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ABSTRACT: Selecting the best possible design is an uphill task considering a 

lot of criteria which must be scrutinized while choosing any design out of many 

alternative design options available. The experimental design is often compared 

and selected based on alphabetical design optimality criteria, like A, D, G or V. 

Each of them attempts to summarize any one important characteristic of the 

selected design. G-optimality criteria favor those experimental designs which are 

having the smallest maximum prediction variance over the entire region of 

interest. It does not consider the distribution of the magnitude of the prediction 

variance throughout the region. Graphical methods like variance dispersion 

graph and the fraction of design space plots can be used to overcome this 

drawback. These graphical methods are explored extensively for comparing the 

quality of prediction throughout the design space. It serves as a useful tool to 

assess the prediction performance of the design and making a comparison 

between experimental designs. The fraction of the design space plot provides a 

comprehensive picture of the predictive quality of experimental design through 

the entire region of interest. Single curve provides detailed information of scaled 

prediction variance for an assumed model and specific design region for the 

selected design. Here Fraction of design space plots is adapted to evaluate 

designs for optimization of modified release tablets of hydrochlorothiazide to get 

desired in-vitro dissolution profile. Three response surface methodology designs 

are compared by applying this plot including Central Composite Circumscribed 

and Face centered design along with Box-Behnken design using Design expert 

software for modeling. 

INTRODUCTION: Hydrochlorothiazide (HCTZ) 

is available in the market for the treatment of 

cardiac ailments for more than half a century and is 

most commonly prescribed antihypertensive 

throughout the world 
1
.  
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Prescription pattern of HCTZ has been densely 

influenced by the eight reports of Joint national 

committee (JNC) for prevention, detection, 

evaluation, and treatment of high blood pressure for 

more than three decades.  

All these reports recommend HCTZ as first-line 

therapy with usual dose ranging from 12.5 to 50 mg 

per day in single or divided dose as recommended 
2
. The more recent JNC reports have recommended 

the use of low doses of thiazide and thiazide-like 

diuretics should be used as initial therapy in 

hypertensive patients 
3
.  
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Market volume of HCTZ immediate release (IR) 

tablets is almost 31 million US dollars. The market 

volume increases almost 20 folds which HCZ is 

given in combination with other antihypertensive 

drugs, which is near about 590 million US dollars. 

However, the molecule suffers the requirement of 

high dose ranging from 12.5 to 50 mg/day along 

with relatively shorter half-life of approximately 6 

hours (h) 
4
. Further, the existing dose does not 

cover the most risk zone for heart attacks which are 

last phase of sleep and early morning hours which 

is imperative to cut down the heart attack chances 
5
. 

The cardiovascular system follows a routine pattern 

having oscillatory nature and cardiovascular 

functions exhibit circadian changes. There is a 

further elevation of blood pressure and heart rate 

due to catecholamines, which shows peak when a 

person wakes up in morning 
6
. Imbalance between 

increased myocardial oxygen demand and 

decreased myocardial oxygen supply or sometimes 

both results in heart attack 
7
. 

There are several techniques to modify the release 

rate for any molecule. We have used hydrophilic 

based matrix technology to modify the release rate 

of HCTZ 
8
. In Hydrolytic matrix system drug is 

dispersed consistently throughout the hydrophilic 

matrix which decelerates drug release. In current 

research work, a blend of two matrix agent is used 

to achieve desired modified drug release pattern 
9
. 

OFAT (one factor at a time approach) is a 

traditional approach to drug development which is 

trial and error technique with a major flaw that it 

cannot access factor interactions, which must be 

anticipated in pharmaceutical process as it covers a 

small fraction of the total feasible factor space, 

leading to a satisfactory formulation rather than an 

optimal one 
10

. Regulatory agencies accentuate on 

Quality by Design (QbD) based approach for 

pharmaceutical development to build quality in the 

product. QbD can be defined as “systematic, 

scientific, risk-based, holistic and pro-active 

approach to pharmaceutical development that 

begins with predefined objective and emphasis on 

product and process understanding and process 

control” according to ICH Q8 (R2) quality 

guideline 
11

. There are two major steps of QbD 

based product development. The first step is an 

identification of quality target product profile 

(QTPP) which forms the basis of development.  

QTPP can be defined as “A prospective summary 

of the quality characteristics of a drug product that 

ideally will be achieved to ensure the desired 

quality, taking into account safety and efficacy of 

the drug” 
12

. The second step involves the 

identification of factors which may influence QTPP 
13

. These are called critical quality attributes of the 

product (CQAs). ICH Q8 R(2) quality guideline 

defines CQA as “a physical, chemical, biological, 

or microbiological property or characteristic that 

should be within an appropriate limit, range, or 

distribution to ensure the desired product quality 

which eminently depends on the critical material 

attributes (CMAs) of excipient used in product 

development along with critical process parameters 

(CPPs) during manufacturing” 
14

. Risk assessment 

(RA) is one of the decisive and critical elements of 

QbD. ICH Q9 quality guideline defines RA as “A 

systematic process of organizing information to 

support a risk decision to be made within a risk 

management process.” RA is followed by the 

establishment of design space by application of 

design of experiment (DoE). Design Space is a 

multidimensional region meeting with all the 

specifications of CQAs during shelf-life of the 

product with respect to CMAs and CPPs with high 

assurance 
15

. 

After identification of critical factors and response, 

the goal is to select an appropriate experimental 

design. During the planning of experiments, a 

researcher has a good sense of factors & range of 

values for those factors which are critical for 

further investigation along with tentative proposed 

model which can be able to fit. Variety of available 

designs is possible given these conditions. So, the 

researcher should strategically choose the best 

design from the available options given the 

particular priorities of the experiment. Some of the 

characteristics of good design include cost 

balancing, ability to access lack of fit, ability to 

estimate pure error, ability to adequately estimate 

all of the parameters in the model, ability to predict 

well in design space. All these good characteristics 

of the design are simultaneously not possible. Thus 

the selection of best-suited design involves 

prioritizing what is most important for a given 

situation 
16

.     

To compare experimental design, several measures 

for prediction of performance are available such as 
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G optimality criteria (G efficiency) and V optimal 

criteria (V average). The average prediction 

variance as a percentage of the maximum 

prediction variance is expressed as "G-efficiency”. 

Often, making design better for physical 

experiments comes at the expense of G-efficiency 
17

. The actual complexities of design prediction are 

not revealed by these single-valued criteria. The 

most common measure is the scaled prediction 

variance (SPV), which was emphasized by Box and 

Hunter (1957) 
18

. While making a prediction, the 

experimenter is not aware of the exact location 

where to predict in the design space. For a fixed-

sized design, best prediction at one location comes 

at the cost of poor estimation of the other location 

in design space. To get an excellent prediction, a 

stable scaled prediction value is desired over the 

whole region. Design performance on every part of 

the region interested should be considered. Thus it 

was established very early while comparing 

different designs single number criteria will not be 

enough 
19

.  

Several graphical methods were introduced in the 

literature to study a design‟s prediction variance 

property. These include counterplot, Variance 

dispersion graph (VDG) introduced by Jensen and 

Mayers in 1989 
20

, 3D variance dispersion graph by 

Goldfarb et al., in 2004 
21

, quantile plots proposed 

by Khuri et al., in 1996 
22

. Fractions of design 

space plots (FDS) were introduced by Zahran, 

Anderson-Cook, and Mayers to complement VDG 

in 2003. Spherical and cuboidal design spaces were 

considered showing a fraction of design space at or 

below a given scaled prediction value 
23

. FDS plot 

provides a cumulative scaled prediction value, the 

better the design will be. The flatter line represents 

the more stable scaled prediction value distribution 

for that design. Flatter curve implies the maximum 

and minimum scaled predicted values are closer 

together giving a more stable distribution of SPV. 

The FDS plot helps to summarize the range of 

scaled prediction values, the relative proportions of 

values throughout the design space. Information 

regarding the distribution of scaled prediction 

variance throughout the design region is provided 

by FDS plot. By comparing the FDS plot of 

different designs within a variety of cut off points 

form some measure of variance, a more 

comprehensive comparisons can be done for the 

entire design region 
24

. 

A response surface design is a set of advanced 

design of experiments techniques that help in better 

understanding and optimizing responses. Response 

surface design methodology is often used to refine 

models after important factors have been 

determined using screening designs or factorial 

designs; especially if we suspect curvature in the 

response surface. The difference between a 

response surface equation and the equation for a 

factorial design is the addition of the squared (or 

quadratic) terms that lets you model curvature in 

the response, making them useful for understanding 

or mapping a region of a response surface. 

Response surface equations model how changes in 

variables affect the response of interest. It is 

finding the levels of variables that optimize a 

response. Selecting the operating conditions to 

meet specifications. There are two main types of 

response surface designs i.e. central composite 

design and box-Behnken design.  

A Box-Wilson Central Composite Design (CCD), 

is the most commonly used response surface 

designed experiment and contains an embedded 

factorial or fractional factorial design with center 

points that are augmented with a group of 'star 

points' that allow estimation of curvature. CCD can 

fit a full quadratic model and are often used when 

the design plan calls for sequential experimentation 

because these designs can include information from 

a correctly planned factorial experiment. CCD can 

be used to estimate first efficiently- and second-

order terms and model a response variable with 

curvature by adding center and axial points to a 

previously-done factorial design. A CCD always 

contains twice as many star points as there are 

factors in the design.  

The star points represent new extreme values (low 

and high) for each factor in the design. These are of 

three types viz. Central composite design 

circumscribed (CCC), Central composite inscribed 

(CCI) and central composite design face-centered 

(CCF). CCC designs are the original form of the 

central composite design. The star points are at 

some distance alpha from the center based on the 

properties desired for the design and the number of 

factors in the design. The star points establish new 

extremes for the low and high settings for all 

factors.  
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These designs have circular, spherical, or 

hyperspherical symmetry and require 5 levels for 

each factor. Augmenting an existing factorial or 

resolution V fractional factorial design with star 

points can produce this design. For those situations 

in which the limits specified for factor settings are 

true limits, the CCI design uses the factor settings 

as the star points and creates a factorial or 

fractional factorial design within those limits (in 

other words, a CCI design is a scaled-down CCC 

design with each factor level of the CCC design 

divided by α to generate the CCI design). This 

design also requires 5 levels of each factor. In CCF 

design the star points are at the center of each face 

of the factorial space, so α = ± 1. This variety 

requires 3 levels of each factor. Augmenting an 

existing factorial or resolution V design with 

appropriate star points can also produce this design 
25

. A Box Behnken design (BBD) is a type of 

response surface design that is an independent 

quadratic design in that it does not contain an 

embedded factorial or fractional factorial design. In 

this design, the treatment combinations are at the 

midpoints of edges of the process space and at the 

center.  

These designs are rotatable (or near rotatable) and 

require 3 levels of each factor. The designs have 

limited capability for orthogonal blocking 

compared to the central composite designs. The 

geometry of this design suggests a sphere within 

the process space such that the surface of the 

sphere protrudes through each face with the surface 

of the sphere tangential to the midpoint of each 

edge of the space. These designs allow efficient 

estimation of the first- and second-order 

coefficients. Because BBD often have fewer design 

points, they can be less expensive to do than central 

composite designs with the same number of factors. 

However, because they do not have an embedded 

factorial design, they are not suited for sequential 

experiments.BBD can also prove useful if you 

know the safe operating zone for your process. 

CCD usually has axial points outside the "cube." 

These points may not be in the region of interest or 

maybe impossible to conduct because they are 

beyond safe operating limits. BBD does not have 

axial points, thus, you can be sure that all design 

points fall within your safe operating zone. BBD 

also ensure that all factors are not set at their high 

levels at the same time. 

During the research work for the development of 

modified-release tablet for HCTZ, QbD approach 

was utilized. QTTP was identified followed by the 

qualitative and quantitative risk assessment to 

determine CQA and linking of CMAs and CPPs to 

CQA. Three critical factors were identified and 

DoE technique was applied. 2
3
 A full factorial 

design was used to develop the formulation and 

determine the design space which provided the 

required dissolution profile.  

All this work was done in previous laboratory 

work. Since the determination of curvature is not 

possible using full factorial design; hence response 

surface methodology was incorporated to 

determine the presence or absence of curvature and 

optimization of the formulation. There are several 

response surface design available which can be 

used to optimize the formulation. Hence, graphical 

technique using FDS was studied in this work to 

determine which response surface design is most 

suited for optimization purpose. This research work 

will highlight the selection of best-suited response 

surface design using FDS technique for 

optimization of modified release tablets of HCTZ. 

MATERIAL AND METHODS: Design expert 

software (version 10) was used for plotting of all 

the graphs. As discussed earlier three response 

surface designs were selected viz. central composite 

design circumscribed (CCC), central composite 

design face-centered (CCF) and box-Behnken 

design (BBD). The fraction of design surface plots 

was plotted for all three designs by using design 

expert software and studied in detail. The FDS 

plots are plotted between scaled prediction values 

on abscissa and fraction of design space on 

ordinates that has prediction variance at or below 

the given value and makes comparisons between 

designs with a single curve. The FDS plots are 

constructed by random sampling of large numbers 

of design locations. Design expert for by default 

select 100,000 random points to calculate the 

standard error of predicting the mean.  

For any given point on the curve, what fraction of 

the total design space has values less than or equal 

to the pre-specified value can be extracted. The 

minimum and the maximum scaled prediction 

variance can be observed by looking at the two 

endpoints of the FDS plot.  
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Fig. 1 shows a fraction of the design space plot for 

central composite design circumscribed. Fig. 2 

shows a fraction of the design space plot for central 

composite design face-centered and Fig. 3 shows a 

fraction of the design space plot for box-Behnken 

design. 

 
 

 

  

 
 

Minimum, average and maximum SPV values were 

determined. A reference scaled prediction variance 

was selected from these SPV values and fraction of 

design space under that SPV value was determined. 

The software also predicted G-efficiency value for 

that particular model. A number of trials predicted 

by software for each design were kept constant to 

„16‟ to avoid any variation in prediction 

capabilities due to a large number of trials for any 

particular design. CCC and CCF designs have 2 

center points, and 14 non-center points whereas 

BBD has 4 center points and 12 non-center points. 

RESULTS: The X-axis in the plot represents the 

proportion of the design space, ranging from 0 to 

100%. The Y-axis represents the scaled prediction 

value. For a point (x, y) that falls on the black 

curve, the value x is the proportion of design space 

with variance less than or equal to y. From the 

average SPV of all the plots, SPV of 0.600 was 

selected to compare the fraction of the design 

space.  

Fig. 1: FDS plot for CCC design (quadratic model) 

show that the minimum scaled prediction variance 

is 0.528. The average relative prediction variance is 

0.569. The red and blue crosshairs indicate that the 

fraction of design space below 0.600 SPV which 

was found to be 88%. The flatter line represents the 

more stable scaled prediction value distribution for 

FIG. 2: FRACTION OF DESIGN SPACE PLOT FOR 

CENTRAL COMPOSITE DESIGN FACE CENTERED 

 

FIG. 3: FRACTION OF DESIGN SPACE PLOT FOR 

BOX BEHNKEN DESIGN 

FIG. 1:  FRACTION OF DESIGN SPACE PLOT FOR 

CENTRAL COMPOSITE DESIGN 

CIRCUMSCRIBED 
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that design. Flatter curve is observed in the center 

of design up to 90% of design space. SPV ranged 

from 0.528 to 0.606 implies the maximum and 

minimum scaled predicted values are closer 

together giving a more stable distribution of SPV. 

Values of SPV are slightly higher towards the edge 

making the design more desirable. Overall the 

design looks good. 

Fig. 2: FDS plot for CCF design (quadratic model) 

show that the minimum scaled prediction variance 

is 0.458. The average relative prediction variance is 

0.584. The red and blue crosshairs indicate that the 

fraction of design space below 0.600 SPV which 

was found to be 60%. Flatter curve is not observed 

for this design. Values of SPV are slightly higher 

towards the edge.  

Fig. 3: FDS plot for BBD design (quadratic model) 

shows that the minimum scaled prediction variance 

is 0.476. The average relative prediction variance is 

0.599. The red and blue crosshairs indicate that the 

fraction of design space below 0.600 SPV which 

was found to be 62%. Flatter curve is not observed 

for this design. Values of SPV are high towards the 

edge making the design less desirable. 

Initial comparison between CCD designs and BBD 

design was done for second-order model tabulated 

in Table 1. Further comparison of SPV & FDS for 

CCC, CCF and BBD designs for 2FI model is 

tabulated in Table 2. And the comparison of SPV 

& FDS for CCC, CCF and BBD designs for Liner 

model (First order model) is tabulated in Table 3. 

TABLE 1: COMPARISON OF SPV & FDS FOR CCC, CCF AND BBD DESIGNS FOR QUADRATIC MODEL 

Model Second order (quadratic model) 

Design CCC CCF BBD 
No of trials 16 16 16 

Center points 2 2 4 

Non center points 14 (8 factorial + 6 axial) 14 (8 factorial + 6 axial) 12 

Minimum SPV 0.528 0.458 0.476 

Average SPV 0.569 0.584 0.599 

Maximum SPV 0.859 0.892 1.173 

G-efficiency 84.7% 78.5% 45.5% 

D-optimality criteria 1.806 2.326 2.828 

FDS below 0.600 SPV 88% 60% 62% 
 

The quadratic model corresponds to the most 

complex model which might be needed to 

adequately model the data. There is a possibility of 

a few superfluous terms which are included in this 

quadratic model. After running the selected design, 

individual terms including main factors, two-way 

interactions, three-way interactions, and quadratic 

interactions can be tested and possibly dropped 

from the model if they are not enhancing the F-

value of the model. It is observed that after 

dropping insignificant terms from the model, the fit 

of the model is enhanced. The F-value of the model 

is increased, lack of fit values is decreased and the 

p-value is further reduced. Thus, the prediction 

power of the model is improved significantly. 

When a design performs consistently well for all 

nested models within the largest one specified, it 

fulfills the purpose of model robustness. Thus the 

comparison between CCD designs and BBD design 

was made for reduced models, also including 2FI 

model (First order model with interactions) and 

Linear model (First order model).  

TABLE 2: COMPARISON OF SPV & FDS FOR CCC, CCF AND BBD DESIGNS FOR 2FI MODEL 

Model 2FI model (first-order model with interaction) 

Design CCC CCF BBD 

No of trials 16 16 16 

Center points 2 2 4 

Non center points 14 (8 factorial + 6 axial) 14 (8 factorial + 6 axial) 12 

Minimum SPV 0.250 0.250 0.250 

Average SPV 0.436 0.451 0.520 
Maximum SPV 0.834 0.859 1.090 

G-efficiency 62.9% 59.3% 36.8% 

D-optimality criteria 1.542 1.646 2.438 

FDS below 0.600 SPV 95% 92% 77% 
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TABLE 3: COMPARISON OF SPV & FDS FOR CCC, CCF AND BBD DESIGNS FOR LINER MODEL (FIRST 

ORDER MODEL) 

Model Liner model (First order model) 

Design CCC CCF BBD 

No of trials 16 16 16 

Center points 2 2 4 

Non center points 14 (8 factorial + 6 axial) 14 (8 factorial + 6 axial) 12 

Minimum SPV 0.250 0.250 0.250 

Average SPV 0.385 0.403 0.433 

Maximum SPV 0.566 0.602 0.661 

G-efficiency 78.1% 69% 57.1% 
D-optimality criteria 1.269 1.432 1.682 

FDS below 0.450 SPV 87% 78% 61% 

 

DISCUSSION: For quadratic model, CCC design 

showed better prediction capabilities as compared 

to CCF and BBD where G-efficiency values were 

higher, D-optimality criteria were minimum and 

the fraction of design surface plot showed the 

larger fraction of design below selected scaled 

prediction variance. While comparing CCF and 

BBD model, the fraction of design below selected 

SPV is almost the same for both models but G-

efficiency value is more for CCF as compared to 

BBD, thus making it more desirable.  

For reduced model 2FI, G-efficiency value is 

reduced for all design as compared to the quadratic 

model, but the fraction of design space under the 

same SPV value is increased. Comparing three 

different models for 2FI, CCC showed better 

results for G-efficiency criteria, D-optimality 

criteria, and the fraction of design space as 

compared to the other two models. CCF performed 

better as compared to BBD. For reduced linear 

model CCC design proved better as compared to 

CCF and BBD with increased G-efficiency and the 

better fraction of design space below SPV of 0.450.  

CONCLUSION: Fraction of design space plots are 

easily implemented and enable the researcher to 

study the performance, prediction, and robustness 

of a different design. To decide the best design 

based FDS plot, the CCC design is best with a 

maximum fraction of design space, 88% for 

quadratic model and 95% for 2FI model for SPV of 

0.600 and 87% for the linear model for SPV of 

0.450 as compared to CCF and BBD. G-efficiency 

value also predicts the same results where value is 

maximum for CCC, 84.7% for the quadratic model, 

62.9% for 2FI model and 78.1% for the linear 

model as compared to CCF and BBD. Thus, CCC 

model will be used for the optimization of modified 

release tablets of hydrochlorothiazide to get desired 

in-vitro dissolution profile. 
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