IJPSR (2012), Vol. 3, Issue 06

(Research Article)

INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES AND RESEARCH

Received on 20 February, 2012; received in revised form 25 May, 2012; accepted 29 May, 2012

PHYTOCHEMICAL ANALYSIS OF LEAF EXTRACTS OF WATTAKAKA VOLUBILIS LINN. (STAPF) BY GC-MS METHOD

Karuppusamy Sridhara Vishnusithan and Malaiyandi Kamaraj*

P.G. and Research Department of Botany, Jamal Mohamed College (Autonomous), Tiruchirappalli- 620 020, Tamil Nadu, India

Keywords:

Wattakaka volubilis, Phytochemical analysis, Leaf extract

Correspondence to Author:

Malaiyandi Kamaraj

P.G. and Research Department of Botany, Jamal Mohamed College (Autonomous), Tiruchirappalli- 620 020, Tamil Nadu, India

ABSTRACT

The aim of the study was to investigate the phytochemical compounds of *Wattakaka volubilis* ethanolic leaf extracts. The phytochemical compounds were screened by GC-MS method. The ethanolic leaf extracts presented 32 bioactive compounds. The identification of phytochemical compounds is based on the peak area, molecular weight and molecular formula. Diethyl phthalate $C_{12}H_{14}O_4$ has peak area 37.31, 2-pentanone, 3, 3, 4, 4-tetramethyl $C_9H_{18}O$ has peak area 17.58 and propane 1, 1, 3-trimethoxy $C_9H_{20}O_3$ has peak area 10.20 and the results were presented.

INTRODUCTION: Plants have been an important source of medicines for thousands of years. Everyday, the World Health Organization estimates that upto 80 percent of people still rely mainly on traditional remedies such as herbs for their medicines. Its civilization is very ancient and the country of a whole has long been known for its rich resources medicinal plants. Today, ayurvedic, homeo and unani physicians utilize numerous species of medicinal plants are possibly utilized as antiseptic and antimicrobial substances.

Wattakaka volubilis (Linn F.) Stapf (Family-Asclipidiaceae) is a large climber with green flowers in drooping umbels with smooth bank and ash coloured leaves rounded at the base. It is found in India and South East Asia. The root is applied to snake bites and given to women to cure head ache after child birth and the leaves are applied to boils and abscesses to promote suppuration. It is an emetic, diphoretic and diuretic². Traditional healers of Kerala used its leaves to treat inflammatory and painful conditions ³. However, till date no scientific validation of these properties has been reported.

Here, the present study has been made to identify the Phytochemical compounds of *W. volubilis* by GC-MS analysis.

MATERIALS AND METHODS:

Collection of Plant Material: The plant *W. volubilis* was collected from the garden of Jamal Mohamed College, Tiruchirappalli. The plant was identified and voucher specimen was deposited in the Rapinet Herbarium, St. Joseph's College, Tiruchirappalli.

Preparation of Extracts: The plant leaves were air dried and crushed to small piece using mortar and pestle and powdered in an electric grinder. Dried and powdered plant material was extracted using soxhlet apparatus with ethanol as solvent (50-60°C) for 72 hrs.

The obtained extracts were evaporated in vacuum to give residues. A semi solid residual extract was obtained. It was stored at 4° C until used. When needed, the residual extract was dissolved in distilled water and used in the study. The extracts preparations were done as previously described by Allade and Irobi 4° .

GC-MS Analysis: The GC-MS analysis of unknown compounds of *W. volubilis* deals with using a Clarus 500 Perkin Elmer Gas Chromatography ionizes compounds and measures their mass number equipped with Elite-5-Capillary Column (5% phenyl 95% dimethyl poly siloxane) (30 mm x 0.25 mm ID x 0.25 μ mdf) and mass detector turbomass gold of the company which was operated at in El mode. Helium was carried the gas at the flow rate of 1 ml / min, the injector was operated at 280°C and the oven temperature was programmed as follows : 70°C @ 8 °C/min to 150°C (1 min) @ 8°C / min to 280°C (10 min). The identification of components was based on comparison of their mass spectra with those of Wiley and NBS Libraries and those described by Adams ⁵ as

well as on comparison of their retention indices with literature 6 .

RESULTS AND DISCUSSION: The present study carried out on the *W. volubilis* revealed the presence of medicinal active constituents. In GC-MS analysis 32 bioactive phytochemical components were identified in the ethanolic extract of *W. volubilis*. The identification of phytochemical compounds is based on the peak area, molecular weight and molecular formula. Diethyl phthalate ($C_{12}H_{14}O_4$) with RT 16.55 has peak area 37.31, 2-pentanone, 3, 3, 4, 4-tetramethyl ($C_9H_{18}O$) with RT 14.93 has peak area 17.58 and propane 1, 1, 3-trimethoxy ($C_9H_{20}O_3$) with RT 6.84 has peak area 10.20, the results were presented in **table 1**, **figure 1**.

TABLE: CONSTITIENTS AND PERCENTAGE COMPOSITION OF THE ETHANOLIC LEAF EXTRACT OF W.VOLUBILIS

S. No	Peak name	Retention time	Peak area	% Peak area
	Propane, 1,1,3-triethoxy-			
1	<u>Formula:</u> C9H20O3	6.84	6359325	10.2012
	MW: 176			
2	Ethane, 1,1-diethoxy-			
	Formula: C ₆ H ₁₄ O ₂	7.29	99703	0.1599
	<u>MW:</u> 118			
3	Tridecane			
	<u>Formula:</u> C ₁₃ H ₂₈	9.17	442012	0.7090
	<u>MW:</u> 184			
4	Benzoic acid, 2-hydroxy-, methyl ester			
	<u>Formula:</u> C8H8O3	9.34	3260023	5.2295
	<u>MW:</u> 152			
	1,2-Benzenedicarboxylic acid			
5	<u>Formula:</u> C ₈ H ₆ O ₄	11.74	104790	0.1681
	<u>MW:</u> 166			
6	Decane, 6-ethyl-2-methyl-			
	<u>Formula:</u> C ₁₃ H ₂₈	13.02	573829	0.9205
	<u>MW:</u> 184			
	1,2,3,4-Cyclohexanetetrol			
7	<u>Formula:</u> C ₆ H ₁₂ O ₄	13.41, 14.27, 13.71	1753306	2.8125
	<u>MW:</u> 148			
	Dodecane, 1-chloro-			
8	<u>Formula:</u> C ₁₂ H ₂₅ Cl	14.42	103779	0.1665
	<u>MW:</u> 204			
9	1-Dodecanol			
	<u>Formula:</u> C ₁₂ H ₂₆ O	14.48	139343	0.2235
	<u>MW:</u> 186			
10	2-Pentanone, 3,3,4,4-tetramethyl-			
	<u>Formula:</u> C ₉ H ₁₈ O	14.93	10961298	17.5833
	<u>MW:</u> 142			
11	n-Decanoic acid			
	<u>Formula:</u> C ₁₀ H ₂₀ O ₂	15.96	145530	0.2334
	<u>MW:</u> 172			
	Diethyl Phthalate			
12	<u>Formula:</u> C ₁₂ H ₁₄ O ₄	16.55	23263070	37.3169
	<u>MW:</u> 222			
13	1-Undecanol	18.01	282572	0.4533

ISSN: 0975-8232

	<u>Formula:</u> C ₁₁ H ₂₄ O			
	<u>MW:</u> 172			
	Isooctanol			
14	Formula: C ₂ H ₁₂ O	18.50	52380	0.0840
	MW/· 130	10.00	32300	0.0010
	2 Diparidipana N [4 brama n butul]			
15	Formula: C9H16BrNO	19.13	146969	0.2358
	<u>MW:</u> 233			
	Alkaloid (piperidine type)			
16	Sulfurous acid, 2-ethylhexyl isohexyl ester			
	<u>Formula:</u> C ₁₄ H ₃₀ O ₃ S	19.53	247774	0.3975
	MW: 278			
	3-Butylindolizidine			
	Formula: CraHaaN			
17		19.71	53083	0.0852
	<u>IVIVI:</u> 181 Alleleid (indele mean)			
	Alkaloid (Indole group)			
	3,7,11,15-Tetramethyl-2-hexadecen-1-ol			
18	<u>Formula:</u> C ₂₀ H ₄₀ O	20.05,20.64	1880117	3.0159
	<u>MW:</u> 296			
	á-k-Strophanthin			
19	<u>Formula:</u> C ₃₆ H ₅₄ O ₁₄	20.16,21.60, 31.73	2295909	3.6829
	MW: 710			
	Uridine, 2'-deoxy-3-methyl-3',5'-di-O-methyl-			
20	Formula: C12H10N2Or	20.28	0255/	0 1/85
20	<u>10111010</u> 0121101205	20.20	92334	0.1485
21	1-Hexadecyne			
	Formula: C ₁₆ H ₃₀	20.38	244581	0.3923
	<u>MW:</u> 222			
	Undecanoic acid			
22	<u>Formula:</u> C ₁₁ H ₂₂ O ₂	21.76	749327	1.2020
	MW: 186			
23	Decanoic acid. ethyl ester			
	Formula: C12H24O2	22 10	382719	0.6139
20	M/M/· 200	22.10	562,15	0.0135
	Cycloboxanono 2 othyl 4 mothowy			
24	Exemula: Call a Ca	22.26	00700	0.4.455
24		22.26	90720	0.1455
	<u>MW:</u> 156			
	4-Oxazolecarboxylic acid, 4,5-dihydro-2-phenyl-, 1-methylethyl			
25	ester	22 12	26521	0.0426
25	<u>Formula:</u> C ₁₃ H ₁₅ NO ₃	23.12	20331	0.0420
	<u>MW:</u> 233			
	Phytol			
26	Formula: C ₂₀ H ₄₀ O	23.57	1919497	3.0791
20				
	Ovirane (7-octenyl)-			
28	Formula: CroHaoO	24 21	177071	0 2955
		24.21	1//9/1	0.2655
	<u>MW:</u> 154			
29	Hexadecane, 1,2-epoxy			
	<u>Formula:</u> C ₁₆ H ₃₂ O	26.01	450888	0.7233
	<u>MW:</u> 240			
30	Hexanedioic acid, mono(2-ethylhexyl)ester			
	<u>Formula:</u> C ₁₄ H ₂₆ O ₄	26.64	970462	1.5567
	MW: 258			
31	Pentadecanal-			
	Formula: C1-H200	20 17	2226460	2 7210
		20.17	2320400	5.7519
32	trans-Squalene			
	Formula: C30H50	32.24	2742765	4.3997
	<u>MW:</u> 410			
				100 0000

Arunkumar and Muthuselvam reported in the GC-MS analysis, 26 bioactive phytochemical compounds were identified in the ethanolic extrct of *Aloe vera*. The identification of phytochemical compounds is based on the peak area, molecular weight and molecular formula. *J. sitostera* ($C_{29}H_{50}O$) with RT 38.78 has peak area 13.19%, Oleic Acid ($C_{18}H_{34}O_2$) with RT (21.85) and 9,12,15-Octadecatrienoic acid methyl ester (Z, Z, Z) (C. ${}_{19}H_{33}C_2$) with RT 22.6 ranks next having peak area 11.74% and 11.36% respectively ⁷.

Investigated fourteen aromatic and 24 aliphatic acids were determined by GC-MS analysis of acidic fractions obtained from *Paronia peregrine* and *Paeonia tenifolia* roots. Benzoic acid and its monohydroxy-dihydroxy and tri-hydroxy derivatives are the main acid components of both *Paronia* species. Some fractions could serve as a source of benzoic 4-hydroxy benzoic, vanillic and gallic acids as well as of ethyl gallate ⁸.

GC-MS results revealed phenols, aromatic carboxylic acids and esters in the chloroform extract ⁹. The GC-MS analysis of a botanically certified Oleogama Resin of Boswellia sacra essential oil revealed the presence of 34 monoterpenes and 16-sesquiterpens ¹⁰.

CONCLUSION: This study revealed the presence of 32 phytochemical compounds. The identification of the compounds *W. volubilis* could be exploited for new potent antidiabetic agents.

ACKNOWLEDGEMENT: The authors are thankful to the Centre for Advanced Research in Indian System of Medicine (CARISM), Sastra University, Thanjavur, for offering facilities to carryout this study.

REFERENCES

- 1. Narayana Rao and. Thammanna K. Medicinal Plants of Ritual Hills, Departemnt of Garden, Tirupathi Devastranams, Tirupathi, India. 1987; 123-130.
- 2. Agarwal V S. Economic Plants of India, Kailash Prakashan, Calcutta 1986; 116.
- 3. Kirtikar K R and Basu B D. Indian Medicinal Plants, Bishen Singh Mahendrapal Singh, Dehradun 2003; Vol. 3: 1635.
- Alade P I and O N. Irobi. Antimicrobial activities of crude leaf extracts of *Acalypha wilkensiara*. Journal of Ethno Pharmacology 1993, 39: 171 – 174.
- Adams R. Identification of essential oil components by Gas Chromatography / Mass Spectroscopy. Allured Publishing Co. Carol Stream, IL 1995.
- 6. Vendon Dool H and Krafz P D. A generalization of the retention index system including linear temperature programmed gas liquid partition chromatography. Journal of Chromatography 1963;11: 463 471.
- 7. Arunkumar S and Muthuselvam M. Analysis of Phytochemical Constituents and Antimicrobial Activities of Aloevera L. against

clinical pathogens. World Journal of Agricultural Sciences 2009; 5 (5): 572 – 576.

- Ivanka Kostova, Antoanetra Ivanova, Ivajla Dolcheror, Iva Tsvetkova and Atnas Kujumgiev. GCMS analysis and antimicrobial activity of acidic fractions obtained from *Paeomia peregrine* and *Paeonia tenuifolia* Roots. Z. Natuforsch 2002; 57C: 624 – 628.
- 9. Soma Roy, Kiranmayee Rao, Bhuvaneswari C H, Archana Guri and Lakshmi Narasu Mangamoori. Phytochemcial analysis of

Andrographis paniculata extract and its antimicrobial activity. World Journal of Microbiology and Biotechnology 2010; 26(1): 85 – 91.

 Ahmed Al-Harrasi and Salim Al-Saidi. Phytochemical analysis of the essential oil from botanically certified Oleogum resin of *Boswellia sacra* (Omani Luban). Molecules 2008; 13: 2181 – 2189.
