(Research Article)

IJPSR (2016), Vol. 7, Issue 7

INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES AND RESEARCH

Received on 02 February, 2016; received in revised form, 09 April, 2016; accepted, 13 April, 2016; published 01 July, 2016

A MODIFIED LIQUID CHROMATOGRAPHIC METHOD DEVELPOMENT AND VALIDATION FOR SIMULTANEOUS ESTIMATION OF BISOPROLOL FUMARATE AND HYDROCHLOROTHIAZIDE IN BULK AND TABLET DOSAGE FORM

D. Suryanarayana Raju*, S. Vidyadhara, B. Venkateswara Rao and D. Madhavi

Department of Pharmaceutical Analysis, Chebrolu Hanumaiah Institute of Pharmaceutical Sciences, Chandramoulipuram, Chowdavaram, Guntur, Andhra Pradesh, India

Keywords:

Bisoprolol Fumarate, Hydrochlorothiazide, RP-HPLC and Method validation

Correspondence to Author: D. Suryanarayana Raju

Assistant Professor Chebrolu Hanumaiah Institute of Pharmaceutical Sciences, Chowdavaram, Chandramoulipuram, Guntur, Andhra Pradesh, India.

E-mail: suryanarayanaraju7@gmail.com

ABSTRACT: A simple, precise, accurate, reproducible and economical reverse phase liquid chromatography method was developed and validated for the quantitative simultaneous estimation of Bisoprolol Fumarate and Hydrochlorothiazide in bulk and marketed formulations. Estimation of drugs in this combination was done with a C18 column Kromasil 100-5C₁₈ column [250mm x 4.6mm].using mobile phase of composition Acetonitrile and phosphate buffer (40:60 v/v, pH 3). The flow rate was 1 ml/min and the effluents were monitored at 228 nm. The retention time of Bisoprolol Fumarate and Hydrochlorothiazide were 3.3 min and 6.25 min respectively. The method was found to be linear over a concentration range of 20-100 µg/ml for both Bisoprolol Fumarate and Hydrochlorothiazide. The established method proved as reproducible one with a %RSD value of less than 2 and having the robustness and accuracy within the specified limits. Assay of marketed formulation was determined and find with 98.1% and 97.6% for Bisoprolol Fumarate and Hydrochlorothiazide respectively. The method was validated according to the guidelines of International Conference on Harmonization (ICH) and was successfully employed in the estimation of commercial formulations. This liquid chromatographic method can be applied for the qualitative and quantitative determination of selected drugs by the modern chemist.

INTRODUCTION: Bisoprolol fumarate is a cardioselective β_1 -adrenergic blocker. Chemically, Bisoprolol Fumarate is (±)-1-[4-[[2-(1methylethoxy) ethoxy] methyl] phenoxy]-3-[(1methylethyl)amino]-2-propanol (E) -2-butenedioate (2:1). Hydrochlorothiazide is thiazide diuretic and administered orally in the treatment of hypertension and oedema. Chemically, HCTZ is 6-chloro-3, 4dihydro-2 2, 4-benzothiadiazine-7-H-1. sulphonamide-1,1-dioxide. It is official in IP, BP and USP¹⁻⁴.

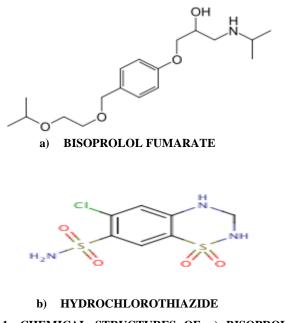


FIG 1: CHEMICAL STRUCTURES OF a) BISOPROLOL FUMARATE b) HYDROCHLOROTHIAZIDE

E-ISSN: 0975-8232; P-ISSN: 2320-5148

Extensive literature survey proved that very few methods ⁵⁻¹⁰ were reported for the determination of Bisoprolol Fumarate and Hydrochlorothiazide by RP-HPLC. So we attempted to develop an accurate, rapid, precise, stable, sensitive and economically viable liquid chromatographic method for the simultaneous determination of selected drugs in the present research.

MATERIALS AND METHODS: Equipment used:

The chromatographic separation was performed on Agilent 1120 compact liquid chromatographic system integrated with a variable wavelength programmable UV detector and a Rheodyne injector equipped with 20µl fixed loop. A reverse phase C18[Kromasil 250mm \times 4.6 mm]was used. Lab India 3000⁺ double beam UV visible spectrophotometer and Axis AGN204-PO electronic balance used were for spectrophotometric determinations and weighing purposes respectively.

Reagents and chemicals:

Pharmaceutical grade pure Bisoprolol Fumarate and Hydrochlorothiazide gift samples were procured from Mylan Laboratories, Hyderabad. Marketed tablet formulations (LODOZ 5) with of 5mg of Bisoprolol Fumarate and 6.25mg of Hydrochlorothiazide were procured from local market. (Mfd. by Merk Pharmaceuticals ltd). HPLC grade Acetonitrile and Water were commercially procured from Merck specialties private limited, Mumbai.

Chromatographic conditions:

Kromasil 100-5C₁₈ column [250mm x 4.6mm] was used for the chromatographic separation at a detection wave length of 228nm. Mobile phase composition of Acetonitrile and Phosphate buffer pH 3in a ratio of 40:60 v/v was selected for elution and same mixture was used in the preparation of standard and sample solutions. Flow rate was adjusted to 1ml/min and the injection volume was 20μ l.

Preparation of Mobile phase:

Phosphate buffer pH 3 was prepared by dissolving 0.136 gm of Potassium dihydrogen phosphate and 2 ml of Triethyl amine in 80ml of HPLC grade water

and adjusts the pH to 3.0 with orthophosphoric acid and volume was adjusted with water to produce100ml, which is then filtered through 0.45μ membrane filter and sonicated for 20 minutes.

Preparation of Standard solutions:

25mg each of Bisoprolol Fumarate and Hydrochlorothiazide were accurately weighed and transferred into two 25ml volumetric flasks respectively and dissolved in mobile phase as mentioned above and the volume was made up with the same solvent to obtain primary stock solutions A (Bisoprolol Fumarate) B (Hydrochlorothiazide) to achieve standard of concentrations of 1000ug/ml of each drug. From the primary stock solutions, 1ml of each solution was pipetted out and transferred to a 10ml volumetric flask and the volume was made up with the mobile phase to obtain final concentrations of 100µg/ml of Bisoprolol Fumarate and Hydrochlorothiazide respectively and this solution is (working stock solution A).

Preparation of Sample Solution:

Twenty tablets of Bisoprolol Fumarate and Hydrochlorothiazide were weighed and crushed. Tablet powder equivalent to 5mg of Bisoprolol Fumarate and 6.25mg of Hydrochlorothiazide was weighed accurately and transferred to a 25ml volumetric flask. The content was dissolved with 10ml of mobile phase and then sonicated for 15min. The volume was made up with the mobile phase and filtered with 0.45µ membrane filter and sonicated for 20min. 1ml of this solution was pipetted out and transferred to a 10mlvolumetric flask and the volume was made up with the mobile phase to obtain a concentration of 150µg/ml of **Bisoprolol** 250µg/ml Fumarate and of Hydrochlorothiazide (working stock solution B).

Optimization of RP-HPLC method:

The HPLC method was optimized with an aim to develop a simultaneous estimation procedure for the assay of Bisoprolol Fumarate and Hydrochlorothiazide. For the method optimization, different mobile phases were tried, but acceptable retention times, theoretical plates and good resolution were observed with Acetonitrile, Phosphate buffer pH 3 (40:60 v/v) using Kromasil 100-5C₁₈ column [250mm x 4.6mm].

Validation of the RP-HPLC method:

Validation of the optimized method was performed according to the ICH Q2 (B) guidelines.

System suitability:

System suitability was carried out with five injections of solution of 100% concentration having $100 \mu g/ml$ of **Bisoprolol** Fumarate and Hydrochlorothiazide of each in to the chromatographic system. Number of theoretical plates (N) obtained and calculated tailing factors (T) were reported in Table 1.

Linearity:

For the determination of linearity, appropriate aliquots were pipetted out from working stock solution A to a series of 10ml volumetric flasks and volume was made up with the solvent to obtain concentration ranging from 20-100µg/ml of Bisoprolol Fumarate and Hydrochlorothiazide. Each solution was injected in triplicate. Calibration curves were plotted with observed peak areas against concentration followed bv the determination of regression equations and calculation of the correlation coefficients. The calibration curves for Bisoprolol Fumarate and Hydrochlorothiazide were shown in Fig. 3 and 4 their corresponding linearity parameters were given in Table 2.

Limit of Detection (LOD) and Limit of Quantitation (LOQ):

The LOD and LOQ were calculated from the slope(s) of the calibration plot and the standard deviation (SD) of the peak areas using the formulae $LOD = 3.3 \sigma/s$ and $LOQ = 10 \sigma/s$. The results were given in **Table 2.**

Precision:

The repeatability of the method was verified by calculating the %RSD of six replicate injections of 100% concentration ($100\mu g/ml$ of Bisoprolol Fumarate and Hydrochlorothiazide respectively) on the same day and for intermediate precision % RSD was calculated from repeated studies on different days. The results were given in **Table 3**.

Accuracy:

Standard addition method was followed to ensure the reliability and accuracy of the method recovery studies. A known quantity of pure drug was added to pre-analyzed sample and contents were reanalyzed by the proposed method and the percent recovery was reported. The results were given in **Table 4**.

Specificity:

Specificity of a method was determined by testing standard substances against potential interferences. The method was found to be specific when the test solution was injected and no interferences were found because of the presence of excipients. The optimized chromatogram of Bisoprolol Fumarate and Hydrochlorothiazide without any interference was shown in **Fig. 2**.

Robustness:

Robustness of the method was verified by altering the chromatographic conditions like mobile phase composition, wave length detection, flow rate, etc. and the % RSD should be reported. Small changes in the operational conditions were allowed and the extent to which the method was robust was determined. A deviation of ± 2 nm in the detection wave length and ± 0.2 ml/min in the flow rate, were tried individually. A solution of 100% test concentration with the specified changes in the operational conditions was injected to the instrument in triplicate. %RSD was reported in the **Table 5.**

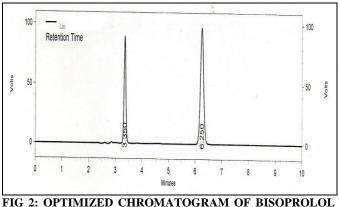
Assay of Marketed Formulations:

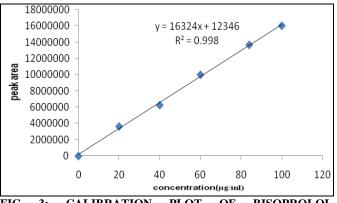
20µl of sample solution of concentration 150 µg/ml of Bisoprolol Fumarate and 250 µg/ml of Hydrochlorothiazide was injected into chromatographic system and the peak responses were measured. The solution was injected three times in to the column. The amount of drug present and percentage purity was calculated by comparing the peak areas of the standards with that of test samples. A typical chromatogram for assay of marketed formulation was shown in **Fig. 5** and the obtained values were reported in the **Table 6**.

RESULTS AND DISCUSSION:

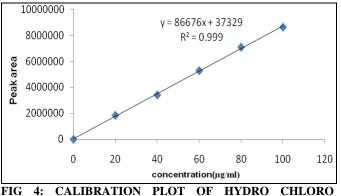
After a number of trials with mobile phases of different composition, Acetonitrile, Phosphate buffer pH 3 in the ratio 40:60v/v was selected as mobile phase because of better resolution and symmetric peaks. Bisoprolol Fumarate and

Hydrochlorothiazide were found to show appreciable absorbance at 228nm when determined spectrophotometrically and hence it was selected as wavelength. the detection An optimized chromatogram showing the separation of Bisoprolol Fumarate and Hydrochlorothiazide at different R_Ts was shown in **Fig.2**.




FIG 2: OPTIMIZED CHROMATOGRAM OF BISOPROLOL FUMARATE AND HYDROCHLOROTHIAZIDE

System suitability was carried out by injecting 5 replicate injections of 100% test concentration, number of theoretical plates, HETP and resolution were satisfactory. The chromatograms confirm the Bisoprolol presence of Fumarate and Hydrochlorothiazide at 3.3min and 6.25min respectively without any interference. The parameters were given in Table 1.


Parameters	Bisoprolol	Hydrochlorothiazide
	Fumarate	
Retention time (min)	6.293	3.347
Theoretical plates (N)	6311	7240
Tailing factor (T)	1.15	1.16
Resolution (R_{s})		2.946

*n= No. of determinants

Concentration range of 20-100µg/ml for Bisoprolol Fumarate and Hydrochlorothiazide were found to be linear with correlation coefficients 0.998 and 0.999 for Bisoprolol Fumarate and Hydrochlorothiazide respectively. The respective calibrations curve was shown in Fig.3 and 4 respectively. The results were given in Table 2. The limits of detection for Bisoprolol Fumarate and Hydrochlorothiazide were found to be 0.544µg/ml and 0.658µg/ml respectively and the limits of quantitation were 1.64µg/ml and 1.99µg/ml respectively. Values were represented in Table 2.

THAZIDE

TABLE 2: RESULTS FOR LINEARITY (n=3)

Parameter	Bisoprolol Fumarate	Hydrochlo rothiazide	
Linearity Range (µg/ml)	20-100	20-100	
Regression Equation	y = 16324x + 12346	y = 86676x + 37329	
Slope (m)	16324	86676	
Intercept (c)	12346	37329	
Regression Coefficient (r ²)	0.998	0.999	
Limit of Detection (µg/ml)	0.544	0.658	
Limit of Quantitation (µg/ml)	1.64	1.99	

*n= No. of determinants

The proposed method was found to be precise and reproducible with %RSD of 0.68 and 0.510 for Bisoprolol Fumarate and Hydrochlorothiazide respectively. %RSD was reported in **Table 3**.

TABLE 3: RESULTS OF PRECISION (n=6)

Drug	Intraday Precision (%RSD)	Interday Precision (%RSD)
Bisoprolol Fumarate	0.68	0.71
Hydrochlorothiazide	0.510	0.63

*n= No. of determinants

Accuracy of the method was verified by performing recovery studies by standard addition method. The percent recovery of the standard added to the pre-analysed sample was calculated and it was found to be 98.7% to 99.0% for

TABLE 4: RESULTS FOR ACCURACY (n=3)

Bisoprolol Fumarate and 99.1 to 99.9% for Hydrochlorothiazide. This indicates that the method was accurate. Values obtained were given in **Table 4**.

	Bisoprolol Fun			arate Hydroc			orothiazide	
Recovery level	Amo Adde	ed	Amount Found	% Recovery	Amor Adde	d	Amount Found	% Recovery
	(µg/n	nl)	(µg/ml)		(µg/n	nl)	(µg/ml)	
	std	test			std	Test		
80%	20	60	79.1	98.8	20	60	79.9	99.9
100%	40	60	98.7	98.7	40	60	98.9	99.1
120%	60	60	118.5	99.0	60	60	118.9	99.3
Mean recovery	98.7-	99.0			99.1-9	99.9		

*n= No. of determinant

The method was found to be robust after changing the conditions like detection wavelength (\pm 2nm) and flow rate (\pm 0.2 ml). %RSD was calculated for each variation and reported. Values obtained were given in **Table 5**.

TABLE 5: RESULTS FOR ROBUSTNESS (n=3)

	%RSD				
Parameters	Bisoprolol	Hydrochlorothiazide			
(n=3)	Fumarate				
Detection	0.17	0.18			
wavelength at					
226nm					
Detection	0.75	0.19			
wavelength at					
230nm					
Flow rate	0.25	0.235			
0.8ml/min					
Flow rate	0.443	0.390			
1.2ml/min					

*n= No. of determinant

The method was found to be specific for the combination of interest after verifying the chromatograms showing no interference of the excipients present. Hence, the method was well suitable for the estimation of the commercial formulations of the selected combination with a percentage purity of 98.1% for Bisoprolol Fumarate and 97.6% for Hydrochlorothiazide. The typical chromatogram for assay of marketed formulations was shown in **Fig. 5** and Values obtained were given in **Table 6**.

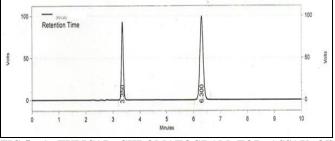


FIG.5: A TYPICAL CHROMATOGRAM FOR ASSAY OF MARKETED FORMULATION CONTAINING 150µg/ml OF BISOPROLOL FUMARATE AND 250µg/ml OF HYDROCHLOROTHIAZIDE

TABLE 6: RESULTS FOR ASSAY (N=3) OF MARKETEDFORMULATION (LODOZ 5)

Drug	Label claim (mg/tab)	Amount recovered	% Amount found in
Bisoprolol Fumarate	5	4.90	drug 98.1
Hydrochlorothiazide	6.25	6.05	97.6

*n= No. of determinants

CONCLUSION: The **RP-HPLC** method developed and validated allows a simple and fast quantitative determination of Bisoprolol Fumarate and Hydrochlorothiazide from their formulations. All the validation parameters were found to be within the limits according to ICH guidelines. The proposed method was found to be specific for the drugs of interest irrespective of the excipients present and the method was found to be simple, accurate, precise, rugged and robust. So the established method can be employed in the routine analysis of the marketed formulations.

ACKNOWLEDGMENTS: The authors are thankful to the Mylan Laboratories, Hyderabad. for providing the gift samples of Bisoprolol Fumarate and Hydrochlorothiazide, and also to the management of Chebrolu Hanumaiah Institute of Pharmaceutical Sciences, Chowdavaram, Guntur for providing facilities and great support to carry out the research work.

REFERENCES:

- 1. Ashutosh kar, Pharmaceutical analysis 2nd edition, 452,461-466, 2005.
- 2. Martindale, The Complete Drug Reference, Pharmaceutical press, 34th Edition, 612, 2005.
- 3. Beckett A.H., J.B. Stenlake, Practical Pharmaceutical Chemistry 4th ed, part two, CBS publishers and Distributors, New Delhi, 85-157,1997.
- 4. Charles F. Lacy, Lora L. Armstrong, Drug information hand book 13th edition, 1046-1048 & 99-101.
- ICH Harmonized Tripartite Guideline: Validation of Analytical Procedures: Methodology, part-I Geneva: IFPMA; 2-15, 1996.

- Joshi SJ, Karbhari PA, Bhoir SI, Bindu KS, Das C. RP-HPLC method for simultaneous estimation of bisoprolol fumarate and hydrochlorothiazide in tablet formulation, Journal of pharmaceutical and biomedical analysis, 2014; 52(3): 362-71.
- Patel Lj, BN Suhagia, PB Shah, RR Shah. Simultaneous estimation of bisoprolol fumarate and hydrochlorothiazide in tablet dosage form by RP-HPLC method, Journal of pharmaceutical and biomedical analysis, 2006; 68(5): 635-38.
- Shaikh S, Thusleem OA, Muneera MS, Akmal J, Kondaguli AV, Ruckmani K. A simple and rapid highperformance liquid chromatographic method for the determination of Bisoprolol Fumarate and hydrochlorothiazide in a tablet dosage form, Journal of biopharmaceutical and Biomedical Analysis, 2008; 48(3): 1055-57.
- 9. Tutunji MF, Ibrahim HM, Khabbas MH, Tutunji LF. Simultaneous determination of bisoprolol and hydrochlorothiazide in human plasma by HPLC coupled with tandem mass spectrometry, journal of chromatography B, and 2009; 877 (16-17): 1689-97.
- Vora D.N. and Kadav A.A. Development and Validation of a Simultaneous HPLC Method for Estimation of Bisoprolol Fumarate and Amlodipine Besylate from Tablets, Indian journal of pharmaceutical sciences, 2008; 70(4): 542-46

How to cite this article:

Raju DS, Vidyadhara S, Rao BV and Madhavi D: A Modified Liquid Chromatographic Method Develpoment and Validation for Simultaneous Estimation of Bisoprolol Fumarate and Hydrochlorothiazide in Bulk and Tablet Dosage Form. Int J Pharm Sci Res 2016; 7(7): 2996-01.doi: 10.13040/IJPSR.0975-8232.7(7).2996-01.

All © 2013 are reserved by International Journal of Pharmaceutical Sciences and Research. This Journal licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

This article can be downloaded to ANDROID OS based mobile. Scan QR Code using Code/Bar Scanner from your mobile. (Scanners are available on Google Playstore)