-vitro* in MDA-MB-435S human breast carcinoma cells revealed a distinct decline in Cr(VI)-induced cytotoxicity was noticed in MDA-MB-435S cells with an increase in extract dosage. Its phenolic constituents simultaneously may inhibit Cr (VI)-induced oxidative toxicity to MDA-MB-435S cells \(^10\).

Phyllanthus amarus was shown to be capable of inducing apoptosis in conjunction with its antimetastastic action, with more than 3-fold increase of caspases-3 and -7, the presence of DNA-fragmentation and terminal deoxynucleotidyl transferase mediated dUTP nick end labeling assay (TUNEL)-positive cells. The ability of *Phyllanthus amarus* to exert antimetastatic activities is mostly associated to the presence of polyphenol compounds in its extracts \(^11\).

Anti-venom Activity: *Phyllanthus amarus* and *Andrographis paniculata* plant extracts when combined possess potent snake venom neutralizing capacity and could potentially be used for therapeutic purposes in case of snakebite envenomation. Di-herbal plant extracts effectively neutralized the cobra venom induced lethal activity. About 0.24 mg of di-herbal plant extract is able to completely neutralize the lethal activity of 2 LD\(_{50}\) of *N. naja* venom \(^12\).

Fertility Effect:

Fertility in Male: There is a claim on the use of aerial parts of *Phyllanthus amarus* to improve the fertility in men, by traditional practitioners. *Phyllanthus amarus* leaf extract causes an increase in the level of Testosterone but has little or no effect on the levels of Leutinizing Hormone (LH) and Follicle Stimulating Hormone (FSH) \(^13\). This increase may be responsible for the enhancement of fertility because the optimum level of Testosterone is required for normal sex drive in adult male and increase in spermatozoa, hence an increase in male fertility \(^14\).

Anti-fertility in Female: It was investigated in cyclic adult female mice at a dose of 100 mg/kg body weight for 30 days orally of an alcoholic extract of the whole plant of *P. amarus*. The results revealed no significant change in absolute body and organ weights and even in general metabolic status. Cohabited females with normal male mice were unable to become pregnant as their cyclicity was affected \(^15\). On the other side in the female it has resulted in the abortion of some pregnant female mice. Experiments were designed to test the effect of aqueous extract of *P. amarus* (AEPA) leaves on implantation and pregnancy. AEPA reduced the time frame for implantation in the treated rats and caused abortion of pregnant rats. Although the aqueous extract of *Phyllanthus amarus* reduces the time frame for implantation, its abortifacient effect does not support the traditional claim that it can treat sterility \(^16\).
Anti-inflammatory Activity: *Phyllanthus amarus* ethanol, aqueous and hexane extracts showed an inhibition of LPS-induced production of NO and PGE2. The extracts also attenuated the LPS-induced secretion of Tumor necrosis factor (TNF). Both extracts reduced expression of iNOS and COX-2 and inhibited activation of NF-κB, but not of AP-1. *P. amarus* inhibited induction of interleukin (IL)-1β, IL-10, and interferon-γ in human whole blood and reduced TNF-α production in-vivo 77. The effects of methanol extract of *P. amarus* on different phases of inflammation were examined. Investigations were performed using different phlogistic agents-induced paw edema, carrageenan-induced air-pouch inflammation and cotton pellet granuloma in rats. The methanol extract of *Phyllanthus amarus* significantly inhibited carrageenan, bradykinin, serotonin and prostaglandin E1-induced paw edema, but failed to inhibit the histamine-induced paw edema. The extract significantly decreased the formation of granuloma tissue in chronic inflammation model 78.

TABLE 3: PHARMACOLOGICAL ACTIVITIES REPORTED IN P. AMARUS BY VARIOUS AUTHORS

<table>
<thead>
<tr>
<th>S. no.</th>
<th>Pharmacological Activity</th>
<th>Work Done</th>
<th>Place</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Anti-oxidant Activity</td>
<td>Hypoglycemic effect of methanol extract of Phyllanthus amarus Schum and Thonn on alloxan induced diabetes mellitus in rats and its relation to antioxidant potential.</td>
<td>Thrissur (India)</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anti-oxidant properties of Phyllanthus amarus extracts as affected by different drying methods.</td>
<td>Malaysia</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Antioxidant activity of some polyphenol constituents of the medicinal plant Phyllanthus amarus Linn.</td>
<td>Pune, Mumbai (India), New Zealand</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gastroprotective and antioxidant activities of Phyllanthus amarus extracts on an absolute ethanol-induced ulcer in albino rats.</td>
<td>Nigeria</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Isolation, Characterization and Antioxidative effect of Phyllanthin against CCl4-induced toxicity in HepG2 cell line.</td>
<td>Ahmedabad, Chennai (India)</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The anti-oxidant potential of aqueous extract of P. amarus in rats.</td>
<td>Anantapur (India)</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Determined the free radical scavenging properties for different in-vivo and in-vitro plant extraction of P. amarus.</td>
<td>Jaipur (India)</td>
<td>54</td>
</tr>
<tr>
<td>2</td>
<td>Anti-diabetic Activity</td>
<td>Hypoglycemic effect of methanol extract of Phyllanthus amarus Schum and Thonn on alloxan induced diabetes mellitus in rats and its relation to antioxidant potential.</td>
<td>Thrissur (India)</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Antidiabetic activity of Phyllanthus amarus Schum and Thonn on alloxan induced diabetes in male wistar rats.</td>
<td>Togo, France</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Antidiabetic effect of ethanolic leaf extract of Phyllanthus amarus in alloxan induced diabetic mice.</td>
<td>Dharwad (India)</td>
<td>56</td>
</tr>
<tr>
<td>3</td>
<td>Antimicrobial Activity</td>
<td>Antifungal activity of nor-securinine against some phytopathogenic fungi.</td>
<td>Varanasi (India)</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Determination of antimicrobial potentialities of different solvent extracts of the medicinal plant: Phyllanthus amarus Schum. and Thonn.</td>
<td>Jaipur (India)</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biological and Chemical Evaluation of the Extracts of the Leaf of Phyllanthus amarus Schum.</td>
<td>Nigeria</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Antibacterial attributes of extracts of Phyllanthus amarus and Phyllanthus niruri on Escherichia coli the causal organism of urinary tract infection.</td>
<td>Nigeria</td>
<td>64</td>
</tr>
<tr>
<td>4</td>
<td>Anti-viral Activity</td>
<td>Screening of 25 compounds isolated from Phyllanthus Species for anti-human hepatitis B virus in-vitro.</td>
<td>Taiwan</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Development of a potent in vitro source of Phyllanthus amarus roots with pronounced activity against the surface antigen of the hepatitis B virus.</td>
<td>Kolkata (India)</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Screening the antiviral activity of Indian medicinal plants against White spot syndrome virus in shrimp.</td>
<td>Vellore (India)</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inhibition of hepatitis C virus replication by herbal extract: Phyllanthus amarus as potent natural source.</td>
<td>Bangalore (India)</td>
<td>68</td>
</tr>
<tr>
<td>5</td>
<td>Anti-cancer Activity</td>
<td>Hairy root extract of Phyllanthus amarus induces apoptotic cell death in human breast cancer cells.</td>
<td>Mumbai (India)</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aqueous extract of Phyllanthus amarus inhibits chromium (VI)-induced toxicity in MDA-MB-435S cells</td>
<td>Vellore (India)</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anti-metastatic effects of Phyllanthus on human lung (A549) and breast (MCF-7) cancer cell lines.</td>
<td>Malaysia</td>
<td>71</td>
</tr>
<tr>
<td>6</td>
<td>Anti-venom Activity</td>
<td>Isolation, purification, and characterization of active compound from Andrographis paniculata Linn. and Phyllanthus amarus L. and testing the anti-venom activity of the di-herbal extract by in-vitro and in-vivo studies.</td>
<td>Chennai (India)</td>
<td>72</td>
</tr>
<tr>
<td>7a</td>
<td>Fertility Effect in male</td>
<td>The Phytochemical constituents and the effects of methanol extracts of</td>
<td>Nigeria</td>
<td>73</td>
</tr>
</tbody>
</table>
CONCLUSION: *P. amarus* is attracting many researchers since many decades because of its potent pharmacological uses, which is discussed above like jaundice, diabetes, syphilis, dysentery, fever, gonorrhea, etc. Every country has its own traditional use of *P. amarus* but the way of curing disease is almost common everywhere. The extracts of the plant possess various activities like anti-viral, anti-diabetic, anti-hepatoxic, antibacterial, antifungal and anti-inflammatory. This can be of great use for identifying more alternatives to cure different diseases. As this plant grows in tropical and sub-tropical areas, consequently in countries like India, Nigeria and Malaysia, more research work is continued. The aim of this review was to gather the research work undertaken till date in order to provide enough baseline for future works.

ACKNOWLEDGMENT: The authors express their sincere gratitude towards Dr. R. A. Sharma for his supervision. The first author is a recipient of JRF from University Grant Commission, New Delhi.

CONFLICT OF INTEREST: None of the authors of this paper has a financial or personal relationship with other people or organizations that could inappropriately influence or bias the content of the paper.

REFERENCES:

50. Lim YY and Murtijaya I: Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. LWT Food Science and Technology 2007; 40: 1664-1669.

64. Gibadamosi TT: Antibacterial attributes of extracts of *Phyllanthus amarus* and *Phyllanthus niruri* on *Escherichia coli* the causal organism of urinary tract infection. Journal of Pharmacognosy and Phytotherapy 2015; 7: 80-86.

72. Sornakumar RSA, Kunthavai PC and Gnaniah S: Isolation, purification and characterization of active compound from *Andrographis paniculata* L. and *Phyllanthus amarus* Linn. and testing the antivenom activity of the di-herbal extract by *in-vitro* and *in-vivo* studies. International Research journal of Pharmacy 2014; 5: 207-211.

