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ABSTRACT: Antimicrobial peptides (AMPs) are the crucial factors, 

which plays an important role in host defense mechanisms. AMPs are 

ubiquitous and found in diverse organisms ranging from microorganisms 

to animals. Plants are the precious source of natural antimicrobial 

molecules including antimicrobial peptides known as plant antimicrobial 

peptides (PAMPs). PAMPs can be divided into different families based 

on their, molecular weight, activity against different microbes, structure, 

charge of molecules, content of disulphide bond and mechanism of 

action. Based on number of cysteine residues and disulfide bonds, 

PAMPs are categorized into six main families. These peptides may lead 

to degradation of nutrients that are specific or essential for microbes to 

grow, interfering with microbial membrane or by conflicting with their 

metabolism. PAMPs exert multiple antimicrobial activities which 

includes membrane permeabillization, interference with DNA, RNA and 

protein synthesis that might provide a suitable approach to prevent 

bacteria from developing resistance. This review provides an overview of 

all the major plant AMP families including their structure, function, 

mechanism of action and antimicrobial activity. 

INTRODUCTION: The rapid emergence of 

resistant microorganisms is endangering the 

effectiveness of antibiotics, which have saved 

millions of lives through decades.  Antibiotic 

resistance has been associated to misuse and 

overuse of medications, prolonged use of same 

chemical moieties as drugs, lack of new drug 

development by pharmaceutical industry, all 

leading to development of superbugs 
1 - 3

.  
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As per WHO report 2012, around 170,000 people 

died globally because of multidrug resistant 

tuberculosis infection 
4
. The development of 

resistant human pathogenic fungal species is 

creating challenge for planning treatment 

strategies
5
. Therefore there is a need to develop a 

robust mechanism to combat the growing antibiotic 

resistant microorganisms. Antimicrobial peptides 

(AMPs) have been described as evolutionary 

ancient weapons against microbial infection. 

Antimicrobial peptides play a vital role in innate 

immunity of bacteria 
6
, insects 

7
, plants 

8
 and 

animals 
9
.  

Plants have been a valuable source of natural 

products for maintaining human health by 

controlling infections 
10

. A vast number of 

medicinal plants have been recognized as major 
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source of antimicrobial compounds, among these, 

plant AMPs play a vital (PAMPs) are one such 

compound. PAMPs can be source of revolution in 

the development of new antibiotics, which may be 

effective against Multi Drug Resistant (MDR) 

infections, currently difficult to treat, especially by 

inhibiting MDR pump. Due to its multifarious 

action on the microbes, PAMPs are potential 

candidate for developing new genre antibiotics with 

a remote chance of microorganisms getting 

resistant against these peptides 
11 

and can be an 

alternative approach. PAMPs are small, Positively 

charged peptides, comprising of 10 to 50 amino 

acids, having mass of around 2 to 9 kDa, cysteine-

rich proteins with antimicrobial activities. These 

peptides mainly comprise of hydrophobic amino 

acid with helical structure 
12

.  

The activities of PAMPs act primarily against 

microorganisms but some members of AMPs can 

act against herbivorous insects as targets 
13

. The 

PAMPs are classified into various families based 

on amino acid sequences, identity, number of 

cysteine residues and their spacing 
12, 14

. They are 

broadly classified into anionic (AAMPs) and 

cationic peptides (CAMPs) depending on their 

electrical charges 
15

. PAMPs comprises of six 

major families. These are thionins, defensins, lipid 

transfer proteins, cyclotides, snakins and hevein-

like peptides 
12

. 

Mode of Action: The exact mode of action for 

AMPs is still not well known. Several workers 

have proposed different hypotheses for the 

mechanism of antimicrobial peptide. Certain 

important features like amphipathicity, cationic 

charge and size of these peptides make them 

responsible for their antimicrobial property. The 

main hypothesis for the mechanism of action is the 

ability of AMP to cause membrane collapse by 

interacting with lipid molecules on bacterial surface 

and/ or thereby interacting with other targets in 

cytoplasm 
16 - 19

.Yeaman and Yount further 

proposed that charge affinity of AMPs towards 

cations is likely an important factor, conferring 

selectivity to AMPs 
19

. Based on mode of action of 

AMPs, many various models were proposed, like 

"barrel-stave" (transmembrane pore formation), 

"carpet-like" (membrane destruction/solubilization) 

and toroidal (wormhole) (Fig. 1).  

In the ‘carpet-like” mechanism, peptide binds to 

acidic surface of the bacterial membrane thereby 

leading to membrane destruction 
20

. Antibacterial 

specificity of peptide depends upon the alignment 

of peptide within phospholipid membrane of 

bacteria. Matsuzaki et al., suggested that magainin-

2 peptide follows “barrel like” model, which binds 

laterally to the membrane surface causing 

translocation of phospholipid bilayer, leading to 

channel (pore) formation 
21, 22

.  

It was further suggested that peptide’s 

antimicrobial activity depends not only on 

physicochemical properties of peptides but also on 

the phospholipids present in bacterial membrane 
23, 

24
. According to the proposed “toroidal (or 

wormhole) model” for membrane disruption, 

AMPs aggregate on the membrane, leading to the 

formation of “bends” in the membrane, where 

phospholipids bilayer joins to form pore 
25, 26

. 

 
FIG. 1: DIFFERENT MODELS SHOWING ACTION OF 

ANTIMICROBIAL PEPTIDES (AMPs) CAUSING 

LIPID MEMBRANE PERMEABILIZATION 

In the early stages, the peptide assimilates at the 

membrane surface leading to conformational 

changes in the peptide. Once a concentration of 

peptide reached to its threshold value, it will be 

pursued by membrane disruption by one of these 

three mechanisms. In Barrel- Stave model, AMP 

molecules embed themselves perpendicular into the 

membrane. In Carpet model, AMP molecules bind 

to region of the membrane having hydrophobic 

sides facing inward leaving orifice trailing in the 

membrane. In toroidal pore model, AMP molecules 

always encounter phospholipids head groups of the 

membrane 
27, 28

. 
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According to these hypotheses, when the 

concentration of peptides reaches threshold values 

it leads to pore formation in membrane. Formation 

of pores in the membrane causes leakage of ions 

and metabolites, disruption in the respiratory 

mechanism and synthesis of cell wall, ultimately 

leading to membrane collapse 
19

.  

The cationic peptides interact electrostatically with 

the negatively charged molecules such as 

phospholipids, lipopolysaccharides (LPS), teichoic 

acid, which are situated in the membrane of 

microorganisms. The cationic residues can also 

combine with membrane lipids using specific 

receptors present on the surface of the cell 
15, 17, 19

. 

Sometimes microorganisms may survive for 

extended periods even after membrane 
permeablization, indicating that non-membranolytic 
mechanisms are responsible for cell death. These 

non- membranolytic mechanism include, binding of 

PAMPs to certain factors like replicating enzymes, 

transcription factors, translation initiation factors, 

cofactors etc, which leads to termination of DNA 

synthesis, transcription and translation process 

ultimately to cell death. 

Six Main Families of PAMPS: 

Thionins: Thionins are positively charged with 

molecular weight about 5 kDa, rich in arginine, 

lysine, cysteine residues. Their structure comprises 

of two antiparallel α- helices and an antiparallel 

double-stranded β-sheet accompanying three or 

four disulfide linkages. The groove between the α-

helices and β-sheets posses the Tyr 13 residue 

which may interact with lipid molecules of the 

membrane, leading to cell disruption and ultimately 

to cell lysis 
12, 29

.  Thionins are subdivided into five 

classes- Type I, Type- II, Type- III, Type-IV and 

Type-V. Thionins show toxicity towards bacteria 
30

, fungi 
31

, animal cell and insect larvae 
32, 33

. α/β 

thionins consist of eight or six conserved cystine 

residues which hereafter will be referred to as 8C 

or 6C thionins 
34

.  

These peptides are secreted as preproteins and 

prothionin domain is bordered by conserved 

sequences of N- terminal signaling peptides and C- 

terminal acidic domain 
35-37

. Thionins consisting of 

eight cystine residues, stabilized by four disulfide 

bonds between Cys I- Cys VIII linking β1 to C-

terminal coil, Cys II- CysVII linking the end of β1 

with beginning of β2, Cys III-Cys VI linking α1 

and loop after α2 and Cys IV- Cys V linking α1 

and α2. Whereas, thionins having six cystine 

residues are stabilized by three disulfide bridges. In 

these peptides, Cys II – CysVII disulphide bond is 

absent 
34, 38 - 40

. Among all the AMPs isolated from 

the plants, the largest group belongs to families- 

thionin and defensisn. The first basic polypeptides 

Purothionin was isolated from endosperm of wheat 

(Triticum aestivum) and other cereal species, which 

had ability to inhibit the growth of selected 

phytopathogens bacteria of genus Pseudo-

monas, Xanthomonas and Corynebacterium.  

Using carboxy methylcellulose column 

chromatography, α and β purothionins were 

obtained from partially purified crude extract of 

purothionin 
30

. Pyrularia thionin was isolated from 

the nuts of Pyrularia pubera 
32

. This peptide was 

basic in nature, comprises of 47 amino acids 

including two tyrosine residues and 4 disulfide 

bonds. This peptide was known for hemolytic, 

cytotoxic and neurotoxicity activity. In their study, 

they showed that iodination of pyrularia thionin 

leads to loss of hemolysis, cytotoxic activity and 

lethality in mice. This peptide causes membrane 

alteration by depolarization and a channel-mediated 

influx of Ca
2+ 

ions, which in turn activates 

phospholipase A2 that results in loss of membrane 

integrity and ultimately cell death.  This study 

indicated that iodination leads to inhibition of 

above mentioned all three cellular responses, which 

suggested the role of tyrosine either in preservation 

of peptide structure or in the association of peptide 

with cellular membrane.  

Duvick and coworkers isolated MBP- 1 

antimicrobial peptide belonging to thionin family 

of AMPs from maize kernels 
41

. This peptide 

comprises of 33 amino acid residues (4127.08 Da). 

MBP-1 inhibits spore germination or hyphal 

elongation of Fusarium moniliforme Sheld. and 

Fusarium graminearum. These peptides also 

showed antibacterial activity against Clauibacter 

michiganense sp. Nebraskense. Novel thionin 

antimicrobial peptides, Tu-AMP1 and Tu-AMP2 of 

molecular weight 4,988Da and 5,006Da 

respectively were purified from Tulipa gesneriana 

L. bulbs using chitin affinity chromatography and 

reverse-phase high performance liquid 

chromatography (HPLC) 
42

.  
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Chitin-binding peptides Pp-AMP 1 and Pp-AMP 2, 

which had antimicrobial activity against pathogenic 

bacteria and fungi, were purified from 

Phyllostachys pubescens (Japanese bamboo shoots) 

using a simple chitin affinity chromatography 

procedure. Pp-AMP1 and Pp-AMP2 showed 

homology with mistletoe toxins 
43

. Cytotoxic 

thionin peptides viscotoxin A1 and B1 were 

isolated and crystallized from Mistletoe and during 

formation process both the proteins form dimers. 

During dimer formation, Viscotoxin B2 (net charge 

+4) showed coordination with sulfate or phosphate 

anions whereas no correlation was found with 

Viscotoxin A1 (net charge +6)
 44

. Viscotoxins 

isolated from European mistletoe (Viscum album) 

was found to be active against phytopathogenic 

fungi and cancer cells 
45

.  

Viscotoxin peptides were fused with 13 different 

proteins {His6 tag and His6-tagged versions of 

GB1 (protein G), ZZ tag ([glutamate/glutamine]
2
 

amino acid tag), Z tag (glutamate/glutamine amino 

acid tag), MBP (maltose binding protein), NusA (N 

utilisation substance protein A), glutathione S-

transferase, thioredoxin, GFP (green fluorescent 

protein), along with periplasmic and cytosolic 

versions of DsbC (Disulfide bond C) and DsbA 

(disulfide-bond A oxidoreductase-like protein} as a 

fusion partners for their expression in Escherichia 

coli cells. Highest yield of soluble viscotoxin was 

observed in Viocotoxin fused with thioredoxin 

protein. Recombinant viscotoxins prepared using 

above method was found to be toxic against HeLa 

cells. Some of the other thionins are listed in Table 

1. 

TABLE 1: LIST OF THIONIN PEPTIDES SUBMITTED TO PHYTAMP DATABASE HAVING ANTIMICROBIAL 

ACTIVITY AGAINST TARGET ORGANISM 

S. no. Name Organism Activity References 

1 Viscotoxin-B (Viscotoxin- 

B2(VtB) Viscotoxin-a3 (Vta3) 

Viscum 

album 

Antifungal 46 - 48 

2 Pp-AMP1 

Pp-AMP2 

Phyllostachys 

pubescens 

Antibacterial 43 

Antifungal 

3 Tu-AMP1 Tulipa 

gesneriana 

Antibacterial 42 

Antifungal 

Defensins: Defensins are small (ca. 5 kDa) 

ubiquitous, cationic peptide ranging from 45 to 54 

amino acids. These peptides are expressed in 

various plant tissues, however they are present in 

ample amount in seeds. Defensin peptides stored in 

seeds protect them from fungal infection during 

seed germination and increase the seed survival 

rate 
49, 50

. Earlier defensins were classified as ϒ- 

thionins, ϒ1/ ϒ2 purothionins because of 32 - 36% 

sequence similarity with α/β thionins 
51, 52

. The 

three-dimensional structure of plant defensins 

shares similarities with those of insect defensins 

and scorpion toxins 
14

. 

A number of AMPs from the defensin family have 

been isolated from various plant sources. A 5kDa 

polypeptide, Pseudothionin-St1 (Pth-Stl) was 

isolated from Solanum tuberosum. Pth-St1 peptide 

was found to be active against Clavibacter 

michiganensis, Pseudomonas solanacerum and 

Fusarium solani. Pseudothionin did not show any 

characteristic feature similar to true thionins. Now 

pseudothionin has been reclassified under defensins 
53

. In 1996, Thevissen and his co-workers isolated 

antifungal defensin Rs-AFP2 and Dm-AMP1 from  

seeds of radish and dahlia respectively 
54

. When 

hyphae of Neurospora cassa were treated with Rs 

AFP2 and Dm-AMP1, rapid efflux of K
+
 ion, 

influx of Ca
2+

 ion, change in membrane potential of 

fungal cell and alkalization of medium took place, 

which led to busting of fungal cell. Rs-AFP2 leads 

to hyperpolarization wheras Dm-AMP1 causes 

depolarization in the membrane of N. crassa. An 

antifungal peptide Dm-AMP1 was isolated from 

seeds of Dahlia merckii, showing the IC50 to be 

approximately 2 µM against Saccharomyces 

cerevisiae 
55

. Antifungal peptides were 

radioactively labeled with t-butoxyczrbonyl-[
35

S]-

L-methionine N-hydroxy-succinimidylester (Boc-

Meth-NHS) to produce [
35

S] Dm-AMP1. [
35

S] Dm-

AMP1 peptide showed antifungal activity similar to 

Dm-AMP1 peptide.  

This indicated that addition of 
35 

S to Dm-AMP1 

did not cause any change in binding sites of the 

peptides. Dm-AMP1 binds to specific binding sites 

present on the plasma membrane of fungi, which 

leads to cell death. This work enables tracking and 

mode of action of defensin peptides in various 

organisms without hampering their activity. 

https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0ahUKEwjA35jUmLXTAhWJNo8KHeXgCJkQFgg2MAM&url=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpubmed%2F19011089&usg=AFQjCNEJo0ufReRPOu5XzmtChPejYHVIMA
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Thevissen et al., reported that Rs- AFP2 interact 

with glucosylceramides present in the membrane of 

fungi and yeast cell, which triggers membrane 

permeabilization and ultimately leads to cell death 
56

. Petunia hybrida defensin 1 (PhD1) was isolated 

from the flowers of Petunia hybrida, consisting of 

47 cystine rich amino acid residues stabilized by 

five disulfides bonds. The structure of PhD1 was 

determined by 
1
H NMR spectroscopy which 

reveals that it comprises of an α- helix, a triple 

stranded anti-parallel β- sheet and cystine stabilized 

α β motif folds 
57

. Vigna radiata (mung bean) 

defensin 1 (VrD1) was proclaimed as the first plant 

defensin showing insecticidal activity 
58

. The VrD1 

structure consist of α-helix, triple-stranded 

antiparallel β-sheet and 310 helix stabilized by four 

disulfide bridges which layout a characteristic 

cysteine-stabilized α β motif. VrD1 inhibits α-

amylase activity in Tenebrio molitor. Production of 

α-amylase inhibitor 1 in transgenic pea also showed 

complete resistance against bruchids. 

Plant antifungal peptides RsAFP2, HsAFP1 and 

PvD1 was isolated from Raphanus sativus, 

Heuchera sanguinea and Phaseolus vulgaris 

respectively had shown inhibition in the growth of  

S. cerevisiae and Candida albicans.  Binding of 

peptide with glucosylceramides (GlcCer) present in 

the membrane of fungi and yeast cells causes 

oxidative damage to cell, related to induction of 

reactive oxygen species (ROS) and Nitric oxide 

(NO) production 
59 - 61

.  

NaD1 defensin from Nicotiana alata showed 

antifungal activity against Candida albicans 
62

. 

NaD1 interact with fungal cell wall and cause 

membrane permeabilization. When NaD1 reaches 

cytoplasm, it leads to hyper-production of Reactive 

Oxygen Species (ROS) that induce oxidation 

damage. High osmolarity glycerol (HOG) pathway 

was identified which play an important role in 

protection of fungal cell against NaD1. This 

indicated that HOG pathway could be a suitable 

target site for increasing the effectiveness of the 

antimicrobial peptides against Candida albicans.  

Putative defensin gene was isolated from Vigna 

uniguiculata (cowpea).  Sequence, amino acid 

arrangement, splicing analysis, secondary and 

tertiary structures of mature putative defensin 

peptide showed similarity towards a typical 

defensin peptide. Response of biotic stimuli on 

pathogen treated and untreated plants were 

examined by the expression level of defensin gene, 

using RT-PCR 
63

. A list of defensin peptides, their 

origin and action against specific microorganisms 

is listed in Table 2. 

TABLE 2: LIST OF DEFENSIN PEPTIDES SUBMITTED TO PHYTAMP DATABASE HAVING ANTIMICROBIAL 

ACTIVITY AGAINST TARGET ORGANISM 

S. no. Name Organism Activity Target organism References 

1 Floral defensin- like protein 

1 (PhD1) 

Floral defensin- like protein 

2 (PhD2) 

Petunia  

hybrida 

Antifungal Fusarium  

Oxysporum, 

Botryris  

cinerea 

64 

 

 

2 VrD1 Vigna  

radiata 

Antibacterial Escherichia coli 65 

Antifungal Rhizoctonia solani 

3 Defensin J1-1 

Defensin J1-2 

Capsicum 

annuum 

Antifungal Fusarium oxysporim, 

Botrytis cinera 

66, 67 

4 Antifungal protein AX 1 

Antifungal protein AX2 

Beta  

vulgaris 

Antifungal Cercospora beticola 

and other filamentous fungi 

68 

5 Fabatin-1 

Fabatin- 2 

Vicia  

faba 

Antibacterial Bacillus subtilis, 

Enterococcus hirae, 

Escherichia coli 

Pseudomonas aeruginosa 

69 

6 Rs-AFP1 

Rs-AFP2 

Raphnus  

sativus 

Antifungal Alternaria brassicola, 

Botrytis cinerea, 

Fusarium culmorum, 

Fusarium oxysporum, 

Pyricularia oryzae, 

Verticiliium dahlia, 

51, 70, 71 

7 Flower specific gamma- 

thionin (Nad1) 

Nicotiana 

tabacum 

Antifungal Fusarium oxysporum 

Botrytis cinerea 

72, 73 
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Cyclotides: Cyclotides are largest family of 

circular proteins, comprising of 28 to 37 amino 

acid residues. These peptides contain cyclic cystine 

knot (CCK) motif created by six conserved 

cysteine residues. Apart from antimicrobial 

activity, cyclotides also shows insecticidal and anti- 

cancerous activity 
74

. First water soluble oxytocic 

polypeptide, kalata B1 of approximately 30 amino 

acids was isolated from the African plant 

Oldenlandia affinis 
75

. The natives used this plant 

extract to stimulate childbirth during labor, 

therefore kalata B1 was identified as the main 

uterotonic component of the plant. Another novel 

cyclotide ‘kalata B8’ was also isolated from 

Oldenlandia affinis 
76

. Kalata B8 displays anti-HIV 

activity but lacks haemolytic activity. This may be 

due to the hydrophilic nature of peptide. Two 

antimicrobial peptides Mj-AMP1 and Mj-AMP2 

were isolated from the seeds of Mirabilis jalapa L. 

Mj-AMP1 and Mj-AMP2 peptides comprises of 37 

and 36 residues respectively 
77

.  

These are basic in nature and consist of three 

disulfide bridges. These peptides show broad-

spectrum antifungal activity and anti gram–positive 

bacterial activity whereas no activity was observed 

against gram-negative bacteria and cultured human 

cell. Sequence of Mj-APMs showed similarity to µ- 

agatoxins, insecticidal neurotoxic peptide from 

spider venom and despite this homology Mj-AMPs 

did not affect pulse transmission in insect nerves 

even after many fold increase in the concentration. 

Four macrocyclic cystine-knot peptides, kalata, 

circulin A and B (CirA and CirB) and 

cyclopsychotride were extracted from coffee plants 

78
. Kalata and CirA were found to be active against 

Staphylococcus aureus with MIC of 0.2 µM.  

However, kalata and Cir A were inactive against 

Escherichia coli and Pseudomonas aeruginosa. 

However, CirB and cyclopsychotride were found to 

be effective against both Gram-positive and Gram-

negative bacteria. All the four cyclic peptides were 

slightly effective against Candida kefyr and 

Candida tropicalis, but were ineffective against 

Candida albicans.  

Four novel cyclotides (macrocyclic knotted 

proteins) were isolated from Viola hederaceae (vhl) 
79

.  vhl- 1 was leaf- specific cyclotide with 31-

residue.  EC50 for vhl-1 was found to be 0.87M 

against HIV- virus. Ribosome-inactivating peptide, 

Luffin P1 was isolated from the seeds of Luffa 

cylindrical 
80

. Luffin P1 was found to be effective 

against HIV 1 infected C8166T cell lines. Luffin 

P1 structure consists of helix-loop-helix motif and 

alpha helices held together by two-didulfide bond. 

Luffin P1 employed N-glycosidase activity to kill 

HIV infected cells. Trypsin inhibitor (BWI-2c) was 

isolated from the seeds of Fagopyrum esculentum 

(buckwheat) 
81

.  

BWI-2c peptide comprises of 41 amino acid 

residues with two disulfide bonds and shows 

structural similarity with VhT1 peptide isolated 

from Veronica hederifolia. Both these represents 

new family of protease inhibitors. Table 3 depicts 

cyclotides peptides submitted to PhytAMP 

Database having antimicrobial activity against 

target organism. 

 
TABLE 3: LIST OF CYCLOTIDES PEPTIDES SUBMITTED TO PHYTAMP DATABASE HAVING ANTIMICROBIAL 

ACTIVITY AGAINST TARGET ORGANISM 

S. no. Name Organism Activity Target organism References 

1 Cycloviolacin H-2 

Cycloviolacin H-3 

Viola hederacea Antiviral HIV virus 79 

2 Kalata- B8 Oldenlandia affinis Antiviral HIV virus 76 

3 Circulin – F (CIRF) 

Circulin – E (CIRE) 

Circulin – D(CIRD) 

Circulin – C(CIRC) 

Chassalia 

parviflora 

Antiviral HIV virus 82 

4 Cycloviolin- A 

Cycloviolin- B 

Cycloviolin- C 

Cycloviolin- D 

Leonis cymosa 

 

Antiviral 

 

HIV-1 virus 

 

83 

5 Kalata- B2 Oldenlandia affinis Insecticidal Hellicoverpa armigera 84, 85 

6 Circulin-A 

Circulin-B 

Chassalia 

parviflora 

Antibacterial Micrococcus luteus, Escherichia coli, 

Proteus vulgaris, Klebsiella oxytoca 

86 - 89 

Antifungal Candida albicans, Candida kefyr, 

Candida tropicalis 
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Snakin: Snakins Protein (SN) represents a unique 

family of cysteine-rich plant antimicrobial peptides, 

present in both monocotyledonous and 

dicotyledonous species. Peptides belonging to this 

family have six potential disulfides bridges as 

compared to the other characterized families, which 

have two or four disulfide bridges. The amino acid 

sequence of snakin- 1 peptide shows similarity 

towards hemotoxic desintegrin -like snake venoms 
90

. An antifungal basic 9kD peptide isolated from 

the seeds of Raphanus sativus (radish) having 

sequence similarity with nonspecific lipid transfer 

proteins isolated from other plant species. Later, 

this peptide was found to be the member of snakins 

family
 91

.  

Peptide showed antifungal activity against several 

fungi. Snakin-1 (StSN1) with 63 amino acid 

residues was isolated from the potato tubers 
90

. This 

was highly basic and had a short, central 

hydrophobic stretch of 25 to 30 amino acid 

residues, surrounded by highly polar, long N-

terminal and C-terminal domains. This peptide was 

found to be active against bacterial and fungal plant 

pathogens. Sequence motifs of StSN1 showed 

similarity with hemotoxic ‘kistrin’ snake venom.  

Similarly, an isolated snakin-2 (StSN2) peptide 

(7,025 Da) from potato (Solanum tuberosum cv 

Jaerla) tubers which was basic in nature and consist 

of 66 amino acid residues. StSN2 was effective 

against all the selected fungus and gram–positive 

bacterial pathogens for potato plant whereas it was 

observed to be ineffective against some of the 

Gram-negative bacteria 
92

. cDNA of mature StSN2 

peptide encoded for signal sequence which is 

preceded by a sequence of 15 acidic residues. St-

PTHl defensin and StSN1 snakin peptides 

accumulated at high concentrations together with 

StSN2 snakin peptide and were effective against 

bacterial and fungal pathogens for potato plants 
53, 

90, 92
.   

Snakin- Z peptide composed of 31 amino acid with 

molecular weight 3318.82Da from the fruit of 

Zizyphus jujube showed antimicrobial activity 

against bacteria and fungi whereas it was found to 

be ineffective against human red blood cells 
93

. 

This indicated that Snakin - Z could be a suitable 

candidate of antimicrobial peptides for therapeutic 

applications. Various other snakin peptides are 

listed in Table 4. 

TABLE 4: LIST OF SNAKIN PEPTIDES SUBMITTED TO PHYTAMP DATABASE HAVING ANTIMICROBIAL 

ACTIVITY AGAINST TARGET ORGANISM 

S. no. Name Organism Activity Target organism References 

1 Snakin-1 

(StSN1) 

Snakin-2 

(StSN2) 

Solanum 

tuberosum 

Antibacterial Clavibacter michiganensis, 

Ralsotonia solanacearum 

90, 92 

Antifungal Botrytis cinerea, Fusarium solani, 

Fusarium culmorum, Fusarium oxysporum f. sp. 

Lycopersici, Plectosphaerella cucumeria, 

Collectotrichum graminicola, Aspergillus flavus 

 

Hevein Like Peptides: Hevein like peptides are 

small 4.7 kDa (43 amino acid residues), 

monomeric, cysteine-rich and chitin-binding 

peptide. Hevein protein was first isolated and 

characterized from the latex of rubber tree (Hevea 

brasiliensis)
 94

. These peptides consist of 19.2% 

cystine amino acid residues. This protein inhibits 

the hyphal growth of fungi by binding to chitin 
95

. 

Avesin A peptide extracted from oat seeds has 

conserved domain containing a common structural 

motif of 37 amino acids with several cysteine and 

glycine residues and chitin binding domain. Avesin 

A showed mild antifungal activity on some selected 

fungal strains 
96

. Hevein like peptide Wj AMP-1 

was isolated from leaves of Wasabia japonica L 

97
. Wj AMP-1 showed antifungal as well as 

antibacterial activity. Wj AMP-1 showed 60% 

and 70 % sequence similarity towards hevein like 

protein isolated from Hevea brasiliansis and 

Arabidopsis thaliana. Two hevein homologues 

(Pn-AMP1 and Pn-AMP2) was extracted from 

Pharbitis nil with antifungal activities against both 

chitin and non-chitin containing fungi.  

When cDNA of Pn-AMP2 was expressed in tomato 

plants under the regulation of CaMV35S promoter, 

the transgenic plants showed increased resistance 

towards non-chitinous fungus as well as chitin-

containing fungus 
98

. This suggested that chitin 

might not be the only component for Pn-AMP’s 

antifungal activity.
 
Eucommia antifungal peptide2 
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(EAFP2) was obtained from Eucommia ulmoides 

olive, having chitin binding domain with a 

hydrophobic face and a characteristic disulfide 

bond between N- terminal and C- terminal 

residues 
99

. Novel antimicrobial peptides WAMP-

1a and WAMP-1b were isolated from seeds of 

Triticum kiharae 
100

. WAMP-1a and WAMP-1b 

differ from each other by a single C- terminal 

amino acid residue. Recombinant WAMP-1a was 

produced in Escherichia coli, possessing high 

broad-spectrum inhibitory activity against varied 

chitin-containing and chitin-free pathogens.  A 

chitin binding polypeptide WAMP-1a was 

isolated from Triticum kiharae, which showed 

similarity towards hevein like peptides 
101

. 

WAMP-1a peptide showed antifungal and 

antibacterial activity. WAMP-1a sequence 

features a substitution of conserved serine residue 

with glycine residue that decreases its 

carbohydrate binding efficiency. Six cysteine 

rich, hevein like peptides, aSG1-G3 and aSR1-

R3, was isolated and characterized from various 

green and red varieties of Alternanthera sessilis 
102

. Proteomic analysis revealed the presence of 

six cysteine, seven glycine, four proline residues 

and a conserved chitin-binding domain. Nuclear 

magnetic resonance (NMR) study showed that 

three disulphide bonds were present in a cysteine 

knot motif. Table 5 showing some of the hevein 

like peptides having antimicrobial activity 

submitted to PhytAMP Database. 

TABLE 5: LIST OF HEVEIN LIKE PEPTIDES SUBMITTED TO PHYTAMP DATABASE HAVING 

ANTIMICROBIAL ACTIVITY AGAINST TARGET ORGANISM 

S. no. Name Organism Activity Target organism References 

1 AC-AMP1 

AC-AMP2 

Amaranthus 

caudatus 

Antibacterial 

 

Gram positive bacteria:  Bacillus megaterium,  

Sarcina lutea 

103 

Antifungal Alternaria brassicola,  Ascophyta pisi, 

Botrytis cinera,  Fusarium culmorum 

2 Ee-CBP (Bark) 

Ee-CBP (leaves) 

Euonymus 

europaeus 

Antifungal Fusarium culmorum, Fusarium oxysporum, 

Mycosphaerella eumusae, Neurospora crassa 

104 

3 Ar-AMP Amaranthus 

retroflexus 

Antifungal B. cinerrea, F. Culmorum, 

H. satium, A. consortiale 

105 

4 EAFP2 

EAFP1 

Eucommis 

ulmoides 

Antifungal Phytophthora infestans, Ascochyta lycopersici, 

Alternaria nicotianae, Fusarium moniliforme, 

Fusarium oxysporum 

99, 106, 107 

5 PN-AMP-1 

PN-AMP-2 

Ipomoea nil Antibacterial Bacillus subtilis 108 

Antifungal Botrytis cinerea, Fusarium oxysporum, 

Phytophthora parasitica, Pythium sp. 

Anti yeast Saccharomyces cerevisae 

6 Fa-AMP1 

Fa-AMP2 

Fagopyrum 

esculentum 

Antibacterial Clavibacter michiganesis, Erwinia carotovora, 

Agrobacterium radiobacter, Agrobacterium 

rhizogenes 

109 

Antifungal Fusarium oxysporum, Geotrichum candidum 

Lipid transfer proteins (LTPs): The nonspecific 

lipid transfer proteins (ns-LTPs) are small proteins 

(approximately 8.7 KDa) composed of 90 amino 

acids preserved by four disulfide bonds 

accompanying central hydrophobic shaft. Due to 

small size of LTPs, they are able to penetrate 

through the fungal membrane and create pores that 

lead to efflux of intracellular ions and finally cell 

death 
110

.  

Tassin et al., isolated antifungal Ace-AMP1 peptide 

from the seeds of onion 
111

. NMR spectroscopy 

revealed that Ace-AMP1 peptide comprises of 93 

amino acid residues and four disulfide bonds. 

Structure of Ace-AMP1 peptide consist of four  

helices connected by three loops and a C-terminal 

tail without secondary structures, except for 310- 

helix turn and a β turn.  

LTPs of 9 kDa cysteine-rich cationic peptide was 

isolated from Vigna unguiculata seeds 
112

. These 

peptides play an important role in plant defense 

mechanism against microbial infection. Lin et al., 

isolated a novel antifungal lipid transfer peptide 

from the seeds of Brassica campestris 
113

. This 

peptide hinders the mycelial growth in Fusarium 

oxysporum  and  Mycosphaerella arachidicola. 

Similarly, lipid like protein of approx. 9 kDa was 

isolated from the seeds of chilli pepper 
114

.  
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This peptide showed antifungal activity against 
Fusarium oxysporum, Colletotrium lindemunthianum, 
Saccharomyces cerevisiae, Pichia membranifaciens, 
Candida tropicali and Candida albicans. This 

peptide causes multiple changes in the morphology 

of P. membranifaciens. Some of the other lipid 

transfer peptides are listed in Table 6. 

TABLE 6: LIST OF LIPID TRANSFER PEPTIDES SUBMITTED TO PHYTAMP DATABASE HAVING 

ANTIMICROBIAL ACTIVITY AGAINST TARGET ORGANISM 

S. no. Name Organism Activity Target organism References 

1 La-LTP (LJAFP) Leonurus 

artemisia 

Antibacterial Bacillus subtilis 

Pseudomonas solanacearum 

Ralstonia solanacearum 

115 

Antifungal Alternaria alternate, Alternaria brassicae, 

Aspergillus niger, Bipolaris maydis, 

Botrytis cinerea, Cerospora personata, 

Colletotrichum gloeosporiodes 

2 Hv- LTP Cw-18 

(PKG2316) 

Hv-LTP-1 

(LTP4.1) (CW21) 

Hordeum 

vulgare 

Antifungal Fusarium solani, 

Pseudomonas solanacearum, 

Clavibacter michiganensis 

116 

3 IWF1 (Bv-LTP),  

JWF2 (Bv-LTP2) 

Beta 

vulgaris 

Antifungal Cercospora 

beticola 

117 

4 Ace-AMP1 Allium 

cepa 

Antibacterial 

 

Bacillus megaterium 

Sarcina lutea 

118 

Antifungal 

 

Alternaria brassicola, Ascockyta pisi 

Botrytis cinerea, Colletotrickum 

lindemutkianum, Fusarium culmorum, 

Pyricularia oryzae 

5 Pa-LTP1 Phaseolus 

aureus 

Antibacterial Staphylococcus aureus 119,120 

Antifungal Fusarium oxysporum, Pythium 

aphanidermatum, Sclerotium rolfsii 

6 Lc-LTP4, Lc-

LTP8, Lc-LTP6, 

Lc-LTP5, Lc-LTP2 

Lens 

culinaris 

Antibacterial A.tumefaciens 121 

Some Other Classes of PAMPS: Some of the 

uncategorized AMPs have been isolated and 

characterized by various groups of scientists. 

Storage glycine-rich peptide (Pg-AMP1) of 

6029.24Da was isolated from Psidium guajava 

(guava). PgAMPs1 showed antimicrobial activity 

against Klebsiella sp. and Proteus sp. However, no 

activity was observed against fungi. 3-D structure 

of PgAMP1 exhibits homology to enterotoxin, 

antibacterial proteins from Escherichia coli 
122

. 

Cytotoxic peptide was partially purified from 

protein hydrolysate of Euphorbia hirta against 

gastric cancer. These bioactive peptides comprise 

of 2-10 amino acid residues. Protein hydrolysate of 

Euphorbia hirta was ultra filtrated to obtain low 

molecular weight (3KDa) peptides. Due to its small 

size, these peptides show immense biological 

effects and increase the probability to cross the 

intestinal barrier 
123

.  The chemically synthesized 

AMP is Shepherin I (Shep I), a glycine rich peptide  

124
. It was synthesized by solid- Phase method at 

60
0
C using conventional heating system. This 

peptide was effective against Candida species, but 

ineffective against bacteria and mycelia fungi. 

Truncation of the N- or C- terminal portion of Shep 

I decreases its antifungal activity. Carboxy-

amidation of Shep I did not affect the antifungal 

activity but increased activity against 

Saccharomyces cerevisiae.  

A cysteine peptidase (Cg24-I) of 24,118 Da was 

absolved from the latex of Cryptostegia 

grandiflora using ion exchange and Reverse-phase 

high performance liquid chromatography (HPLC). 

At a dose of 28.1µg/ml Cg24-I inhibited growth of 

Fusarium solani 
125

. 

Mandal et al., isolated Cn-AMP1, Cn-AMP2 and 

Cn-AMP3 peptides with molecular weight less than 

3kDa (858Da, 1249Da and 950 Da respectively) 

from green coconut (Cocos nucifera L.) water 
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using reversed phase-high performance liquid 

chromatography (HPLC) 
126

. Cn-AMP1 peptide 

was found to be more effective against both Gram-

positive and Gram-negative bacteria when 

compared to Cn-AMP2 and Cn-AMP3 peptides.  

Antimicrobial peptides were extracted from six 

Indian medicinal plants (Foeniculum vulgare, 

Cucumis sativus, Ammi majus, Allium ascolinicum, 

Cichorium intybus and Rumex vesicarius). Protein 

extracts were prepared in sodium phosphate citrate 

buffer (pH 5.2, 5.8, 6.8, 7.4 and 7.8) and sodium 

acetate buffer (pH 6.5). Strong antimicrobial 

activity was observed in Allium ascolinicum seed 

extracts at pH (5.8) against Proteus vulgaris, 

Escherichia coli and Staphylococcus aureus with 

zone of inhibition 17 mm, 17 mm and 15 mm 

respectively. Antibacterial activity was also 

reported in seed extracts of Rumex vesicarius at pH 

(7.6), Ammi majus at pH (6.8), Cichorium intybus 

at pH (7.4), Cucumis sativus at pH (7.8) and 

Foeniculum vulgare at pH (6.5) 
127

.  

Golla et al., screened 50 different seeds such as 

soya, barley, maize, jowar, paddy, millets, foxtail 

millets, red gram, green gram, black gram, 

groundnut, pea, field bean and wheat for the 

presence of small peptides having antimicrobial 

property 
128

.  Protein was extracted from seeds 

using both liquid nitrogen and phosphate buffer 

(PBS) treatments. Antimicrobial activity was 

performed against four clinically important 

microorganisms such as Staphylococcus aureus, 

Escherichia coli, Klebsiella pneumoniae and 

Pseudomonas aeruginosa. Protein extracts from 

germinated seeds of barley, soya, jowar, wheat and 

maize showed antimicrobial activity against both 

gram-positive and gram-negative bacteria. 

Cationic bioactive peptide “Hispidalin” was 

extracted from the seeds of Benincasa hispida. This 

peptide was 5.7 kDa (49 amino acid residues), 

basic and amphipathic 
129

. It does not comprise of 

any sulphur containing amino acid, which 

suggested that it does not have any secondary 

structure. Hispidalin was different from plant 

defensin and found 66% similarity towards peptide 

isolated form Aeromonas veronii, a gram-negative 

bacteria. Hispidalin showed antimicrobial activity 

against various bacterial and fungal pathogens. 

Total 273 antimicrobial peptides have been 

characterized as per the PhytAMP database 
130

. 

PhytAMP database is resource that encloses 

beneficial information (taxonomic, microbiological 

and physicochemical data) about plant 

antimicrobial peptides. This database comprises of 

271 entries, secreted by various plant families 

predominantly by Violaceae and Brassicaceae. Out 

of total entries, only 102 peptides (37.63%) were 

reported with 3-D structure. Only 39.5% of 

reported plants AMPs were certified for biological 

activities. Most of the AMPs showed antifungal 

(51%) activity as compared to antibacterial (33%) 

and antiviral (10%) activities. These findings show 

the significance for isolation and characterization 

of novel plant AMPs with potency against 

microorganisms. 

Indian plant biodiversity constitute 11.7% of the 

world flora, of which 28% plants are endemic and 

more than 6000 plant species (edible and non- 

edible) are known for their use in Indian System of 

Medicine 
131

. Despite this rich biodiversity, few 

reports are available on isolation and 

characterization of PAMPs from Indian 

subcontinent. 

CONCLUSION:  The studies carried out until date 

unlocks the possibility for the use of edible and 

non- edible parts of plant for the extraction of 

antimicrobial peptides, which may be suitable 

candidates in the treatment of various human 

diseases. Since the various members of PAMPs 

belonging to different families have multifarious 

mechanism of action as well as different target 

molecules in organism, they may be chosen, used 

or modified against specific pathogenic 

microorganism, insects and pests. AMPs offer a 

favourable alternative for treating infections in 

relation to traditional antibiotics based on their 

spectrum activity and efficiency. Small genes with 

conserved sequences encode AMPs therefore, gene 

amplification and transgenesis are one of the 

feasible ways to increase the production and 

enhance specific activity of selected peptides.  

Studying AMPs not only contributes to the 

evolution of new drugs by manufacturing analogs 

and by-products of natural antimicrobial peptides 

for medical purpose but also in genetic up-

gradation of plants by increasing resistance towards 

pathogens. Increasing the pathogenic resistance, 

leads to decrease in the prerequisite of enlarge 



Samriti et al., IJPSR, 2018; Vol. 9(1): 1-15.                                                   E-ISSN: 0975-8232; P-ISSN: 2320-5148 

International Journal of Pharmaceutical Sciences and Research                                                                                  11 

quantities of pesticide used in agriculture. 

Therefore, AMPs present newer eco-friendly 

blueprint for natural antibiotics, as therapeutic use 

in healthcare, as alternative to their chemical 

counterparts and safeguards plants against pests 

and pathogens.  
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