IJPSR (2018), Volume 9, Issue 4

(Review Article)

-

Received on 19 June, 2017; received in revised form, 25 August, 2017; accepted, 19 October, 2017; published 01 April, 2018

VARIOUS MEDICINAL PLANTS USED IN THE TREATMENT OF ANTICANCER ACTIVITY

Dilip Kumar Chanchal^{*1}, Shashi Alok¹, Surabhi Rashi², Rohit Kumar Bijauliya¹, Rahul Deo Yadav³ and Monika Sabharwal⁴

Department of Pharmacognosy ¹, Department of Pharmaceutics ², Institute of Pharmacy, Bundelkhand University, Jhansi - 284128, Uttar Pradesh, India.

Department of Pharmacy³, Moti Lal Nehru Medical College, Allahabad - 211001, Uttar Pradesh, India. Society of Pharmaceutical Sciences and Research⁴, Panchkula - 134112, Haryana, India.

Keywords:

Cancer, Medicinal plants, Description, Indian and foreign plants Correspondence to Author: Dilip Kumar Chanchal

Research Scholar, Department of Pharmacognosy, Institute of Pharmacy, Bundelkhand University, Jhansi - 284128, Uttar Pradesh, India.

E-mail: chanchaldilip014@gmail.com

ABSTRACT: Cancer is a major public health burden in both developed and developing countries. It is actually a group of many related diseases that all have to do with cells. It is one of the major causes of death worldwide where the number of cancer patients is in continuous rise. It is a major public problem whose estimated worldwide new incidence is about 6 million cases per year. It is the second major cause of deaths after cardiovascular diseases. There is a constant demand for new therapies to treat and prevent this lifethreatening disease. The plant kingdom produces naturally occurring secondary metabolites which are being investigated for their anticancer activities leading to the development of new clinical drugs. Worldwide effects are ongoing to identify new anticancer compounds from plants. In recent years owing to the fear of side effects people prefer more and more use of natural plant products for cancer. For these reasons, World Health Organization (WHO) supports the use of traditional medicines which are efficacious and non toxic. This review has tried to summarize few plants of India and out of India having anticancer activity.

INTRODUCTION: Our body is composed of many millions of tiny cells, each a self-contained living unit. Normal cells in the body grow and divide for a period of time and then stop growing and dividing. Thereafter, they only reproduce themselves as necessary to replace defective or dying cells. Cancer occurs when this cellular reproduction process goes out of control. The abnormal growth and division observed in cancer cells is caused by damage in these cells DNA (genetic material inside cells that determines cellular characteristics and functioning).

QUICK RESPONSE CODE		
	DOI: 10.13040/IJPSR.0975-8232.9(4).1424-29	
	Article can be accessed online on: www.ijpsr.com	
DOI link: http://dx.doi.org/10.13040/IJPSR.0975-8232.9(4).1424-29		

There are a variety of ways that cellular DNA can become damaged and defective. For example, environmental factors (such as exposure to tobacco smoke) can initiate a chain of events that results in cellular DNA defects that lead to cancer.

Alternatively, defective DNA can be inherited from your parents. As cancer cells divide and replicate themselves, they often form into a clump of cancer cells known as a tumour. Tumour causes many of the symptoms of cancer by pressuring, crushing and destroying surrounding non-cancerous cells and tissues¹. Treatment options, which depend on the stage and type of cancer, include: Surgery, Radiation therapy, Chemotherapy, Biological therapy, Hormone therapy *etc*. Despite substantial improvements in the current treatments that are available for patients diagnosed with cancer and the positive influence of these treatments on survival,

chemotherapy or radiation therapy cause an array of traumatic side effects, chemotherapy can sometimes cause unpleasant side effect like such as fatigue, sleep disturbance, appetite loss, hair loss, sore mouth, changes in taste, fever and infection, anxiety, depression, nausea, and vomiting. These side effects are often difficult to ameliorate or manage, and can significantly impair a cancer patient's quality of life (QOL). There are also chances of other harmful effects of these treatment viz. second cancers after chemotherapy, hormonal and reproductive problems, effects on the immunologic system, heart disease, effects on kidney and urinary bladder, effects on gastrointestinal organs, neurologic and psychological changes etc.^{2,3}.

In recent years there has been a gradual revival of interest in the use of medicinal plants in the developing countries because herbal medicine have been reported safe and less or without any adverse effect especially when compared with synthetic drugs. Herbal medicines represent one of the most important fields of traditional medicines all over the world, to promote the use of herbal medicine and to determine their potential as a source of new drugs. It is essential to study medicinal plants which have folklore reputation in a more intensified way. Human beings have used the plants for medicinal purposes for centuries of the world including countries in the Indian sub-continent like India, Pakistan and Bangladesh⁴.

The effort to find anticancer agents from higher plants was launched by the US National Cancer institute (NCI) in 1957. Today many of the most useful and curative anticancer drugs are derived from natural products. Since the initiation of program by NCI more than 35,000 plant species had investigated and resulted in the discovery of anticancer drugs such as Vincristine, Vinblastine, Taxol, Indicine - N - oxide, Etoposide analogs, Camptothecin and analogs *etc*.

India is the largest producer of medicinal plants and is rightly called the "Botanical garden of the World". The medicinal plants, besides having natural therapeutic values against various diseases, also provide high quality of food and raw materials for livelihood. Considerable works have been done on these plants to treat cancer, and some plant products have been marketed as anticancer drugs, based on the traditional uses and scientific reports. Medicinal plants have been stated ⁵ to comprise about 8000 species and account for approximately 50% of all the higher flowering plant species of India.

In other words, there are about 400 families of the flowering plants; at least 315 are represented by India. Medicinal properties of few such plants have been reported but a good number of plants still used by local folklore are yet to be explored. The Western use of such information has also come under increasing scrutiny and the national and indigenous rights on these resources have become acknowledged by most academic and industrial researchers. According to the World Health Organization (WHO), about three quarters of the world's population currently use herbs and other forms of traditional medicines to treat diseases. There are at least 250,000 species of plants out of which more than one thousand plants have been found to possess significant anticancer properties⁶.

Advantages of Herbal Drugs over Allopathic Drugs: Medicinal plants still play a central role in the healthcare system of large proportions of the world's population. Recognition and development of the medicinal and economic benefits of plants are on the increase in both developing and industrialized nations. An herb (also called a botanical) is a plant or plant part used for its scent, flavor, and / or therapeutic properties. Products made from botanicals that are used to maintain or improve health have been called herbal supplements, botanicals, or phytomedicines. The pharmacological treatment of disease began long ago with the use of herbal medicines are "crude drugs of vegetable origin utilized for the treatment of disease states, often of a chronic nature, or to attain or maintain a condition of improved health".

It has been estimated that these medicines derived from plants constitute about 25 percent in modern pharmacopoeia. Traditional herbal medicines are naturally occurring plant-derived substances with minimal or no industrial processing that have been used to treat illness within local or regional healing practices. Common reasons for use of herbal drugs include health promotion, disease prevention, poor outcomes and limited treatment options for a serious illness, exhaustion of conventional therapies, dissatisfaction with, or lack of efficacy of conventional therapies, significant side effects or risks associated with conventional medicine, belief that herbal and natural products are better or safer, preference for personal involvement in the decision making process, and cultural or spiritual preference. Whereas side effects of allopathic medications vary wildly from mild to severe and there are many. They include insomnia, vomiting, mouth, diarrhea, fatigue, dry constipation, dizziness, suicidal thoughts, hostility, depression,

mania, seizures, coma, anemia, hair loss, high blood sugar, shoplifting, swelling, impotency, panic attacks, confusion, fainting and death. It is often difficult for seniors to keep track of multiple medications which further increase likelihood of side effects due to allopathic medicines⁷.

Few types of plants species present are listed and detailed (active constituents, common names, part used, special character [if any]) below.

S. no.	1: PLANTS USED IN CANCE Botanical Names	Family	Active constituent
1	Allium sativum	Liliaceae	Alliin, allicin alliin, alliinase
2	Actinidia chinensis	Actinidiaceae	Polysaccharide known as "ACPS-R"
3	Aloe ferox, Aloe barbadenis	Liliaceae	Aloe-emodin, emodin, aloin
4	Ananas comosus	Bromeliaceae	Bromelain
5	Angelica sinensis	Umbelliferae	Polysaccharide fraction "AR-4"
6	Annona species	Annonaceae	Acetogenins
7	Arctium lappa,	Compositae	Potent anticancer factors
8	Astragalus membranaceus	Papilionaceae	Swainsonine
9	Agapanthus africanus	Agapanthaceae	Isoliquiritigenin
10	Aglaila sylvestre	Meliaceae	Silvesterol
11	Betula utilis	Betulaceae	Betulin
12	Camellia sinensis	Theaceae	Epigallocatechin gallate
13	Catharanthus roseus	Apocynaceae	Vinblastine, Vincristine
14	Hedyotis diffusa	Oocystaceae	Lysine
15	Colchicum luteum	Liliaceae	Colchicines demecolcine
16	Combretum caffrum	Combritaceae	Combretastatin
17	Corcus sativus	Iridaceae	Safranal, Crocetin, Crocin
18	Echinacea angustifolia	Asteraceae	Arabinogalactan
19	Fagopyrum esculentum,	Polygonaceae	Amygdalin, Rutin
20	Ginkgo biloba	Ginkoaceae	Ginkgolide-B, A, C and J
21	Glycine max	Leguminosae	Zinc, selenium, Vitamins (A, B1, B2, B12, C, D, E and K)
22	Glycyrrhiza glabra	Leguminosae	Glycyrrhizin
23	Gossypium barbadense	Malvaceae	Gossypol
24	Gyrophora esculenta	Umbilicariaceae	Polysaccharides β -glucans, α -glucans,
25	Lentinus edodes	Agaricaceae	Lentinan
26	Linum usitatissimum	Linaceae	Cynogenetic glycosides, Lignans
27	Mentha species	Labiateae	Monoterpene ketones
28	Ochrosia elliptica	Apocynaceae	Ellipticine and 9-methoxy ellipticine
29	Panax ginseng	Aralaceae	Ginsenosides, Panaxosides
30	Picrorrhizia kurroa	Scrophulariaceae	Picrosides I, II, III and kutkoside
31	Podophyllum hexandrum	Berberidaceae	Podophyllin,astragalin
32	Taxus brevifolia	Taxaceae	Taxanes, taxol cepholomannine
33	Withania somnifera	Solanaceae	Withanolides, Withaferin
34	Zingiber officinale	Zingiberaceae	Curcumin, gingerenone A, Gingeols, shogaols, zingerone
35	Colchicum autumnale	Liliaceae	Colchicine
36	Betula alba		Betulinic Acid
37	Camptotheca acuminate	Cornaceae	Camptothecia, Topotecan, CPT-11, 9-Aminocamptothecin
38	Taxus baccata	Taxaceae	Docetaxel, Taxol
39	Cannabis sativa		Delta-9-Tetrahydrocannabinol
40	Tabebuia impetiginosa, T. avellanedae	Cannabaceae	Beta-Lapachone, Lapachol
41	Podophyllum peltatum	Berberidaceae	Podophyllotoxin, Etoposide, Podophyllinic Acid, and Teniposide
42	Nothapodytes foetida	Icacinaceae	Acetylcamptothecin,

TABLE 1. DI ANTS LISED	IN CANCER TREATMENT ⁸⁻³⁴
TABLE I: PLANIS USED	IN CANCER TREATMENT

International Journal of Pharmaceutical Sciences and Research

			Camptothecin, Scopolectin
43	Heracleum persicum	Apiaceae	
44	Gmelina asiatica	Verbenaceae	-
45	Adiantum venusutum	Adiantaceae	-
46	Anemopsis californica	Saururaceae	cymene, limonene, piperitone and thymol
47	Alangium salviifolium	Alangiaceae	quercitin, kaemferol
48	Acorus calamus	Araceae	 β-asarone (46.78%), linalool (0.41), farnesol (11.09%), methyleugenol (6.10%), α- and β-pinene (both 0.06%), [E]-caryophyllene (0.11%), β-elemene (0.39%), ocimene (0.7%), aromadendrene (0.26%), camphor (0.03%)
49	Aspidosperma tomentosum	Apocynaceae	-
50	Antiaris Africana	Moraceae	betulinic acid, 3β-acetoxy-1β,11α-dihydroxy-olean-12-ene, ursolic acid, oleanolic acid, strophanthidol, periplogenin, convallatoxin, strophanthidinic acid, methyl strophanthinate, and 3, 39-dimethoxy-49-O-β-d- xylopyronosyl ellagic acid
51	Amoora rohituka	Meliaceae	-
52	Aegle marmelos	Rutaceae	Butylp-tolyl sulfide, 6-methyl-4-chromanone and 5- methoxypsoralen
53	Hibiscus mutabilis	Malvaceae	-
54	Arnebia nobilis	Boraginaceae	Arnebin
55	Aesculus hippocastanum	Sapindaceae	β-escin
56	Biophytum sensitivum	Oxalidaceae	Amentoflavone, Isoorientin, Orientin, vitexin, epicatechin, 1, 2 dimethoxy benzene, linalool oxide, linalyl, acetate, isophorone
57	Cuscuta reflexa	Convolvulaceae	Kaempferol, uercitin, hydroxycinnamic acid, scoparone, melanettin, quercetin, hyperoside, cuscutalin, iso- rhamnetin-3-0-neohesperidoside, apigenin-7-0-rutinoside, lycopene, amarbelin
58	Caesalpinia bonducella	Caesalpiniaceae	Bonducin, Caesanol1, 6ß, 7ß dibenoyloxyvoiacapen-5-a-ol, Bonducellpins A, B, C, D
59	Cassia fistula, Cassia tora, Cassia absus , Cassia auriculata , Cassia senna	Fabaceae	Anthraqquinone, fistullic acid, rhein glucoside, phlobaphenes, emodin, chrysophanic acid, fistuacacidin, hexacosanol, obtusin, chryso-obtusin, obtusifolin, ononitol monohydrate, rubrofusarine, rubrofusarine triglucoside, non rubrofusarin gentiobioside ,panwar gum, chaksine, isochaksine, hydnocarpin, apigenin, raffinose, di-(2-ethyl) hexyl phthalate, sennoside A,B,C,D, palmidin A, rhein , aleo-emodin, myricyl alcohol, salicvlic acid, barbaloin
60	Cleome gynandra	Capparidaceae	Centaureidin, myricitin, taraxasterol, capric acid, lauric acid, glucocapparin, hexacosanol, viscosic acid, viscosin, glucoiberine, neoglucobrassicin, glucobrassicin
61	Centella asiatica	Apiaceae	Asiatic acid, madecassic acid, asiaticoside, asiatoside, madicassoside, brahminoside, brahmoside, centelloside
62	Cola nitida	Malvaceae	1,3,7-trimethyl-1H-purine-2,6(3H,7H)-dione, n- Hexadecanoic acid
63	Cirsium japonicum	Asteraceae	Cireneol G, ciryneol H, ciryneol C, p-coumaric acid, syringing, linarin, ciryneone F, ciryneol A
64	Citrus medica	Rutaceae	Methyl ferulic acid,dihydro-N-caffeoyltyramine, acacetin, β-ecdysterone, (-)-balanophonin, p-methoxy cinammic acid, umbelliferone, ferulic acid, diosmetin, 4-methoxy salicylic acid
65	Cissus quadrangularis	Vitaceae	Iridoids, stilbenes
66	Clerodendrum serratum , Clerodendrum viscosum	Verbanaceae	Hispidulin, cleroflavone, apigenin, scutellarein, serratagenic, acteoside, verbascoside, clerodermic acid, clerodolone, clerodone, clerosterol
67	Crinum asiaticum	Amaryllidaceae	Criasiaticidine A, lycorine, pratorimine, crinamine, hippadine, hamayane, plaforinine, norgalanthamine, epinorgalanthamine
68	Daucus carota	Apiaceae	Carotene, carotin

69	Embelia ribes	Myrsinaceae	Embelin, christembine
70	Jatropha curcas	Euphorbiaceae	5a-stigmastane-3,6-dione, nobiletin, ß-sitosterol, taraxerol,
			jatropholone, jatropholone B, caniojane, daucosterol
71	Kaempferia galangal ,	Zingiberaceae	Et-p-MeO-trans-cinnamate, crotepoxide
	Kaempferia rotunda		
72	Lanata camara	Verbanaceae	Valecene, isocarypohyllene, bicyclogermacrene,
			germacrene D
73	Lens culinaris medikus	Fabaceae	-
74	Limonia acidissima	Rutaceae	Bergapten, orientin, vitedin, marmin, feronolide, feronone,
			feronialactone, geranyl umbelliferone, marmesin, ursolic,
			flavanone glycoside-7-O-methylporiol-4'- ß-xylopyranosyl-
			D-glucopyranoside
75	Macrotyloma uniflorum	Fabaceae	Psoralidin, agglutinin, pyroglutamylglutamine
76	Mimosa pudica	Mimosaceae	Mimosine, 2-mercaptoaniline
77	Nicotiana tabacum	Solanaceae	Rutin, chlorogenic acid, glutamic acid, anabasine,
			myosmine, cotinine, tabacinine, tabacine, anthalin,
			nicotelline, nicotianine
78	Rhinacanthus nasuta	Acanthaceae	Rhinacanthin, rhinacanthin-C, rhinacanthin-D.
79	Zanthoxylum armatum	Rutaceae	a-amyrin, armatonaphthyl arabinoside, 1-linoleo-2,3-diolein
80	Xanthium strumarium	Compositae	Spathulenol, a-cadinol, a-muurolene, copaene
81	Salvadora persica	Salvadoraceae	Salvadoricine, salvaoside, salvadoraside, manisic acid,
	1		salvadourea [1,3-bis(3-methoxy-benzyl)-urea]
82	Symplocus cochinchinensis	Symplocaceae	Phloretin-2-glucoside
83	Vernonia cinerea	Asteraceae	Luteolin-7mono-beta-D-glucopyranoside, lupeol acetate
84	Vitex trifolia	Verbanaceae	Artemetin, 7-desmethyl emetin, sabinene, a-pinene,
			caryophyllene, vitricin
85	Solanum nigrum	Solanaceae	Diosgenin
86	Tinospora cardifolia	Menispermaceae	COlumbin, tinosporaside, jatrorhizine, tembeterine,
00	1 moop of a can algoria	niemspermaeeae	tinocordifolioside, tinosporic acid, tinosporal, tinosporon
87	Momordica dioica	Cucurbitaceae	Momordicin, momodicaursenol, gypsogenin
88	Cynodon dactylon	Poaceae	Ortho hydroxyphenyl acetic acid, syringic acxid, para
00	Cynodon ddelyion	Touccuc	coumaric acid
89	Drosera indica	Droseraceae	Rossoliside, hyperoside
90	Barleria grandiflora	Acanthacae	Iridoids, acetylbarlerin, scutellarein-7-rhamnosyl.
91	Terminalia chebula	Combretaceae	Arjunglucoside I, arjungenin, chebulosides I and II,
71	1 CI minana Chebuta	combretaceae	chebulin, 2,4-chebulyl-ß-D-glucopyranose, chebulinic acid,
			chebulic acid, terchebin
92	Cucurbita maxima	Cucurbitaceae	Cucurbitacin, cucurbitin, pheophytin A, niacin, thiamine
14	Cucurona maxima	Cucuronaceae	Cucuroracin, cucuroran, pheophythi A, machi, analine

CONCLUSION: Cancer is an abnormal malignant growth of body tissue or cell. A cancerous growth is called a malignant tumour or malignancy. A noncancerous growth is called benign tumour. The process of cancer metastasis is consisting of series of sequential interrelated steps, each of which is rate limiting. There are many traditional systems of medicine in the world, each with different associated philosophies and cultural origins.

Some of these, such as Tibetan traditional medicine, remain relatively localised in their country of origin; while others such as Ayurvedic and Chinese traditional medicines are increasingly used in many different areas of the world. Plants are loaded with chemical with chemo protective activities of some of them are undergoing clinical trial. Inhibition of angiogenesis is a novel process of cancer therapy. The selected and careful use of this plant may definitely in antiangiogenic therapy and thus in cancer management. Plant derived anticancer agents are effective inhibitors of cancer cells lines, making them in high demand. Exploitation of these agents needs to be managed to keep up with demands and be sustainable. A list has been tried to be created which can give idea of a huge variety of species of plants of the world which are commonly used or are under investigation for the effectiveness as anticancer.

ACKNOWLEDGEMENT: The authors thank Dr. Shashi Alok and Mrs. Monika Sabharwal for his valuable suggestion during the work.

CONFLICT OF INTEREST: We declare that we have no conflict of interest.

REFERENCES:

- 1. American Cancer Society: Cancer facts and figures, Atlanta: American Cancer Society 2010.
- 2. Boivin JF: Second cancers and other late side effects of cancer treatment. Cancer 1990; 65(S3): 770-775.
- 3. Yates JS, Mustian KM, Morrow GR, Gillies LJ, Padmanaban D, Atkins JN, Issell B, Kirshner JJ and Colman LK: Prevalence of complementary and alternative medicine use in cancer patients during treatment, support care cancer 2005; 13(10): 806-811.
- Said O, Khalil K, Fulder S and Azaieh H: Ethnopharmacological survey of medicinal herbs in Israel, the Golan Heights and the west bank, J. Eth. Pharmaco 2002; 83: 251-265.
- Gupta AK and Tandon N: Reviews on Indian medicinal plants. Indian Council of Medicinal Research, New Delhi 2004; 2.
- 6. Umadevi M, Kumar SKP, Bhowmik D and Duraivel S: Traditionally used anticancer herbs in India, J. Medicinal Plants Studies 2013; 1(3): 56-74.
- Sri PU, Sree NV, Revathi S, Kumar YUVA and Sri ND: Role of herbal medicines in cancer, Int. J. Pharm. Sci. Res 2010; 1(11): 7-21.
- 8. Lau BHS, Tadi PP and Tosk JM: *Allium sativum* (garlic) and cancer prevention. Nutr Res 1990; 10: 937-48.
- 9. Steinmetz KA, Kushi LH, Bostick RM, Folsom AR and Potter JD: Vegetable, fruit, and colon cancer in the Iowa women's health study. Am J Epidemiol 1994; 139: 1-15.
- Pecere T, Gazzola MV and Micignat C: Aloe-emodin is a new type of anticancer agent with selective activity against neuro-ectodermal tumors. Cancer Res 2000; 60: 2800-2804.
- 11. The effect of aloe-emodin on the proliferation of a new merkel carcinoma cell line. The American Journal of Dermatopathology 2002; 24(1): 17-22.
- 12. The wealth of India: A dictionary of Indian raw materials and industrial products 1985; I(A-B): 75.
- The wealth of India: A dictionary of Indian raw materials and industrial products 1985; I(AB): 79.
- 14. The wealth of India: A dictionary of Indian raw materials and industrial products 1985; I(AB): 80.
- The wealth of India: A dictionary of Indian raw materials and industrial products 1985; I(AB): 109.
- 16. Wang J, Ito H and Shimura K: Enhancing effect of antitumor polysaccharide from *Astralagus* or *Radix hedysarum* on C3 cleavage production of macrophages in mice. Department of Pharmacology, Mie University School of Medicine, Japan. Mem Inst Oswaldo Cruz 1991; 86(2): 159-164.
- 17. The wealth of India: A dictionary of Indian raw materials and industrial products 1985; I(AB): 185.
- Dreosti IE: Bioactive ingredients: antioxidants and polyphenols in tea. Nutr Rev 1996; 54: S51-8.

- Kim M, Hagiwara N, Smith SJ, Yamamoto T, Yamane T and Takahashi T: Preventive effect of green tea polyphenols on colon carcinogenesis. In: Huang MT, Osawa T, Ho CT, Rosen RT, eds. Food phytochemicals for cancer prevention II. Teas, spices and herbs. Washington, DC: American Chemical Society 1994; 51-5.
- Lea MA, Xiao Q, Sadhukhan AK, Cottle S, Wang, ZY and Yang CS: Inhibitory effects of tea extracts and (-)epigallocatechin gallate on DNA synthesis and proliferation of hepatoma and erythroleukemia cells. Cancer Lett 1993; 68: 231-6.
- 21. Kleijnen J and Knipschild P: *Gingko biloba* for cerebral insufficiency. Br J Clin Pharmacol 1992; 34: 352-8.
- 22. Ambasta SP: The useful plant of India, Fourth Edition, National Institution of Sci. Communication, Delhi 2000; 239.
- Ambasta SP: The useful plant of India, Fourth Edition, National Institution of Sci. Communication, Delhi 2000; 243.
- Ladanyi A, Timar J and Lapis K: Effect of lentinan on macrophage cytotoxicity against metastatic tumor cells. Cancer Immunol Immunother 1993; 36: 123-6.
- 25. Shiitake MT and Edodes L: Functional properties for medicinal and food purposes. Food Rev Int 1995; 111-28.
- Mizuno T, Saito H, Nishitoba T and Kawagishi H: Antitumoractive substances from mushrooms. Food Rev Int 1995; 11: 23-61.
- 27. Mizuno T: Bioactive biomolecules of mushrooms: food function and medicinal effect of mushroom fungi. Food Rev Int 1995; 11: 7-21.
- Yun TK: Experimental and epidemiological evidence of the cancer-preventive effects of Panax ginseng C.A. Meyer. Nutr Rev 1996; 54: S71-81.
- 29. Yun T and Choi SY: A case-control study of ginseng intake and cancer. Int J Epidemiol 1990; 19: 871-6.
- Yun TK and Choi SY: Preventive effect of ginseng intake against various human cancers: a casecontrol study on 1987 pairs. Cancer Epidemiol Biomarkers Prev 1995; 4: 401-8.
- Jeena KJ, Joy KL and Kuttan R: Effect of *Emblica* officinalis, *Phyllanthus amarus* and *Picrorrhiza* [sic] kurroa on Nnitrosodiethylamine induced hepatocardinogenesis Cancer Lett 1999; 136: 11-6.
- 32. Antitumor, radio sensitizing effects of *Withania somnifera* (Ashwagandha) on a transplantable mouse tumor, Sarcoma-180. In Indian J Exp Biol. 1993; 31(7): 607-11.
- Devi PU: Withania somnifera Dunal (Ashwagandha): potential plant source of a promising drug for cancer chemotherapy and radio sensitization. Indian J Exp Biol. 1996; 34: 927-932.
- Katiyar SK, Agarwal R and Mukhtar H: Inhibition of tumor promotion in sencar mouse skin by ethanol extract of *Zingiber officinale* rhizome. Cancer Res 1961; 56(5): 1023-30.

How to cite this article:

Chanchal DK, Alok S, Rashi S, Bijauliya RK, Yadav RD and Sabharwal M: Various medicinal plants used in the treatment of anticancer activity. Int J Pharm Sci & Res 2018; 9(4): 1424-29. doi: 10.13040/IJPSR.0975-8232.9(4).1424-29.

All © 2013 are reserved by International Journal of Pharmaceutical Sciences and Research. This Journal licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

This article can be downloaded to ANDROID OS based mobile. Scan QR Code using Code/Bar Scanner from your mobile. (Scanners are available on Google Playstore)