IJPSR (2017), Vol. 8, Issue 2

INTERNATIONAL JOURNAL

Received on 11 August, 2016; received in revised form, 22 October, 2016; accepted, 13 January, 2017; published 01 February, 2017

BENZOTRIAZOLE: A HETEROCYCLIC MOLECULE WITH DIVERSIFIED PHARMACOLOGICAL ACTIVITIES

V. K. Singh¹, Poonam Rishishwar^{* 2}, Peeyush Bhardwaj¹ and Shashi Alok¹

Institute of Pharmacy¹, Bundelkhand University, Jhansi - 284128, Uttar Pradesh, India. Sri Satya Sai College of Pharmacy², Sehore, Madhya Pradesh, India.

Keywords:

Benzotriazole, Antibacterial, Antifungal, Antiviral, Anthelmintics, Antiprotozoal And Antimycobacterial Activity

Correspondence to Author: V. K. Singh

Assistant Professor (Pharm. Chemistry), Institute of Pharmacy, Bundelkhand University, Jhansi Uttar Pradesh, India.

E-mail: vijayquantum@gmail.com

ABSTRACT: 1,2,3-Benzotriazole (BTA) is a heterocyclic compound with three nitrogen atoms. The enormous investigations on derivatives of benzotriazole reveals wide applicability of this molecules for tagging and delivering huge number of heterocyclic nuclei. This molecule has been used for the analytical determination of silver as well as a restrainer in photographic emulsions. The effectiveness of 1,2,3-Benzotriazole (BTA) as drug precursors have been drawing attention for a long period. The derivatives of benzotriazole act as agonists for many biologically active proteins. For instance, corozole and alizapride have the inhibitory properties against different proteins and Benzotriazole esters have been reported to work as mechanism-based inactivators for severe acute respiratory syndrome (SARS) 3CL protease. The various derivatives synthesized by different research workers showed antimicrobial activities such as antibacterial, antifungal, antiviral, anthelmintics, antiprotozoal and antimycobacterial activity. The present article throws light on the different derivatives of benzotriazole and their related biological activity, and is reported chronologically. The chronologic development in the synthesis of its derivatives and related changes in therapeutic activity opens new channels for the researchers to work on benzotriazole molecules to develop some highly effective lead molecules.

INTRODUCTION: As the micro-organisms are rapidly undergoing genetic changes and developing resistance against many antibiotics and therapeutic agents for various diseases more quickly than new drugs are being made available so the war against the infectious diseases has become a never ending process. Over the past few decades, there are great interest of triazole class arising due to their wide use in industry and agriculture. Benzotriazole and its derivatives have great significance in medicinal chemistry.

QUICK RESPONSE CODE		
	DOI: 10.13040/IJPSR.0975-8232.8(2).446-56	
	Article can be accessed online on: www.ijpsr.com	
DOI link: http://dx.doi.org/10.13040/IJPSR.0975-8232.8 (2).446-56		

Benzotriazole derivatives are nitrogen containing bicyclic ring system and have been demonstrated for many biological activities, such as antibacterial, antifungal, anticancer, anti-inflammatory, analgesic, antimalarial and antitubercular activity¹. Benzotriazole derivatives also possess antihelminthics and antiprotozoal action. For example, 5, 6-dimethyl-1H-benzotriazole and 5,6dibromo-1H-benzotriazole are antiprotozoal and active against Acanthamoeba castellani, Nheteroaryl benzotriazole derivatives are anti helminthics, 5-arylidene – 2 – aryl - 3- benzotri azoloacetamidyl) - 1,3-thiazolidin-4-ones are antibacterial, 1-[3-(4-benzotriazol-1/2-yl- 3-fluoro phenyl) - 2 - oxooxazolidin -5- yl methyl] - 3 substituted thiourea derivatives are reported antitubercular activity². Benzotriazole derivatives act as agonists for many proteins.

Benzotriazoles are often used as corrosion inhibitors, radioprotectors, and photo stabilizer in the production of plastic, rubber and chemical fiber ³. Along with these activities, benzotriazole is also important as a precursor in the synthesis of peptides, acid azides, preparation of 3hydroxymethyl-2,3-dihydrobenzofurans and 3hydroxymethylbenzofurans².

Benzotriazole have three tautomers, namely two 1H-forms and one 2H-form. In solution, the equilibrium lie almost entirely on the side of the 1H-forms ⁴. Benzotriazole is an extremely weak base, but with a pKa = 8.2, it is a stronger NH-acid than indazole, benzimidazole or 1,2,3-triazole ⁵.

The literature survey reveals that heterocyclic compounds bearing benzotriazoles as part of main molecule showed versatile biological activities particularly antibacterial, antifungal, antiviral, antiinflammatory, anticonvulsant and anticancer activity. Benztriazole derivatives have effectively been proven as antimicrobials.

Synthesis: Benzotriazoles are synthesized by cyclocondensation of o-phenylenediamines with sodium nitrite in acetic acid (**Fig. 1**). The reaction involved the simple heating the reagents together. Conversion of the diamine into the mono-diazonium derivative is followed by spontaneous cyclization ⁶.

Biological Activity:

Antibacterial activity: A series of 1, 2, 3, benzotriazole derivatives containing pyrazolidine 3,

5 dione moiety were synthesized by diazotization of benzene-1,2-diamine with glacial acetic acid and were evaluated for antibacterial activities, against gram-positive organisms like *S. aureus* and *B. subtilis* as well as gram-negative organisms like *E. Coli* and *P. vulgaris* by diffusion agar media technique. Compound 1b (**Fig. 2**) was found to be good activity against *E. coli*. Compound 1h (**Fig. 2**) was found to be more effective against *S. aureus*. Compound 1f was found to have good activity against *B. subtilis*. Compound 1g (**Fig. 2**) was found to have good activity against *P. vulgaris*. Ciprofloxacin and Amoxicillin (100 µg/ml) were used as standard for screening ¹.

N-Substituted 2- (1H-benzotriazol – 1 - yl) - aceto hydrazide series (2a-2f) were synthesized from ophenylenediamine and evaluated for antibacterial activity by agar plate disc diffusion method. Compound 2b, 2c and 2e (**Fig. 3**) showed good antibacterial activity against *S. aureus, B. subtilis* and *E. coli* but less potent than sulphacetamide ⁷.

FIG. 3: COMPOUND 2b, 2c and 2e

A series of oxazolidinone containing benzotriazole derivatives were synthesized and exhibited antibacterial activity against many antibiotic-resistant microbial strains. Compound 3 (**Fig. 4**) showed excellent antibacterial activity against antibiotic resistant microbial strains ⁸.

FIG. 4: COMPOUND 3

A series of N-alkylated benzotriazole derivatives were synthesized and evaluated for antimicrobial activity. Compound 4 (**Fig. 5**) showed significant antimicrobial activity against many gram positive and gram negative bacteria⁹.

A novel series of N-Substituted benzotriazole derivatives containing mannich bases (5a-5x) were synthesized by amine exchange reactions, from the N,N-dimethylaminopropiophenone hydrochlorides and benzotriazole. Antibacterial activities of the synthesized compounds were tested against *B. subtilis, S. aureus, S. faecalis, E. coli, P. aeruginosa* and *E. cloacae* using MHA media. Compounds 5d (**Fig. 6**), 5g, 5p 5r and 5x exhibited significant activity with MIC values of 1.56 µg/mL against *B. subtilis.* Compound 5s (**Fig. 6**) showed the most favourable antibacterial activity against *B. subtilis, S. aureus, S. faecalis, P. aeruginosa, E. coli* and *E. Cloacae* with MIC of 1.562 µg/mL,

1.562 µg/mL, 1.562µg/mL, 3.125µg/ mL, 6.25µg/mL and 6.25µg/mL respectively ¹⁰.

FIG. 6: COMPOUND 5d AND 5s

A series of imidazole / benzotriazole substituted piperidine-4-one derivatives (6a-6j) were synthesized. The synthesized compounds were investigated for antimicrobial activity against selected bacterial strains. Among the compounds, fluoro and methoxy group substituted compound 6d (**Fig. 7**) showed good antimicrobial activity at minimum concentration ¹¹.

FIG. 7: COMPOUND 6d

Antifungal activity: Substituted 1,2,3benzotriazole derivatives (7a-7e) are synthesized from benzimidazoles with 1-chloromethyl benzotriazoles and evaluated for their antifungal activity against *P. oryzae, B. cinerea, A. niger, C. albicans* and *T. rubrum* at 1000 ppm, 500 ppm and 100 ppm concentrations by solidified agar method. Compound 7b and 7e (**Fig. 8**) showed excellent antifungal activity. The inhibitory activity was compared with griseofulvin (standard drug)¹².

FIG. 8: COMPOUND 7b AND 7e

Substituted benzotriazole derivatives containing pyrazolidinedione moiety (8a-8i) were synthesized and their antifungal activity was tested against *A. niger* and *C. albicans* by cup plate diffusion method by measuring the zone of inhibition in mm. Compounds 8e, 8h and 8i (**Fig. 9**) were found to have good activity against *A. niger* while compound 8c was found to have good activity against *C. albicans*. Ketoconazole and Clotrimazole were used as a standard for screening 1.

FIG. 9: COMPOUND 8e, 8h AND 8i

Novel benzotriazolesulfonic acid derivatives were synthesized and have reported plant protecting properties and have antifungal activity against Oomycetes. Compound 9 (**Fig. 10**) showed excellent antifungal activity ¹³.

FIG 10: COMPOUND 9

N-Substituted 2 - (1H-benzotriazol-1-yl) - aceto hydrazide series (10a-10f) were synthesized and have reported antifungal activity against *Candida albicans*. Antifungal activity was evaluated by filter disc method. Compound 10a (**Fig. 11**) showed good anti-fungal activity against *Candida albicans* at 1000ug/ml concentration⁷.

A series of 1H-1,2,3-benzotriazole derivatives were synthesized and evaluated for antifungal activity against clinical species of *Candida*. Compound 11a and 11c (**Fig. 12**) showed desirable antifungal activity ¹⁴.

Compound 11a

FIG. 12: COMPOUND 11a and 11c

A series of 5(6)-(1N)-substituted benzotriazole derivatives (12a-12f) were synthesized using a crystalline oxirane intermediate. All the compounds were evaluated for inhibitory activity against various species of *Candida* and *Aspergillus*. Compounds 12b (**Fig. 13**), 12c, 12d and 12e exhibited potent antifungal activity, with the MICs for *Candida spp.* and *Aspergillus niger*, ranging from1.6 μ g/mL to 25 μ g/mL and 12.5 μ g/mL to 25 μ g/mL, respectively ¹⁵.

FIG. 13: COMPOUND 12b

Anti-inflammatory activity: Some new chlorosubstituted phenoxyacetyl and propionylbenotriazoles were synthesised and evaluated for their anti-inflammatory activity. Trichlorophenoxy acetyl benzotriazole (compound 13) (**Fig. 14**) exhibited better anti-inflammatory activity than its propionyl derivatives ¹⁶.

FIG. 14C: OMPOUND 13

A series of benzotriazole containing 1,3,4thiadiazole derivatives (14a-14f) were synthesized 2-bromoacetvl bv benzofuran with-(H)benzotriazole. The anti-inflammatory activity of the synthesized compounds was evaluated bv carrageenan-induced edema method. Compound 14a (Fig. 15) was the most potent antiinflammatory compound and decrease in the edema size 45% after 2h. Ibuprofen was used as a reference for evaluation of anti-inflammatory activity ¹⁷.

FIG. 15: COMPOUND 14a

Analgesic activity: A series of chlorosubstituted phenoxyacetyl and propionylbenzotriazoles were synthesised and evaluated for analgesic activity. The 2,5-dichlorophenoxy acetyl benzotriazole (compound 15) (**Fig. 16**) exhibited moderately better analgesic activity among the series ¹⁶.

FIG. 16: COMPOUND 15

5-Arylidene-2- aryl - 3- (benzotriazoloacetamidyl)-1,3-thiazolidin-4-ones derivatives (16a-16j) were synthesized from ethyl acetoacetate and evaluated the analgesic activity by eddy and leimbach method. Compound 16h, 16i (**Fig. 17**) and 16j were found to be better analgesic activity. Acetylsalicylic acid was employed as a reference drug ¹⁸.

FIG. 17: COMPOUND 16h AND 16i

Antiviral activity: A novel series of dialkylamino side chain derivatives of benzotriazole were synthesized and reported as potential inhibitors of respiratory syncytial virus. Compound 17 (**Fig. 18**) was found to be most potent in series ¹⁹.

FIG. 18: COMPOUND 17

Halogenated benzotriazole nucleosides were synthesized and antiviral activity was tested against hepatitis C virus and other viral NTPase/helicases. Compound 18a (**Fig. 19**) was found to be good inhibitor of the West Nile virus enzyme with an RNA substrate (IC50-0.3um). Compound 18b (**Fig. 19**) also reported selective antiviral activity ²⁰.

FIG. 19: COMPOUND 18a AND 18b

Anticonvulsant activity: A series of benzotriazole containing 1,3,4-thiadiazole derivatives (19a-19f) were synthesized and evaluated for anticonvulsant activity in maximal electroshock seizure(MES) and subcutaneous metrazole (ScMet) test. Compounds 19a and 19d were found to be active in ScMet only, whereas the test compounds 19c (**Fig. 20**) was active in MES. Activity of compound 19c was similar to the second reference drug phenytoin. Valproic acid was used as a first reference drug ¹⁷.

Compound 19a

Compound 19c

FIG. 20: COMPOUND 19a, 19c AND 19d

Anticancer activity: There are various benzotriazole derivatives are synthesized and evaluated for anticancer activity. 4, 5, 6, 7-tetrabromobenzotriazole (compound 20a) (**Fig. 21**) was found to be most effective with high selective inhibition against proteinkinase CK2. Compound 20b (**Fig. 21**) also reported excellent anticancer activity ²¹.

FIG. 21: COMPOUND 20a AND 20b

Benzotriazole-substituted benzoate derivative (compound 21a) (**Fig. 22**) was synthesized and evaluated for its anti-proliferative activity against several cancer cell lines. It could effectively inhibit the proliferation of human hepatocarcinoma BEL-7402 cell with low IC₅₀ value of 0.082 mg/mL²².

Compound 21a FIG. 22: COMPOUND 21a

Anti-mycobacterial activity: Development of anti-tubercular agents is very tedious process therefore only one or two new drugs will arrive in the market from these efforts. The treatment of tuberculosis with combination of drugs has even not satisfactory in combating the disease due to bacterial resistance. There is need for effective anti-tubercular agents to win the battle against this millenary scourge 23 , new class of benzotriazole derivatives triazoloquinolones were active against multidrug resistant *M. tuberculosis* (MDR-Mtb) was reported by Carta Antonio *et al.*, 2011.

Anti-protozoal activity: The 5, 6-dimethyl and 5,6-dibromo derivatives of Benzotriazole were reported active against *Acanthamoebacastellani* by Katarzyna K *et al.*, in 2004.

Anthelmentic activity: Benzotriazole derivatives of N-heteroaryl/diphenyl amino acetyl/propionyl were tested for anthelmentic activity. Apart from Benzotriazole antimicrobial activity the is important as a synthetic auxiliary $^{24-26}$, in synthesis of peptides ²⁷, acid azides ²⁸, preparation of 3hydroxymethyl-2,3-dihydrobenzofurans and 3hydroxymethylbenzofurans has been developed using benzotriazole mediated benzofuran ring closure was reported ²⁹. Some derivatives of Benzotriazole are reported to have antiproliferative ³⁰⁻³³, pharmacological activities like activity analgesic, anticonvulsant, anti-inflammatory ³⁴⁻³⁵ inhibitors of human (CK2) protein kinase ³⁶, agonist for 5-Ht receptor ³⁷, metal corrosion inhibitors ³⁸, cytochalasin B-mimetic activity ³⁹, synthesis and biological activities of Benzotriazole derivatives was reviewed by BV Suma et al., 40.

The antimicrobial activity of Benzotriazole derivatives with reference and main investigator is arranged in chronological order in **Table 1**.

Year	Benzotriazole derivatives synthesized	Author / Investigators	Reported	Ref. No
			activity	
1992	Chlorosubstitutedphenoxy acetyl and	M. Purohit and S.K.	Antibacterial,	41
	propionylbenotriazoles	Srivastava	Antifungal	
1994	Benzotriazolesulfinicacid	P. Ackerman and M.	Antifungal	43
	derivatives	Schellenbaum		
1995	Derivatives of 1-(N-heteroyl/ diphenyl	R. K. Upadhaya	Antibacterial,	42
	aminoacetyl/propionyl) benzotriazole	and	Antifungal,	
		S. D. Srivastava	Anthelmentic	
2000	Derivatives of 3-aryl substituted -2-(1 <i>H</i> (2 <i>H</i>)- benzotriazol-1(2)-yl) acrylonitrile	S. Paolo <i>et al</i> .	Antitubercular	44

 TABLE 1: ANTIMICROBIAL ACTIVITY OF BENZOTRIAZOLE DERIVATIVES

E-ISSN: 0975-8232; P-ISSN: 2320-5148

2002	Benzotriazole derivatives of 2-aminothiophene- 3carbonitrile, 2-thioxopyridine-3carbonitrile, 1,8 - naphthyridine-2-one_thieno [2,3- <i>h</i>] pyridine-5-	A. O. Fatima <i>et al</i> .	Antibacterial, antifungal	45
	carbonitrile andthiano[2,3,d]pyrimidine			
2003	Dialkylamino side chain substituted on the	Kuo-Long Yu	Respiratory	46
2005	Benzotriazole	et al	syncytial	40
	Denzourazore	<i>ci ui</i> .	virus Inhihitor	
2004	5 6-dimethyl-1Hbenzotriazole and 5 6-dibromo-1H-	K Katarzyna <i>et al</i>	inhibitor of	47
2001	benzotriazole	ix. ixatui2yila er ar.	Acanthamoehac	17
	o on Lot Malore		astellanii	
2005	Oxazolidinone derivatives with positional and	L Das et al.	Antibacterial	48
	geometrical substitutions on benzotriazole		activity	
2005	Benzotriazolyloxazolidinone	P.D. Prasad	Antibacterial	49
	derivatives	and co-workers	activity	
2005	N-alkyl derivatives of 1H - benzotriazole	M. Bretner et al.	Antihelicase	50
	•		Activity	
			Against	
			Flaviviridae	
2006	5-arylidene-2-aryl-3-	K. C. Asati et al.	Antibacterial	18
	(benzotriazoloacetamidyl)-1,3- thiazolidin-4-ones		activity	
2006	Derivatives of N-alkylated	S. N. Swamy et al.	Antibacterial	51
	benzotriazole		activity,	
			Antifungal	
2006	Benzotriazole esters	Chung-Yi Wu et al.	Anticoronovirus	52
2006	Derivatives of 1-[3-(4-benzotriazol-1/2-yl-3-fluoro-	P. D. Prasad and	Antitubercular	53
	phenyl)-2-oxooxazolidin-	co-workers	activity	
	5-ylmethyl]-3-substituted-thiourea			
2008	Derivatives of 5-[2-(1,2,3-benztriazole)-1-yl-	D. K. Shukla and S.D.	Antibacterial	54
	methyl]-1'-arylidene hydrazine-1,3,4-thiadiazoles	Srivastava	and	
	and 5-[2-(1,2,3-benztriazole)-1-yl-methyl]-1'-(4'-		Antifungal	
	substituted aryl-3'-chloro-2'-oxoazetidine)]-amino-		activity	
	1,3,4-thiadiazoles			
2008	Derivatives of Benzotriazoleesters1-(4-	H. V. Koen <i>et al</i> .	Anticorono-	55
	Dimethylamino-benzoyloxy)-Benzotriazole		virus(SARS)	
2000	2 (substituted) 5[(NI Demotries along thed) 1.2.4	K D Nemder et al	activity	FC
2009	2-(substituted)-5[(N-Benzinazoiometnyi)-1,5,4-	K. P. Namdeo <i>et al</i> .	Antifungal	30
2000	Iniadiazolyij-4 tinazolidinones	7 Doznoi et al	Antifuncal	57
2009	1H Ponzotriazolulnronanona and 2H	L. Kezdel <i>et ul.</i>	Antibactorial	59
2010	honzotriazolylpropanone and zn-	J. wan anu	Antibacteria	30
2010	Acridine substituted Benzotriazolederivative	N P Singh at al	Antibactorial	50
2010	Actionie substituted Benzotriazoledenvative	N. F. Singil et al.	activity	39
2010	Derivatives of 2-(2 4-difluorophenvl)-1-(2 3-	DP Pallay et al	Antifungal	60
2010	dihydro-1 <i>H</i> benzotriazol-1-vl)-3-(1 <i>H</i> -1 2 4-triazol-1-		7 intirungur	00
	vl)propan-2-ol			
2011	Imidazole/benzotriazole substitutedpiperidin-4-one	R. Ramachandran	Antibacterial	61
	derivatives	et al.	activity.	
			Antifungal	
2011	Azetidinone derivatives ofbenzotriazole.	A. Dubey and	Antitubercular	62
		co-workers	activity	
2011	Triazoloquinolones	C. Antonio	Antitubercular	63
	*	et al.	activity	
2012	Benzotriazole derivatives substituted with thiazole	N. D. Gaikwad	Antibacterial	64
	moiety.	and co-workers	activity,	
			Antifungal.	
2012	N-Substituted 2-(1Hbenzotriazol-1-yl)-	J. S. Patel et al.	Antibacterial	65
	acetohydrazide derivatives		activity,	
			Antifungal	
2012	Benzotriazole substituted withpyrozolidine 3, 5-	B.V. Suma et al.	Antibacterial	66
	dione.		activity	

Singh et al., IJPSR, 2017; Vol. 8(2): 446-456.

2013	1,2,3-benzotriazolederivatives synthesized by	M. S. Sudhir et al.	Antifungal	67
	ultrasonic and solvent-free conditions		activities	
2014	Benzotriazolo-thiadiazolyl-imidazole derivative	V. K. Singh et al.	Anticonvulsant,	68
			Antimicrobial	
			activity	
2015	1H-benzotriazol-1-yl(2-hydroxy -5- [(e)	C. M. Jamkhandi et al.	Anti-	69
	phenyldiazenyl] phenyl) methanone derivatives		inflammatory	

CONCLUSION: The present review of benzotriazole derivatives is focussed on screening of biological activities such as antibacterial, antifungal, antiviral, antiprotozoal, anthelmentic, anti-inflammatory, anticonvulsant etc. in which benzotriazole is act as a tagging molecule to deliver other pharmacologically active heterocyclic nuclei. Now it can be reasonable to expect that benzotriazole as tagging molecule will definitely play a remarkable role in medicinal chemistry. The investigated reports in this review definitely suggests the possibility to develop a lead compound in which benzotriazole is used as a tagging molecule to emerge new chemical entities (NCE's) of benzotriazole having potential pharmacological activity.

FUNDING SOURCE: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

ACKNOWLEDGEMENTS: Authors are thankful to Director, NISCARE, New Delhi, NML, AIIMS, New Delhi and CDRI, Lucknow (U.P.) for providing library facilities, Head and teaching staff of Institute of Pharmacy, Bundelkhand University, Jhansi, for their encouraging support.

REFERENCES:

- 1. Suma B. V., Natesh N. N., Venkataramana C. H. S., Jays J., and Madhavan V: Synthesis and antibacterial of some new 1, 2, 3 benzotriazoles derivatives containing pyrazolidinedione moieties. International Journal of Pharmaceutical Sciences 2012; 4: 169-173.
- 2. Jamkhandi C. M., Disouza J. I., Asgekar S. D., Sutar T. B., and Kumbhar P. S: Synthesis, Characterization, in-vitro anti-inflammatory activity and QSAR evaluation of benzotriazolyl-3-{5-(carboxymethyl) diazenyl}-2hydroxyphenyl prop-2-enoic acid derivatives. European journal of pharmaceutical and medical research, 2015; 2: 302-306.
- Maisuradze M., Ugulava G., Bolkvadze N., Phalavandishvili G., Gaxokidze N., and Matnadze M: 3. Some New Derivatives of 3H-Benzo (b) Furo Benzotriazole. Journal of Chem. Chem. Eng., 2013; 7: 621-625.

M. S. Sudhir et al.	Antifungal	67
	activities	
V. K. Singh et al.	Anticonvulsant,	68
	Antimicrobial	
	activity	
C. M. Jamkhandi et al.	Anti-	69
	inflammatory	
	activity	

- 4 Greenwood R. J., Mackay M. F., and Wilshire J. F: Structure of an Ultraviolet Absorber: 2-(3'-t-Butyl-2'hydroxy-5'methylphenyl) benzotriazole. Australian Journal of Chemistry 1992; 45: 965-968.
- Eicher T. and Hauptman S: The Chemistry of 5. Heterocycles. Biochemical education 2010; 24: 188-189.
- Furniss B. S., Hannaford A. J., Smith P. W. G. and 6 Tatchell A. R: 'Vogel's Text Book of Practical Organic Chemistry', Longman Group U. K. Limited, 1989; 5: 1163-1164.
- 7. Patel J. S., Garg C. S., and Sen D. J: Synthesis of novel Nsubstituted 2-(1h-benzotriazol-1-yl)-acetohydrazide derivatives as antimicrobial agents. International Journal of drug development and research 2012; 4: 322-329.
- 8. Dixit P. P., Nair P. S., Patil V. J., Jain S., Arora S. K., and Sinha N: Synthesis and antibacterial activity of novel (un) substituted benzotriazolyl oxazolidinone derivatives. Bioorganic & medicinal chemistry letters 2005; 15: 3002-3005.
- 9. Swamy S. N., Sarala G., Priya B. S., Gaonkar S. L., Prasad J. S., and Rangappa K. S: Microwave-assisted synthesis of N-alkylated benzotriazole derivatives: Antimicrobial studies. Bioorganic & medicinal chemistry letters 2006; 16: 999-1004.
- 10. Wan J., P. C. Lv, Tian N. N., and Zhu H. L: Facile synthesis of novel benzotriazole derivatives and their antibacterial activities. Journal of chemical sciences, 2010; 122: 597-606.
- 11. Ramachandran R., Rani M., Senthan S., Jeong Y. T., and Kabilan S: Synthesis, spectral, crystal structure and in vitro antimicrobial evaluation of imidazole / benzotriazole substituted piperidin-4-one derivatives. European journal of medicinal chemistry, 2011; 46: 1926-1934.
- 12. Singh R. J: Syntheses of some new 1, 2, 3-benzotriazoles as antimicrobial agents. Rasayan Journal of Chemistry 2009; 2: 598-601.
- 13. Ackermann P., and Schellenbaum M., Washington, DC: U.S. Patent and Trademark Office, 1994, U.S. Patent No. 5, 322: 853.
- 14. Khabnadideh S., Rezaei Z., Pakshir K., Zomorodian K., and Ghafari N: Synthesis and antifungal activity of benzimidazole, benzotriazole and aminothiazole derivatives. Research Pharm. Science 2012; 7: 65-72.
- 15. Patel P. D., Patel M. R., Kocsis B., Kocsis E., Graham S. M., Warren A. R., Nicholson S. M., Billack B., Fronczek F. R., and Talele T. T: Design, synthesis and determination of antifungal activity of 5 (6)-substituted benzotriazoles. European journal of medicinal chemistry, 2010; 45: 2214-2222.
- 16. Purohit M., and Srivastava S. K: Studies in aryloxylated benzotriazoles. Indian Journal of Pharmaceutical Sciences 1992; 54: 25-27.
- 17. Dawood K. M., Abdel-Gawad H., Rageb E. A., Ellithey M., and Mohamed H. A: Synthesis, anticonvulsant, and anti-inflammatory evaluation of some new benzotriazole and benzofuran-based heterocycles. Bioorganic & medicinal chemistry, 2006; 14: 3672-3680.

- Asati K. C., Srivastava S. K., and Srivastava S. D: Synthesis of 5-arylidene-2-aryl-3-(benzotriazoloacetamidyl)-1, 3-thiazolidin-4-ones as analgesic and antimicrobial agents. Indian journal of chemistry, 2006; 45(B): 526-531.
- Yu K. L., Zhang Y., Civiello R. L., Kadow K. F., Cianci C., Krystal M., and Meanwell N. A: Fundamental structure–Activity relationships associated with a new structural class of respiratory syncytial virus inhibitor. Bioorganic & medicinal chemistry letters, 2003; 13: 2141-2144.
- Borowski P., Deinert J., Schalinski S., Bretner M., Ginalski K., Kulikowski T., and Shugar D: Halogenated benzimidazoles and benzotriazoles as inhibitors of the NTPase/helicase activities of hepatitis C and related viruses. European Journal of Biochemistry, 2003; 270: 1645-1653.
- Patil G. K., Patil H. C., Patil I. M., Borse S. L., and Pawar S. P: Benzotriazole - the molecule of diverse biological activities. World Journal of Pharmacy and Pharmaceutical Sciences, 2015; 4: 532-548.
- 22. Ren Y., Zhang L., Zhou C. H., and Geng R. X: Recent Development of Benzotriazole-based Medicinal Drugs. Medicinal Chemistry 2014; 4: 640-662.
- Villemagne B., Crauste C., Flipo M., Baulard A. Deprez R., B., and Willand N: Tuberculosis- The drug development pipeline at a glance. European journal of medicinal chemistry 2012; 51: 1-16.
- 24. Katritzky A. R., Lan X., and Fan F. W. Q: Benzotriazole as a synthetic auxiliary - benzotriazolyl alkylations and benzotriazole mediated heteroalkylation. Synthesis 1994; 5: 445-456.
- 25. Katritzky A.R: The continuing magic of benzotriazole: an overview of some recent advances in synthetic methodology. Journal of Heterocyclic Chemistry 1999; 36: 1501-1522.
- 26. Vasantha B., Vommina V. and Sureshbabu: Facile one step synthesis of acyl azides and N^α-Fmoc/Boc/Z protected amino acid azides employing benzotriazole-1-yl-oxy-tris-(dimethyl amino)-phosphonium hexaflurophosphate. Indian journal of chemistry 2010; 49(B): 812-817.
- 27. Al-Warhi T. I., Hassan M. A., Al-Hazimi, and Ayman El-Faham: Recent developments in peptide coupling reagents. Journal of Saudi Chemical Society 2012; 16: 97-116.
- Naik S.A., Lalitamba H.S. and Vommina V.S: Application of 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyl uranium tetrafluroborate for the synthesis of acid azides. Indian journal of chemistry 2011; 50(B): 103-109.
- 29. Katritzky A.R., Kirichenko K., Ji. Y, Steel P.J., and Karleson M: Site selective suzui cross coupling reactions of 2,3-dibromobenzofuran. Arkivoc 2003; 4: 49-61.
- 30. Fu J., Yang Y., Zhang X. W., Mao W. J., Zhang Z. M., and Zhu H. L: Discovery of 1H-benzo [d] [1,2,3]-triazolo-1-yl-3,4,5-trimethoxy benzoate as a potential antiproliferative agent by inhibiting the histone deacetylase. Bioorganic and Medicinal Chemistry 2010; 18: 8457-8462.
- Soud Y. A. A., Masoudi N. A. A., and Ferwanah A. E. R. S: Synthesis and properties of new substituted 1,2,4triazoles- potential antitumor agents. Bioorganic and Medicinal Chemistry 2003; 11: 1701-1708.
- Carta A., Sanna P., Palomba M., Vargiu L., M. La Colla, and Loddo R: Synthesis and antiprolifirative activity of 3aryl-2-(1-H-benzotiazole-1-yl) acrylonitriles. European journal of medicinal chemistry 2002; 37 (11): 891-900.
- Carta A., Briguglio I., Piras S., Boatto G., Colla P. L., Loddo R., Tolomeo M., Grimaudo S., Cristina A. D., Pipitone R. M., Laurini E., Paneni M. S., Posocco P.,

Fermeglia M., and Pricl S: 3-Aryl-2-[1H-benzotriazole-1-yl] acrylonitriles-A novel class of protein tubulin inhibitors. European journal of medicinal chemistry 2011; 46: 4151-4167.

- 34. Guo H., Zhang G., Zhang T., X. He, Z. Wu, Y. Xiao, Y. Pan, G. Qiu, P. Liu, and X. Hu: Synthesis, characterization and biological evaluation of some 16β-azolyl-3β-amino-5α-androstane derivatives as potential anticancer agents. European journal of medicinal chemistry 2011; 46: 3662-3674.
- 35. Kamal M.D., Hassan A.G., Eman A.R., Mohey E. and Hanan A.M: Synthesis, anticonvulsant and antiinflammatory evaluation of some new benzotriazole and benzofuran based heterocycles. Bioorganic Medicinal Chemistry 2006; 14: 3672-3680.
- 36. Bernatowicz A. N., Łebska M., Orzeszko A., Kopańska K., Krzywińska E., Muszyńska G., and Bretner M. Synthesis of new analogous of benzotriazole, benzimidazole and phthalamide –potential inhibitor of human protein kinase CK2. Bioorganic Medicinal Chemistry 2009; 17: 1573-1578.
- Caliendo G., Fiorino F., Perissutti E., Severino B., Scolaro D., Gessi S., Cattabriga E., Borea P. A., and Santagada V: European journal of Pharmaceutical Sciences 2002; 16: 15-28.
- Khadom A.A. and Yaro A. S: Mass transfer effect on corrosion inhibition process of copper-nickel alloy in hydrochloric acid by benzotriazole. Journal of Saudi Chemical Society 2014; 18: 214-219.
- Matsuoka A., Sakamoto H., Tadokoro S., Tada A., Terao Y., Nukaya H., Wakabayashi K: Mutation Research 2000; 464: 161-167.
- 40. Suma B.V., Natesh N.N. and Madhavan V: Benzotriazole in medicinal chemistry-an overview. J. Chem. Pharm. Research 2011; 3: 375-381.
- 41. Purohit M., and Srivastava S. K: Studies in aryloxylated benzotriazoles. Indian Journal of Pharmaceutical Sciences 1992; 54: 25-30.
- 42. Upadhyay R.K., and Srivastava S. D: Synthesis and studies in biologically active mono and bi heterocycles. Indian Journal of Pharmaceutical Sciences 1995; 57: 12-18.
- 43. Ackerman P., and Max S., June 21, 1994, US Patent No: 5, 322, 853.
- 44. Paolo S., Antonio C., and Mohammad E.R.N: Synthesis and antitubercular activity of 3-aryl substituted-2-(1H(2H)benzotriazole-1-(2)-yl) acrylonitriles. European journal of medicinal chemistry 2000; 35: 535-543.
- 45. Fatima A.O., Rafat M. M. and Adel A. E. K: Synthesis and biological effects of new derivatives of benzotriazole as antimicrobial and antifungal agents. Journal of Heterocyclic Chemistry 2002; 39: 877-883.
- 46. Yu K. L., Zhang Y., Civiello R. L., Kadow K. F., Cianci C., Krystal M., and Meanwell N. A: Fundamental SAR associated with a new structural class of respiratory syncytial virus inhibitor. Bioorganic Medicinal Chemistry Letters 2003; 13: 2141-2144.
- Kopańska K., Najda A., Żebrowska J., Chomicz L., Piekarczyk J., Myjak P., and Bretner M: Synthesis and activity of 1H-benzimidazole and 1H-benzotriazole derivatives as inhibitors of *Acanthamoeba castellanii*. Bioorganic Medicinal Chemistry 2004; 12: 2617-2624.
- 48. Das J., Rao C.V. L., Sastry T.V. R. S., Roshaiah M., Sankar P. G., Khadeer A., Kumar M. S., Mallik A., Selvakumar N., Iqbal J., and Trehan S: 4,5-disubstituted oxazolidinones – high affinity molecular effectors of RNA function. Bioorganic Medicinal Chemistry Letters 2005; 15: 337-343.

- 49. Prasad P. D., Prathap S. N., Vijaykumar J. P., Sanjay J., Sudershan K. A., and Neelima S: Synthesis and antibacterial activity of novel (un) substituted benzotriazolyl oxazolidinones derivatives. Bioorganic Medicinal Chemistry Letters 2005; 15: 3002-3005.
- Bretner M., Baier A., Kopanska K., Najda A., A. Schoof, Reinholz M., Lipniacki A., Piasek A., Kulikowski T., and Borowski P: Synthesis and biologically active 1Hbenzotriazole and 1H-benzimidazole analogues – Inhibitors of the NTPase / helicase of HCV and of some related flaviviridae. Antiviral Chem. Chemotherapy 2005; 16: 315-326.
- Swamy S. N., Basappa G. Sarala, Priya B.S., Gaonkar S. L., Prasad J. S., and Rangappa K. S: Microwave assisted synthesis of N-alkylated benzotriazole derivatives – Antimicrobial studies. Bioorganic Medicinal Chemistry Letters 2006; 16: 999-1004.
- 52. CY W., King K. Y., Kuo C. J., Fang J. M., Wu Y. T., Ho M. Y., Liao C. L., Shie J. J., Liang P.H., and Wong C. H: Stable benzotriazole esters as mechanism based inactivators of the severe acute respiratory syndrome 3CL protease. Chemistry and Biology 2006; 13: 261-268.
- Prasad P. D., Kumar J. P. V., Prathap S. N., Sanjay J., Neelima S., and Sudershan K. A: Synthesis of 1-[3-(4benzotriazole-1/2-yl-3-fluro-phenyl]-2-oxo-oxazolidine-5yl-methyl]-3-substituted - thiourea derivatives as antituberculosis agent. European journal of medicinal chemistry 2006; 41: 423-428.
- Shukla D. K., and Srivastava S. D: Synthesis of some new 5-[2-{(1,2,3-benzotriazole)-1-yl methyl}-1-(4-substituted aryl -3-chloro-2-oxo azetidine)]-amino-1,3,4-thiazoles-Antifungal and antibacterial agents. Indian journal of chemistry 2008; 47(B): 463-469.
- Verschueren K. H., Pumpor K., Anemüller S., Chen S., Mesters J. R., and Hilgenfeld R: A structural view of the inactivation of the SARS coronovirus main proteinase by benzotriazole esters. Chemistry and Biology 2008; 15: 597-606.
- Namdeo K. P., Singh V. K., and Prajapati S. K: Synthesis of some 2-(substituted)-5-[(N-benzotriazolomethyl)-1,3,4thiadiazolyl]-4-thiazolidinones for their antifungal activity. Indian J. Pharm. Educ. Research 2009; 43: 266-271.
- Rezaei Z., Khabnadideh S., Pakshir K., Hossaini Z., Amiri F. and Assadpour E: Design, synthesis and antifungal activity of triazole and benzotriazole derivative. European journal of medicinal chemistry 2009; 44: 3064-3067.
- Wan J., Peng C.L.V., Na N. T., and Hai L. Z: Facile synthesis of novel benzotriazole derivatives and their antibacterial activities. Journal of Chemical Sciences 2010; 122: 597-606.

How to cite this article:

Singh VK, Rishishwar P, Bhardwaj P and Alok S: Benzotriazole: A heterocyclic molecule with diversified pharmacological activities. Int J Pharm Sci Res 2017; 8(2): 446-55.doi: 10.13040/IJPSR.0975-8232.8(2).446-56.

All © 2013 are reserved by International Journal of Pharmaceutical Sciences and Research. This Journal licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

This article can be downloaded to ANDROID OS based mobile. Scan QR Code using Code/Bar Scanner from your mobile. (Scanners are available on Google Playstore)

- 59. Singh N. P., Kumar R., Prasad D. N., and Sharma S: International Journal of Biological Chemistry 2011; 5: 193-199.
- 60. Patel P. D., Patel M. R., Kocsis B., Kocsis E., Graham S. M., Warren A. R., Nicholson S. M., Billack B., Fronczek F. R., and Talele T. T: Design, synthesis and determination of antifungal activity of 5(6) substituted benzotriazoles. European journal of medicinal chemistry 2010; 45: 2214-2222.
- Ramachandran R., Rani M., Senthan S., Jeong Y. T. and Kabilan S: Synthesis, spectral, crystal structure and invitro evaluation of imidazole/benzotriazole substituted piperidine-4-one derivatives. European journal of medicinal chemistry 2011; 46: 1926-1934.
- Dubey A., Srivastava S. K., and Srivastava S. D: Conventional and microwave assisted synthesis of 2-oxo-4-substituted aryl-azetidine derivatives. Bioorganic Medicinal Chemistry Letters 2011; 21: 569-573.
- Carta A., Palomba M., Briguglio I., Corona P., Piras S., Jabes D., Guglierame P., Molicotti P., and Zanetti S: Synthesis and antimicrobial activities of triazoloquinolones. European journal of medicinal chemistry 2011; 46: 320-326.
- 64. Gaikwad N. D., Patil S. V., and Bobade V. D: Synthesis and biological evaluation of some novel thiazole substituted benzotriazole derivatives. Bioorganic Medicinal Chemistry Letters 2012; 22: 3449-3454.
- 65. Patel J. S., Garg C. S., and Sen D. J: Internatinal Journal of Drug Development and Research 2012; 4: 322-329.
- Suma B.V., Natesh N. N., Venkataraman C. H. S., Jays J., and Madhavan V: Synthesis and antibacterial activity of some new 1,2,3-benzotriazole derivatives containing pyrazolidinedione moieties. Internatinal Journal of Pharmaceutical Sciences 2012; 4: 169-173.
- 67. Sudhir M. S., Nadh R. V., and Radhika S: Antifungal activities of novel 1,2,3 benzotriazole derivatives synthesized by ultrasonic and solvent free conditions. Drug invention today 2013; 5: 126 -132.
- 68. Singh V. K., Rishishwar P, and Bhardwaj P: New chemical entities (NCE's): Concept, Synthesis and Identification. Journal of Biomedical and therapeutic sciences 2014; 1: 85.
- Jamkhandi C. M., Kumbhar P. S., Disouza J. I., and Patil S. M: QSAR study and evaluation of in vitro antiinflammatory activity for 1h-benzotriazol-1-yl{2-hydroxy-5-[(e) phenyldiazenyl]phenyl} methanone derivatives. European Journal of Pharmaceutical and medical research 2015; 2: 1004-1010.