

INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES AND RESEARCH

Received on 27 March, 2012; received in revised form 17 June, 2012; accepted 25 June, 2012

PROCESS VALIDATION OF SOTALOL HYDROCHLORIDE TABLETS

J.N. Malukani^{*1}, R. Sen² and H. Raj¹

Department of Quality Assurance, Shree Dhanvantary Pharmacy College¹, Kim, Surat, India Quality Assurance Department, Rusan Pharma², KSEZ, Gandhidham, Kutch, Gujarat, India

ABSTRACT

Keywords: Prospective process validation, critical process parameters, consecutive batches

Correspondence to Author:

Jagruti N. Malukani

Research Scholar, Department of Quality Assurance, Shree Dhanvantary Pharmacy College, Kim, Surat, Gujarat, India Process Validation is a very common term in the pharmaceutical industry. But it involves series of activities carried out in order to have the assurance that the desired quality products are manufactured. The manufacturing process need to be controlled and for this one should have sound knowledge and understanding regarding the process as well as the product. Each and every step should be scientifically planned and conducted and documented appropriately in order to have an effective and efficient program. So here we discuss the Prospective Process validation of the Sotalol Hydrochloride 40 mg tablets, the critical process parameters involved in the manufacturing process and the consistency in the results of the three consecutive batches.

INTRODUCTION: As per the FDA's November 2008 draft version of Process Validation Guidance for Industry, Process validation is defined as collection and evaluation of data, from the process design stage throughout production, which establishes scientific evidence that the process is capable of consistently delivering quality products.

It involves series of activities taking place over the lifecycle of product and process which are divided into 3 stages ¹.

- Stage 1- Process Design
- Stage 2- Process qualification
- Stage 3- Continued Process Verification

Types of Process validation ²:

 Prospective validation - Normally undertaken whenever the process for a new formula (or within a new facility) must be validated before routine pharmaceutical production commences. In fact, validation of a process by this approach often leads to transfer of the manufacturing process from the development function to production.

- Concurrent validation Documenting the evidence that a process does what it purports to do base on information generated during actual implementation of the process.
- Retrospective validation Achieving validation by documenting all the historical information (e.g., release data) for existing products and using that data to support the position that the process is under control.
- Revalidation Indicates that the process must be validated once again, may not necessarily mean that the original program must be repeated however.

Process Validation has been widely discussed by the pharmaceutical industry during the past 20-30 years. An effective Process Validation contributes significantly to assuring the drug quality. But the advantages and disadvantages of Process Validation have never been systematically evaluated and Process Validation is frequently performed without real understanding of work involved. There is also much confusion as to what constitutes Process Validation and what does not.

The Pharmaceutical Process Validation has always been understood in one of the two ways- either as total validation activity in pharmaceutical manufacturing site from development, qualification of equipments to final validation of three consecutive batches of the final product or as final production scale validation of a pharmaceutical preparation only.

John R. Sharp, Principal Medicines Inspector at Department of Health in UK, said that Process Validation is nothing more than common sense – it is simply proving that a process does what it is designed to do.

The major challenge for the pharmaceutical industry is to streamline and/or simplify validation without sacrificing the product quality.

So here we are trying to build in quality in Sotalol Hydrochloride 40 mg tablets manufactured under specified environmental conditions by performing Prospective Process Validation and identifying various Critical Process Parameters (**Table 3**) which needs to be validated in order to have the desired quality products.

Sotalol Hydrochloride is a beta-adrenoceptor antagonist; class II and class III antiarrythmic. It is white or almost white powder. It is freely soluble in water, soluble in alcohol, practically insoluble in methylene chloride. pH is 4-5 and should be stored protected from light ³.

It is not metabolized and excreted unchanged in urine. Its half life is 8 ± 3 hrs. Minimum dose is 80 - 160 mg in two divided doses per day. Complication ranges from nausea, fatigue to torsades de pointes ⁴.

MATERIALS AND METHOD: Materials used in the manufacturing of tablets are shown in **Table 1** and the equipments used in the production are mentioned in **Table 2**.

TABLE 1: CONTENTS OF FORMULATION

STAGE	INGREDIENTS	QUANTITY (mg/tab)
	Sotalol Hydrochloride	40
DRY MIXING	Maize Starch	10.45
	Calcium hydrogen phosphate dihydrate	17.50
BINDER	Povidone K-30	2
SOLUTION	Purified water	3.96 L
	Sodium starch glycollate	2
LUBRICATION	Talc	2.25
	Magnesium stearate	1.75

TABLE 2: EQUIPMENTS USED IN THE PRODUCTION.

STAGE	EQUIPMENT	CAPACITY
Sifting	Vibrosifter	
Dry mixing/Granulation	Rapid Mixer Granulator	400 L
Binder preparation	Paste Kettle	20 L
Drying	Fluidized Bed Drier	60 kg
Sizing	Multimill	
Lubrication	Cage Blender	350 L
Compression	Compressing machine	31 station
compression	De duster	

Methodology:

- After dispensing Sotalol Hydrochloride, Maize Starch, Calcium hydrogen phosphate dihydrate, these are sifted using Vibrosifter having 20# mesh.
- These are then dry mixed together in the RMG, at interval of 5 min for 15 min.
- Samples are taken at each interval in order to see the uniformity of mixing. Based on the results the appropriate mixing time will be considered for the next two validation batches. Locations for sampling are shown in Fig. 1. The amount taken from each location is three times that of the standard average weight of the tablet, and composite sample of 5 gm from all the different locations.
- Then binder solution is prepared by using the paste kettle for granulating the dry mixture.
- This binder solution is then sprayed over the dry mix with the help of peristaltic pump at 30 rpm and the impeller of RMG moving at 75 rpm.
- As the granulation proceeds, there is increase in the amperage and the end point amperage is determined when the desired granules are obtained.
- The entire granulation process takes place for about 30 min.

- After that the granules are discharged from the RMG and collected in the FBD trolley.
- These are then dried in the FBD with the inlet temperature between 40 45 °C.
- Drying takes place for 10 min or until the specified LOD is obtained.
- Samples are taken from different locations which are shown in **Fig. 2**, and LOD is determined. The sample quantity is three times that of the standard average weight of the tablet, and composite sample of 5 gm from all the different locations.
- These dried granules are then sifted using vibrosifter having 50# mesh.
- The oversized granules are then sized using the Multimill having 0.5 mm screen.
- All these retained and passed granules are then taken for blending with talc and sodium starch glycollate. These are mixed in Cage Blender for 15 min.
- After this, magnesium stearate is added and mixed for 5 min.
- Samples are taken from different locations as shown in **Fig. 3**, in order to see the uniformity in **TABLE 3**: **THE CRITICAL PROCESS PARAMETERS IDENTIFIED**

mixing and also to measure the bulk and tapped density. The sample quantity of composite sample is 25 gm.

- After this the final lubricated blend is compressed into tablets using the 31 station compression machine.
- For the first batch we are compressing the blend at different rpm, in order to select an appropriate rpm for compressing the remaining first batch and second and third batch.
- Samples are taken at different hopper level in order to verify there is uniformity in the blend throughout the hopper fill.
- Samples taken at the start, middle, end of the compression of all the three batches are tested for various physical and IPQC parameters.
- These tablets are then stored at specified environment prior to packing.

Process stage	Critical process parameters	Measured response	Acceptance criteria	
Sifting		Sieve integrity (before and after)	Complies	
Dry Mixing	Speed of mixer blade, Load size, Time of		Assay: 565.12 – 612.21 mg/gm (96-	
Dry Wixing	mixing	content ofmornity	104%)	
	Chopper speed, Impeller speed, Binder		As por requirement	
Granulation	Quantity, Binder addition rate, End point	Binder quantity, Amperage	As per requirement $14 - 19 A$	
	amperage, Total granulation time		14 – 16 A	
Drying	Outlet temperature, Inlet temperature,		2 – 5 %	
Drying	Drying load, Total drying time	LOD	3 - 3 %	
Lubrication	Speed of mixer. Time of mixing Blend load	Blend Uniformity, Tapped	Assay: 512.0 – 554.67 mg/gm (96-	
Lubrication speed of mixer, time of mixing, bien		density, Bulk density	104%)	
	Tomporature of area. Humidity of area	Appearance, Weight of 20	*, 1.5 gm ± 4%, 75 mg ± 4%, ± 7.5%	
Compression	Compression force, Filling depth, Hopper	tablets, Average weight,	of avg.wt, 5.9 – 6.1 mm, 30 – 80 N,	
		Uniformity of weight, Thickness	1.9 – 2.9 mm, NMT 1%, NMT 10	
	Comprossing spood	Hardness, Diameter, Friability	min, NLT 70%, 96 – 104% (38.4 –	
	compressing speed	Disintegration, Dissolution, Assay	41.6 mg/tab)	

*Appearance: Round white to off white flat bevel edged tablet with break line on one side and SOT 40 imprinted on other side

FIG. 1: RAPID MIXER GRANULATOR SAMPLING LOCATIONS

FIG. 2: FBD TROLLEY SAMPLING LOCATIONS

FIG. 3: CAGE BLENDER SAMPLING LOCATIONS

TABLE 4: ABBREVATIONS OF SAMPLING LOCATIONS

RT	Right Top
RB	Right Bottom
RM	Right Middle
LT	Left Top
LB	Left Bottom
LM	Left Middle
СТ	Centre Top
СВ	Centre Bottom
СМ	Centre Middle

RESULTS AND DISCUSSION: The first batch is experimented for various parameters. Based on the results obtained, the second and third batch is operated at the selected, appropriate parameter in order to see the consistency in the results.

For Batch 1:

Dry mixing: The first batch is dry mixed at 5, 10, 15 min interval. The results are shown in **Table 5**.

TABLE 5: DRY MIXING RESULT FOR FIRST BATCH

Location		Assay results (%)	
Location	5 min	10 min	15 min
Right Top1	102.6509	103.553	102.0733
Right Bottom1	96.67978	102.887	102.0971
Left Top1	103.7194	102.391	102.002
Left Bottom1	103.7041	103.0841	101.9901
Right Top2	103.7551	101.9459	102.267
Right Bottom2	99.95159	103.8536	103.3202
Left Top2	103.6906	103.3236	102.4624
Left Bottom2	96.47592	96.18544	102.7342
Centre Middle	103.7228	103.6549	102.9261
Composite	103.4867	102.1345	103.3508
SD	2.980481	2.245378	0.530842
%RSD	2.92825	2.194868	0.517782

So as the 15 min mixture showed the %RSD within the specification 6 , 15 min time period for dry mixing was considered to be optimum and the following second and third batch will be dry mixed for15 min.

Drying: The batch was dried into two portions for 10 min. Whether further drying is required or not is determined from the LOD results shown in **Table 6**. LOD should be within 3 - 5%

TABLE 6: DRYING RESULTS FOR FIRST BATCH

Location	LOD (Trolley 1)	LOD (Trolley 2)
Right Top	3.18 %	3.02 %
Right Bottom	3.32 %	3.11 %
Left Top	3.35 %	3.14 %
Left Bottom	3.88 %	3.24 %
Center Middle	3.31 %	3.44 %
Composite	3.40 %	3.16 %

As the results were within limit, the 10 min drying time was selected and the next two batches will be dried for this period.

Lubrication: Lubricating the blend with Magnesium Stearate for 5 min. The samples are then assayed in order to see the uniformity of blend. Results are shown in **Table 7** (limit: 96 - 104 %).

TABLE 7: LUBRICATION RESULTS FOR FIRST BATCH.

Location	Assay
Right Top1	101.2253 %
Right Top2	101.7822 %
Right Middle1	101.4016 %
Right Middle2	102.8041 %
Left Top1	102.8059 %
Left Top2	102.5059 %
Left Middle1	101.7916 %
Left Middle2	101.2759 %
Centre Top	101.8309 %
Centre Middle	101.7128 %
Centre Bottom	101.2797 %
Composite	102.5509 %
SD	0.600751
%RSD	0.589469

The blend showed uniformity and so the following batches will be lubricated for the same time period.

Compression at different speed and different hopper level: The blend is compressed at different rpm and based on the results obtained (shown in **Table 8**); particular rpm will be selected for further compression. The results of compressing the blend at different hopper levels are shown in **Table 9**. From the results given below; we have fixed the critical process parameters and the second and third batch were operated at these parameters in order to see the consistency in results.

By fixing the challenging variables mentioned above, the remaining batches are continued to process at these fixed parameters and are analysed for consistency in the product manufactured.

15 min dry mixing time is fixed and the assay results of the batches shown in **Table 10** indicates it to be sufficient enough to have a uniform mixture. All the batches dried for 10 min showed LOD results within the acceptable limit. Results are shown in **Table 11**.

All three batches were lubricated with Magnesium stearate. **Table 12** dictates the uniformity in content.

This blend when was compressed into tablets, tablets with desired properties were manufactured and the results are shown in **Table 13 – 15**.

TABLE 8: COMPRESSION RESULTS OF FIRST BATCH AT DIFFERENT RPM

	22 rpm	25 rpm	28 rpm
Weight of 20 tab	1.539 g	1.526 g	1.529 g
Avg. wt	76.9 mg	76.45 mg	76.3 mg
Uniformity of wt	± 5.76 %	± 5.73 %	± 5.72 %
Minimum deviation	0% (75 mg)	1.33% (74 mg)	1.33 % (74 mg)
Maximum deviation	5.33 % (79 mg)	4 % (78 mg)	5.33 % (79 mg)
Thickness	2.02 – 2.09 mm	2.02 – 2.13 mm	2.05 – 2.10 mm
Diameter	5.99 – 6.04 mm	6.01 – 6.03 mm	6.00 – 6.02 mm
Hardness	30 – 45 N	33 – 46 N	32 – 51 N
Disintegration Time	5 min 18 sec	4 min 56 sec	5 min 15 sec
Friability	0.16 %	0.168 %	0.3604 %

Results of 25 rpm were more desirable and so 25 rpm was selected for compressing.

TABLE 9: COMPRESSION RESULTS OF FIRST BATCH AT DIFFERENT HOPPER LEVEL

	99% hopper level	66% hopper level	33% hopper level
Weight of 20 tab	1.526 g	1.541 g 1.522 g	
Avg. wt	76.45 mg	77.2 mg	79.9 mg
Uniformity of wt	± 5.67 %	± 5.79 %	± 5.99 %
Minimum deviation	1.33 % (74 mg)	0 % (75 mg)	2.66 % (73 mg)
Maximum deviation	4 % (78 mg)	4 % (78 mg)	4 % (78 mg)
Thickness	2.0 – 2.08 mm	2.01 – 2.13 mm	2.04 – 2.09 mm
Diameter	6.01 – 6.04 mm	6.01 – 6.04 mm	6.01– 6.04 mm
Hardness	32– 45 N	33 – 46 N	32 – 44 N
Disintegration Time	5min 17 sec	4min 56 sec	5 min 01 sec
Friability	0.147 %	0.168 %	0.39 %
Assay	101.185 %	103.26 %	102.15 %

The results were within the desired specifications and so we can say that the blend was homogeneous throughout the compression process

TABLE 10: RESULTS OF DRY MIXING AT 15 MIN.					
Leastion		Assay results (%)			
Location	Batch 1	Batch 2	Batch 3		
Right Top1	102.0733	103.2862	102.3978		
Right Bottom1	102.0971	102.9312	103.1181		
Left Top1	102.002	103.0331	102.7732		
Left Bottom1	101.9901	102.5558	102.4199		
Right Top2	102.267	102.9227	102.0428		
Right Bottom2	103.3202	101.9408	103.2455		
Left Top2	102.4624	102.2279	103.13		
Left Bottom2	102.7342	103.0824	103.1724		
Centre Middle	102.9261	102.7138	102.7155		
Composite	103.3508	102.7953	103.1215		
SD	0.530842	0.409509	0.413147		
%RSD	0.517782	0.398553	0.401841		

MiddleComposite3.403.163.023.043.043.05All the batches were within the desired LOD range

TABLE 12: RESULTS OF LUBRICATION

Location _	Assay results (%)			
Location	Batch 1	Batch 2	Batch 3	
Right Top1	101.2253	101.0603	102.6297	
Right Top2	101.7822	102.6803	102.8078	
Right Middle1	101.4016	102.0897	101.7822	
Right Middle2	102.8041	102.5341	101.7634	
Left Top1	102.8059	102.1328	101.7147	
Left Top2	102.5059	102.4084	102.4853	
Left Middle1	101.7916	102.9559	102.6616	
Left Middle2	101.2759	102.5078	101.2422	
Centre Top	101.8309	102.9991	102.8678	
Centre Middle	101.7128	101.8028	101.9753	
Centre Bottom	101.2797	101.8647	102.7647	
Composite	102.5509	102.4647	102.6766	
SD	0.600751	0.543163	0.55024	
%RSD	0.589469	0.530994	0.53797	

All the batches showed uniformity in content

TABLE 11: RESULTS OF DRYING FOR 10 MIN.

Location			LOD res	sults (%)		
Location	Bat	ch 1	Bat	ch 2	Bat	ch 3
	Trolley	Trolley	Trolley	Trolley	Trolley	Trolley
	1	2	1	2	1	2
Right Top	3.18	3.02	3.06	3.07	3.05	3.04
Right Bottom	3.32	3.11	3.04	3.02	3.03	3.07
Left Top	3.35	3.14	3.04	3.05	3.05	3.05
Left Bottom	3.88	3.24	3.03	3.05	3.03	3.05
Center	3.31	3.44	3.05	3.03	3.04	3.06

All the batches showed blend uniformity.

Results of Compression:

TABLE 13: FIRST BATCH COMPRESSION RESULTS

	Start	Middle	End
Weight of 20 tab	1.519 g	1.507 g	1.516 g
Avg. wt	75.9 mg	75.35 mg	75.8 mg
Uniformity of wt	± 5.69 %	± 5.65 %	± 5.685 %
Minimum deviation	1.33 % (74 mg)	0 % (75 mg)	1.33 % (74 mg)
Maximum deviation	4 % (78 mg)	5.33 % (79 mg)	1.33 % (76 mg)
Thickness	2.03 – 2.08 mm	2.02 – 2.07 mm	2.04 – 2.09 mm
Hardness	35– 49 N	40 – 50 N	32 – 43 N
Disintegration Time	4 min 13 sec	4 min 11 sec	5 min 01 sec
Friability	0.168%	0.147 %	0.16 %
Assay	101.57 %	100.2%	102.57%
Dissolution	99.89 %	101.67 %	99.18 %

TABLE 14: SECOND BATCH COMPRESSION RESULTS.

	Start	Middle	End
Weight of 20 tab	1.514 g	1.513 g	1.508 g
Avg. wt	75.7 mg	75.7 mg	75.45 mg
Uniformity of wt	± 5.677	± 5.677	± 5.658
Minimum deviation	0 % (75 mg)	1.33 % (74 mg)	1.33 % (74 mg)
Maximum deviation	4% (78 mg)	4 % (78 mg)	2.66 % (77 mg)
Thickness	2.0-2.07 mm	2.01 – 2.07 mm	2.02 – 2.06 mm
Hardness	30– 42 N	33 – 55 N	38 – 45 N
Disintegration Time	4 min 57 sec	5 min 19 sec	5 min 26 sec
Friability	0.305 %	0.306 %	0.261 %
Assay	99.62%	99.57%	99.25%
Dissolution	99.54 %	100.32 %	99.01 %

	Start	Middle	End
Weight of 20 tab	1.508 g	1.510 g	1.498 g
Avg. wt	75.40 mg	75.5 mg	74.85 mg
Uniformity of wt	± 5.655 %	± 5.662 %	± 5.613 %
Minimum deviation	1.33 % (74 mg)	1.33 % (74 mg)	1.33 % (74 mg)
Maximum deviation	4 % (78 mg)	2.66 % (77 mg)	2.66 % (77 mg)
Thickness	2.04 – 2.09 mm	2.02 – 2.10 mm	2.00 – 2.07 mm
Hardness	34– 45 N	32 – 51 N	38 – 53 N
Disintegration Time	4 min 13 sec	4 min 01 sec	4 min 11 sec
Friability	0.289 %	0.227 %	0.23 %
Assay	99.60%	99.60%	99.57 %
Dissolution	99.78 %	101.32 %	99.9 %

т

All the three batches were within the acceptance criteria limit.

CONCLUSION: Based on the results obtained, it was concluded that three validation batches comply with the approved In-process and finished specifications defined for the product.

The overall review of results shows consistency and reproducibility within and between batches.

These results demonstrate that the manufacturing process was under control throughout all stages, within and between batches.

Hence it was concluded that the manufacturing process and the equipments adopted were robust enough and produce product meeting predetermined standards and quality attributes.

Therefore the Process stands Validated.

REFERENCE:

- 1. Process Validation General Principles and Practices, www.fda.gov
- 2. Nash R: Pharmaceutical Process Validation. Marcel & Dekker, Third Edition 2003.
- 3. British Pharmacopoeia 2009: Volume I & II: 5620-23, 10051-54.
- 4. Pill MW, McCloskey WW: Sotalol: What the Emergency nurse needs to know. Journal of Emergency Nursing 1995; 21: 229-31.
- 5. ICH Q2 R(1) guidelines: Validation of Analytical Procedures Text and Methodology, current step 4 version. www.ich.org
- 6. Lachman L: The Theory and Practices of Industrial Pharmacy. Vargese Publication, Third edition 1990.

How to cite this article:

Malukani J.N., Sen R., Raj H.: Process Validation of Sotalol Hydrochloride Tablets. Int J Pharm Sci Res, 2012; Vol. 3(7): 2310-2316