#### IJPSR (2020), Volume 11, Issue 5





(Research Article)



Received on 02 July 2019; received in revised form, 09 October 2019; accepted, 08 February 2020; published 01 May 2020

#### QUANTIFICATION AND VALIDATION OF AMLODIPINE BESYLATE, OLMESARTAN MEDOXOMIL AND HYDROCHLOROTHIAZIDE BY RP-HPLC IN MARKETED DOSAGE FORM

Abhinandana Patchala<sup>\*1</sup> and Ramarao Nadendla<sup>2</sup>

Acharya Nagarjuna University<sup>1</sup>, Nagarjuna Nagar, Guntur - 522510, Andhra Pradesh, India. Chalapathi Institute of Pharmaceutical Sciences<sup>2</sup>, Lam, Guntur - 522034, Andhra Pradesh, India.

Keywords:

Amlodipine, Hydrochlorothiazide, Olmesartan medoxomil, RP-HPLC, Validation

# **Correspondence to Author:** Abhinandana Patchala

Research Scholar, Department of Pharmaceutical Analysis, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur -522510, Andhra Pradesh, India.

E-mail: abhi.pharma44@gmail.com

ABSTRACT: The endeavor of the present work is to develop a simple, economical, efficient, novel green analytical method for the estimation of Amlodipine besylate, Olmesartan medoxomil and Hydrochlorothiazide in pharmaceutical formulation. Quantification was carried out using an Inertsil CN-3.5 µm (4.6 ×250 mm) column, where the mobile phase consisting of 10 mm Phosphate buffer (pH 3.0) and Acetonitrile (40:60). The flow rate was 1.0 mL/min and the effluent was monitored at 262 nm. The observed linearity was in the range of 5-25 µg/ml for Amlodipine (AMLO), Hydrochlorothiazide (HCTZ) and Olmesartan medoxomil (OLME) with a correlation coefficient of 0.997, 0.999 and 0.999 respectively. The proposed method was validated as per ICH guidelines in terms of linearity, accuracy, precision, robustness, and specificity, the limit of detection and limit of quantification. The method has been applied to Amlodipine, Hydrochlorothiazide and Olmesartan formulation without the interference of excipients of the formulation.

### **INTRODUCTION:**

**Amlodipine Besylate:** Amlodipine Besylate (2-[(2-Aminoethoxy) methyl]- 4- (2-chlorophenyl)-1, 4dihydro-6-methyl-3, 5-pyridinedicarboxylic acid 3ethyl 5-methyl ester benzene sulfonate). Amlodipine is an L-type calcium channel blocker, which decreases the contraction of action and myosin fibers in the cardiac tissue by decreasing the supply of calcium ions. This results in a significant decrease in blood pressure <sup>1, 4-8</sup>. The chemical structure was shown in **Fig. 1**.



Formula: C<sub>26</sub>H<sub>31</sub>ClN<sub>2</sub>O<sub>8</sub>S

### **Chemical Structures of Drugs:**

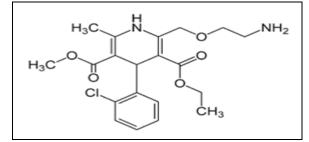



FIG. 1: CHEMICAL STRUCTURE OF AMLODIPINE BESYLATE

**Hydrochlorothiazide:** Hydrochlorothiazide (6chloro- 1, 1- dioxo- 3, 4- dihydro- 2H- 1, 2, 4benzothiadiazine-7-sulfonamide) is a thiazide-type diuretic, which causes an increased elimination of fluid in the urine, thereby decreasing the blood volume, resulting in a decrease in blood pressure <sup>2</sup>, <sup>4-8</sup>. The chemical structure was shown in **Fig. 2**.

Formula: C<sub>7</sub>H<sub>8</sub>C<sub>1</sub>N<sub>3</sub>O<sub>4</sub>S<sub>2</sub>

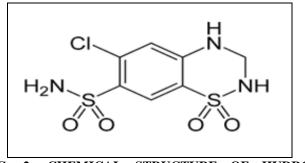



FIG. 2: CHEMICAL STRUCTURE OF HYDRO-CHLOROTHIAZIDE

**Olmesartan Medoxomil:** Olmesartan Medoxomil 5- methyl- 2- oxo- 1, 3- dioxol- 4- yl) methyl 5-(2- hydroxypropan- 2- yl) -2- propyl-3- [[4- [2- (2H-tetrazol- 5-yl)) phenyl]phenyl]methyl] imidazole-4- carboxylate is an Angiotensin-converting enzyme II inhibitor, which by inhibiting that receptor, breaks the Renin-Angiotensin system cycle that usually regulates (increases blood pressure based on mineral content in blood) blood pressure <sup>3-8</sup>. Thus, it inhibits an increase in blood pressure. The chemical structure was shown in **Fig. 3**.

Formula: C<sub>29</sub>H<sub>30</sub>N<sub>6</sub>O<sub>6</sub>

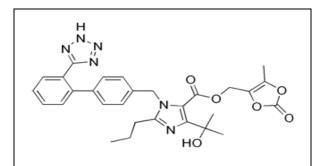



FIG. 3: CHEMICAL STRUCTURE OF OLMESARTAN MEDOXOMIL

### **MATERIALS AND METHODS:**

**Chemicals and Reagents:** <sup>9-10</sup> Aurobindo Pharma Pvt Ltd, Hyderabad, India kindly supplied the pure working standards of the known potency of AMLO, HCTZ and OLME as a gift sample. The marketed sample with the strength of OLME (20 mg), AMLO (5 mg) and HCTZ (12.5 mg) manufactured and marketed by Macleods Pharmaceuticals Ltd, purchased from the local Pharmacy. The reagents like Orthophosphoric Acid (OPA) of Hi-Media Laboratories Pvt. Ltd, Water, Acetonitrile, Triethylamine of Merk, Potassium dihydrogen phosphate of Thermo Fisher Scientific India Pvt. Ltd where used.

**Instrumentation:** The HPLC system (Agilent HPLC 1200 Infinity LC Specifications) consisted of a pump (Agilent LC20AT) programmed with Ezchrom Elite Software and rheodyne Injector was used. The detector consisted of a UV/VIS (UV-2489) model that was operated at a wavelength of 262 nm. The column used was Inertsil CN- 3 columns at ambient temperature <sup>11-15</sup>.

**Preparation of Standard Stock Solution:** Accurately weighed Olmesartan Medoxmil (20 mg), Amlodipine (5 Mg) And Hydrochlorothiazide (12.5 mg) were transferred to 100 ml volumetric flask and dissolved and diluted to the mark with methanol. The stock solution further diluted with methanol to obtain a solution of OLME (20  $\mu$ g/ml), AMLO (5  $\mu$ g/ml), and HCTZ (12.5  $\mu$ g/ml), respectively <sup>20-24</sup>.

**Optimization of HPLC Method:** <sup>16-19</sup> The HPLC procedure was optimized with a view to developing a simultaneous assay method for OLME, AMLO and HCTZ respectively.

The mixed standard stock solution (20  $\mu$ g/ml for OLME and 5  $\mu$ g/ml for AMLO and 12.5  $\mu$ g/ml for HCTZ) was injected. For HPLC method optimization of different ratios of methanol and water were tried but it was found that 10 mM Phosphate buffer (pH 3.0): Acetonitrile (40:60) adjusted with OPA gives acceptable retention time (Rt), plates and good resolution for OLME, AMLO, and HCTZ.

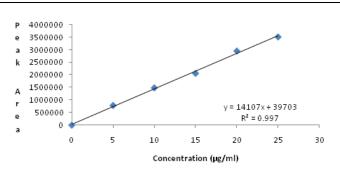
| TABLE 1: I | NSTRUMENTA | TION OF | HPLC |
|------------|------------|---------|------|
|------------|------------|---------|------|

| Specifications |                                  |  |  |  |
|----------------|----------------------------------|--|--|--|
| Software       | Ezchrom Elite                    |  |  |  |
| Column         | Inertsil CN-3.5µm (4.6 x 250 mm) |  |  |  |
| Pump           | Agilent LC20AT                   |  |  |  |
| Detector       | UV/VIS (UV-2489)                 |  |  |  |
| Injector       | Rheodyne                         |  |  |  |
| Temperature    | Ambient                          |  |  |  |

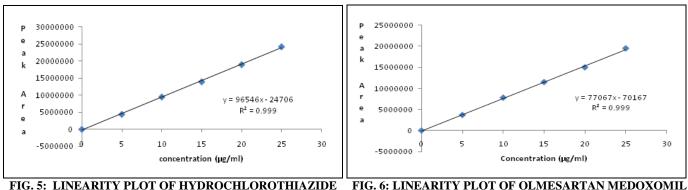
**Method Validation as per ICH:** <sup>4-5, 25</sup> After the development of the RP-HPLC method for the estimation of the drug in a dosage form, validation of the method was performed. This part describes the procedure followed for the validation of the developed method.

| TABLE 2:  | DETAILS | OF FORMULATION |
|-----------|---------|----------------|
| TIDDDD A. | DLIMBO  |                |

| Brand Name     | Manufactured By     | Concentration of<br>Olmesartan Medoxomil<br>(mg) | Concentration of<br>Amlodipine Besylate<br>(mg) | Concentration of<br>Hydrochlorothiazide<br>(mg) |
|----------------|---------------------|--------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| Tri Olmesar 20 | Macleods            | 20                                               | 5                                               | 12.5                                            |
|                | Pharmaceuticals Ltd |                                                  |                                                 |                                                 |


Linearity: A series of standard solutions (not less than 5 is recommended) were prepared in the range of 5 µg/ml- 25 µg/ml containing Amlodipine, Hydrochlorothiazide and Olmesartan standards and injected. A plot of average peak area versus the concentration in µg/ml or mg/ml is made and from

this the correlation coefficient, y-intercept (constant of regression) and slope (coefficient of regression) of the regression line were calculated. The calibration data of Amlodipine, Hydrochlorothiazide and Olmesartan is given in Table 3 and the calibration curve is shown in Fig. 4, 5 and 6.


| TABLE 3: TABLE OF | RESULTS OF | LINEARITY OF | F DETECTOR RESPONSE |
|-------------------|------------|--------------|---------------------|

| Standard |            | Area               |            |            | Mean Area           |            |
|----------|------------|--------------------|------------|------------|---------------------|------------|
| conc.    | Amlodipine | Hydrochlorthiazide | Olmesartan | Amlodipine | Hydrochlorothiazide | Olmesartan |
| (µg/ml)  | _          |                    |            | _          |                     | Medoxomil  |
| 10       | 787048     | 4398140            | 3686014    |            |                     |            |
|          | 787132     | 4398319            | 3686166    | 787090     | 4398229.5           | 3686090    |
| 20       | 1488335    | 9480590            | 7783039    |            |                     |            |
|          | 1488246    | 9480649            | 7783165    | 1488290.5  | 9480619.5           | 7783102    |
| 45       | 2065785    | 13932234           | 11477968   |            |                     |            |
|          | 2065891    | 13932378           | 11477863   | 2065838    | 13932306            | 11477915.5 |
| 80       | 2958656    | 18941459           | 14965826   |            |                     |            |
|          | 2958633    | 18941229           | 14965647   | 2958644.5  | 18941344            | 14965736.5 |
| 160      | 3519305    | 24174846           | 19466729   |            |                     |            |
|          | 3519210    | 24174766           | 19466738   | 3519257.5  | 24174806            | 19466733.5 |

Regression Amodipine = 0.997 Hydrochlorthiazide = 0.999 Olmesartan = 0.999









**Precision:** The precision of the test procedure was evaluated by injecting the six standard solutions. The relative standard deviation of six injections was calculated. The result of Precision studies is given in Table 4.

| S.  | Injection  | Peak area for | Peak area for       | Peak area for |
|-----|------------|---------------|---------------------|---------------|
| no. | Number     | Amlodipine    | Hydrochlorothiazide | Olmesartan    |
| 1   | Standard 1 | 2061785       | 13982634            | 11487359      |
| 2   | Standard 2 | 2066391       | 13993376            | 11477765      |
| 3   | Standard 3 | 2068990       | 13925439            | 11426629      |
| 4   | Standard 4 | 2063526       | 13926128            | 11399957      |
| 5   | Standard 5 | 2065891       | 13892034            | 11417556      |
| 6   | Standard 6 | 2057643       | 13932431            | 11458733      |
|     | Mean       | 2064037.67    | 13942007.00         | 11444666.50   |
|     | %RSD       | 0.18          | 0.25                | 0.28          |

TABLE 4: PRECISION FOR AMLODIPINE, HYDROCHLOROTHIAZIDE AND OLMESARTAN MEDOXOMIL

**Specificity:** Specificity is the ability of a method to discriminate between the analyte (s) of interest and other components that are present in the sample. A study of placebo interference from excipients was conducted. An equivalent weight of placebo taken as per the test method and placebo interference was conducted in duplicate.

Accuracy: To validate whether the test method can accurately quantify Amlodipine, Hydro-chlorothiazide, and Olmesartan, prepare samples in three times for higher and lower levels, in triplicate for other levels by spiking Amlodipine, Hydrochlorothiazide and Olmesartan active material with an equivalent amount of placebo and perform CU as per test procedure. Samples were prepared at levels 50%, 100% and 150% of the target assay concentration *i.e.* 50% of the lowest strength initial concentration to 150% of the highest strength initial concentration level. **Table 5** shows the results for the accuracy of Amlodipine, Hydrochlorothiazide and Olmesartan Medoxomil.

 TABLE 5: ACCURACY FOR AMLODIPINE, HYDROCHLOROTHIAZIDE AND OLMESARTAN

| mlo-  | Hvdrochlor                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                        |                                                                                                                                                                                                                                                                    |                                                        |
|-------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| * * a |                                                      | Olmesarta                                                                                                                                                                                                                  | Amlo-                                                                                                                                                                                                                                                                                                                                      | Hydrochl-                                                                                                                                                                                                                                                                                                                                                                                                                                          | Olmesarta                                              | Amlo-                                                  | Hydroch-                                                                                                                                                                                                                                                           | Olmesartan                                             |
| upine | othiazide                                            | n                                                                                                                                                                                                                          | dipine                                                                                                                                                                                                                                                                                                                                     | orothiazide                                                                                                                                                                                                                                                                                                                                                                                                                                        | n                                                      | dipine                                                 | lorothiazide                                                                                                                                                                                                                                                       |                                                        |
| 2.50  | 6.26                                                 | 10.29                                                                                                                                                                                                                      | 2.46                                                                                                                                                                                                                                                                                                                                       | 6.33                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.912                                                  | 98.40                                                  | 101.12                                                                                                                                                                                                                                                             | 96.32                                                  |
| 2.50  | 6.38                                                 | 10.25                                                                                                                                                                                                                      | 2.48                                                                                                                                                                                                                                                                                                                                       | 6.29                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.910                                                  | 99.20                                                  | 98.59                                                                                                                                                                                                                                                              | 96.68                                                  |
| 2.52  | 6.23                                                 | 10.22                                                                                                                                                                                                                      | 2.49                                                                                                                                                                                                                                                                                                                                       | 6.46                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.908                                                  | 98.81                                                  | 103.69                                                                                                                                                                                                                                                             | 96.95                                                  |
| 5.08  | 12.54                                                | 20.07                                                                                                                                                                                                                      | 4.88                                                                                                                                                                                                                                                                                                                                       | 12.47                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19.45                                                  | 96.06                                                  | 99.44                                                                                                                                                                                                                                                              | 96.91                                                  |
| 5.12  | 12.56                                                | 20.13                                                                                                                                                                                                                      | 4.98                                                                                                                                                                                                                                                                                                                                       | 12.79                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19.42                                                  | 97.26                                                  | 101.83                                                                                                                                                                                                                                                             | 96.47                                                  |
| 5.06  | 12.58                                                | 20.04                                                                                                                                                                                                                      | 4.76                                                                                                                                                                                                                                                                                                                                       | 12.29                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19.40                                                  | 97.07                                                  | 97.69                                                                                                                                                                                                                                                              | 96.81                                                  |
| 7.57  | 18.89                                                | 30.04                                                                                                                                                                                                                      | 7.39                                                                                                                                                                                                                                                                                                                                       | 18.79                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29.37                                                  | 97.62                                                  | 99.47                                                                                                                                                                                                                                                              | 97.78                                                  |
| 7.73  | 18.73                                                | 30.03                                                                                                                                                                                                                      | 7.68                                                                                                                                                                                                                                                                                                                                       | 18.83                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29.33                                                  | 99.35                                                  | 100.53                                                                                                                                                                                                                                                             | 97.67                                                  |
| 7.58  | 18.71                                                | 30.07                                                                                                                                                                                                                      | 7.47                                                                                                                                                                                                                                                                                                                                       | 18.66                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29.32                                                  | 98.55                                                  | 99.73                                                                                                                                                                                                                                                              | 97.51                                                  |
|       | 2.50<br>2.52<br>5.08<br>5.12<br>5.06<br>7.57<br>7.73 | 2.50         6.26           2.50         6.38           2.52         6.23           5.08         12.54           5.12         12.56           5.06         12.58           7.57         18.89           7.73         18.73 | 2.50         6.26         10.29           2.50         6.38         10.25           2.52         6.23         10.22           5.08         12.54         20.07           5.12         12.56         20.13           5.06         12.58         20.04           7.57         18.89         30.04           7.73         18.73         30.03 | 2.50         6.26         10.29         2.46           2.50         6.38         10.25         2.48           2.52         6.23         10.22         2.49           5.08         12.54         20.07         4.88           5.12         12.56         20.13         4.98           5.06         12.58         20.04         4.76           7.57         18.89         30.04         7.39           7.73         18.73         30.03         7.68 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 2.506.2610.292.466.339.91298.402.506.3810.252.486.299.91099.202.526.2310.222.496.469.90898.815.0812.5420.074.8812.4719.4596.065.1212.5620.134.9812.7919.4297.265.0612.5820.044.7612.2919.4097.077.5718.8930.047.3918.7929.3797.627.7318.7330.037.6818.8329.3399.35 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

**Assay:** The amounts OLME, AMLO and HCTZ per tablet were calculated by extrapolating the value of area from the calibration curve. The

analysis procedure was repeated six times with tablet formulation. The result formulation was reported in **Table 6**.

 TABLE 6: RESULTS OF %ASSAY OF AMLODIPINE, HYDROCHLOROTHIAZIDE AND OLMESARTAN

 MEDOXOMIL

| Name                 | As       | At       | Wt. equivalent taken (mg) | % Assay |
|----------------------|----------|----------|---------------------------|---------|
| Amlodipine           | 787048   | 787012   | 5.0                       | 99.495  |
| Hydrochlorthiazide   | 11706412 | 11706368 | 12.5                      | 98.402  |
| Olmesartan Medoxomil | 14965826 | 14965799 | 20                        | 96.499  |

## Summary: 4, 5

#### TABLE 7: SUMMARY OF VALIDATION PARAMETERS BY HPLC METHOD

| Validation  | Parameters              | Amlodipine | Hydrochlorothiazide | Olmesartan Medoxomil |
|-------------|-------------------------|------------|---------------------|----------------------|
| System      | Tailing factor          | 1.16       | 1.10                | 1.08                 |
| suitability | % RSD                   | 0.59       | 0.39                | 0.29                 |
|             | Theoretical plates      | 7954       | 10346               | 9610                 |
|             | Resolution              | N.A        | 5.55                | 5.44                 |
| Linearity   | Correlation coefficient | 0.997      | 0.999               | 0.999                |
|             | Slope                   | 14107      | 96546               | 77067                |

International Journal of Pharmaceutical Sciences and Research

E-ISSN: 0975-8232; P-ISSN: 2320-5148

| Precision   | % RSD                        | 0.18                   | 0.25                            | 0.28                               |
|-------------|------------------------------|------------------------|---------------------------------|------------------------------------|
| Accuracy    | Mean % recovery for 50,      | 98.80                  | 102.80                          | 96.65                              |
|             | 100, 150% respectively       | 96.80                  | 99.65                           | 96.73                              |
|             |                              | 98.50                  | 99.91                           | 97.65                              |
| Specificity | Interference                 | No interference        | No interference                 | No interference                    |
| Robustness  | Flow rate by $\pm 10\%$      |                        |                                 |                                    |
|             | Column Oven                  |                        |                                 |                                    |
|             | temperature by $\pm$ 5 °C    | All the All the system | suitability parameters are with | hin the limit for all the variable |
|             | pH of Buffer solution by     |                        | parameters, for all the three   | e drugs                            |
|             | $\pm 0.2$ units              |                        |                                 |                                    |
|             | Wavelength of analysis $\pm$ |                        |                                 |                                    |
|             | 5 nm                         |                        |                                 |                                    |
|             | Organic composition of       |                        |                                 |                                    |
|             | mobile phase by $\pm 5\%$    |                        |                                 |                                    |
| LOD         | Standard deviation           | 0.85 µg/ml             | 1.20 μg/ml                      | 1.37 μg/ml                         |
| LOQ         | method                       | 2.58 µg/ml             | 3.64 µg/ml                      | 4.16 µg/ml                         |

**CONCLUSION:** HPLC method was developed and validated as per ICH guidelines. It can be concluded that the method is specific for the estimation of OLME, AMLO, and HCTZ in the pharmaceutical dosage form. The method has a linear response in a stated range and is accurate and precise.

Statistical analysis proves that the method is suitable for the analysis of OLME, AMLO, and HCTZ as bulk drug and in the pharmaceutical formulation without any interference from the excipients <sup>26-39</sup>.

**ACKNOWLEDGEMENT:** This research was supported by the research lab of Chalapathi institute of pharmaceutical sciences affiliated to Acharya Nagarjuna University which has given an opportunity to prove my research knowledge by providing all the sources I need.

I would like to show my gratitude to Prof. Rama Rao Nadendla, Principal of Chalapathi institute of pharmaceutical sciences and my guide, who is supporting me in all the aspects for my research and sharing his pearls of wisdom during the course of the research, and guiding me in such a way that a research should be. I am very fortunate to have him as my guide, who molded many students as successful researchers.

**CONFLICTS OF INTEREST:** The authors confirm that this article content has no conflict of interest.

#### **REFERENCES:**

- 1. Amlodipine Besylate Wikipedia, the free encyclopedia.
- 2. Hydrochlorothiazide- Wikipedia, the free encyclopedia

- 3. Olmesartan Medoxomil- Wikipedia, the free encyclopedia.
- ICH, Q2B, Validation of Analytical Procedures: Methodology, International. Conference on Harmonization, Geneva; November 1996; 1-8.
- 5. ICH, Q2A, Text on Validation of Analytical Procedures. Int Conference on Harmonization, Geneva; Oct 1994; 1-5.
- The United States Pharmacopoeia, the Official Compendia of Standards, ed. 29<sup>th</sup> Rockville, MD, USP convention Inc. 2006; 1683-84.
- 7. Indian Pharmacopoeia New Delhi: The Indian Pharmacopoeia commission Indian Pharmacopoeia. P 2010; 3: 2103-04.
- 8. British Pharmacopoeia. United Kingdom: The stationery office 2004; 1535-36.
- Beckett AH and Stenlake JB: Practical Pharmaceutical Chemistry. CBS Publishers and Distributors, ed. 4<sup>th</sup> New Delhi 1997; 1, 2, 52, 296-05.
- 10. Sharma YR: Elementary Organic Spectroscopy. New Delhi: S. Chand and Company Ltd 1980; 8-60.
- Beckett AH and Stenlake JB: Practical Pharmaceutical Chemistry: CBS Publishers and Distributors, ed. 4<sup>th</sup> New Delhi 2007; 284-99.
- 12. Rajasekaran A: Hand book of UV-visible & IR spectroscopy. Rupi Publication, Tamil Nadu 2010; 27-41, 76-8.
- 13. Kaur H: Spectroscopy. 3rd ed. Meerut: Pragati Prakashan Educational publishers 2007; 1-5, 237-14.
- Sharma BK: Instrumental methods of chemical analysis. ed. 19<sup>th</sup> Meerut: Goel Publishing House 2000; 1-4.
- Willard HH, Merritt LL, dean JA and Frank AS: Instrumental methods of Analysis. CBS Publishers and Distributers, ed. 7<sup>th</sup> New Delhi 1986; 1-19
- Sethi PD: Quantitative Analysis of Drugs In Pharmaceutical Formulations. CBS Publisher s and Distributors, ed. 3<sup>rd</sup> Delhi 2005; 7-27.
- 17. Michael E, Schartz IS and Krull: Analytical method development and validation. CBS Publishers and Distributors, New Delhi 2004; 25-46.
- Willard HH, Merritt LL, Dean JA and Settle FA: Instrumental Methods of Analysis. CBS Publishers and Distributors: ed. 7<sup>th</sup> New Delh 2001; 592-10.
- Skoog: Fundamentals of analytical chemistry. Ed. 8<sup>th</sup> New Delhi: Cengage learning India Private Ltd 2008; 973-93.
- 20. Lindsay S: High performance liquid chromatography. ed. 2<sup>nd</sup> New Delhi: John wiley & sons Ltd 2008; 63-187.
- Swadesh JK: HPLC practical &industrial application. ed. 2<sup>nd</sup> washington: CRC press Ltd 2001; 142-71.
- 22. Katz ED: HPLC: Principles & Methods in Biotechnology. Wiley India ed. England: John Wiley & Sons Ltd 2009; 26-156.

- 23. Ghoush MK: HPLC methods on drug analysis. Berlin: Springer Verlag 1992; 1-22.
- 24. Sethi PD: Quantitative Analysis of Drugs in Pharmaceutical Formulations. CBS Publishers and Distributors, ed. 3<sup>rd</sup> New Delhi 1986; 1, 20.
- Berry RI and Nash AR: Pharmaceutical process validation, analytical method validation. New York: Marcel Dekker INC 1993; 57: 411- 28.
- 26. Jain N, Jain R, Banweer J and Jain DK: Development and validation of a rapid RP-HPLC method for the determination of amlodipine besylate and olmesartan medoxomil in their combined tablet formulation. International Journal of current Pharmaceutical Research 2010; 2(2): 40-43.
- 27. Chabukswar AR, Kuchekar BS, Jagdale SC, Mehetre DM, More AS and Lokhande PD: Development and validation of a RP-HPLC method for simultaneous estimation of olmesartan medoxomil and amlodipine besylate in tablet dosage form. Archives of Applied Science Research 2010; 2(4): 307-12.
- Patil PS, More HN and Pishwikar SA: RP-HPLC method for simultaneous estimation of amlodipine besylate and olmesartan medoxomil from tablet. International Journal of Pharmacy and Pharmaceutical Sciences 2011; 3(3): 146-49.
- 29. Vidyadhara S, Sasidhar C, Venkateswara RB, Koduri TK and Reshma M: Method development and validation for simultaneous estimation of olmesartan medoxomil and hydrochlorothiazide by RP-HPLC. Oriental Journal of Chemistry 2014; 30(1): 195-01.
- 30. Sivasakthi R, Anudeepa J, Senthil KC, Ramya R, Rajendran S, Moorthi C and Venkatnarayanan: Development and validation of RP-HPLC and UV-Spectrophotometric method for olmesartan medoxomil and hydrochlorthiazide in combined dosage form. Der Pharmacia Lettre 2011; 3(3): 478-84.
- 31. Lakshmana RA and Raja B: Development and validation of a reversed phase HPLC method for simultaneous estimation of olmesartan and hydrochlorothiazide in combined tablet dosage form. International Journal of Research in Pharmacy and Chemistry 2011; 1(3): 714-17.

- 32. Rao JR, Rajput MP, Yadav SS, Mulla TS and Bharekar VV: Simultaneous quantitation of olmesartan medoxomil, amlodipine besylate and hydrochlorothiazide in pharmaceutical dosage form by using HPLC. International Journal of Pharm Tech Research. 2011; 3 (3): 1435-40.
- 33. Joshi HS and Pandya GP: Development and validation of stability indicating HPLC assay method for simultaneous determination amlodipine besylate, olmesartan medoxomil and hydrochlorothiazide in tablet formulation. Der Pharmacia Sinica 2013; 4(2): 145-52.
- 34. Nalluri BN, Naik VD, Sunandana B and Sushmitha K: Development and validation of RP-HPLC-PDA method for the simultaneous estimation of hydrochlorothiazide, amlodipine besylate and olmesartan medoxomil in bulk and pharmaceutical dosage forms. Journal of Chemical and Pharmaceutical Research 2013; 5(1): 329-35.
- 35. Ravisankar P, Swathi J, Kumar SKVS and Babu SP: Novel RP-HPLC method for simultaneous determination of olmesartan medoxomil, amlodipine besylate and hydrochlorothiazide in tablet dosage form. International Journal of Biological & Pharmaceutical Research 2014; 5(12): 927-36.
- 36. Jayaseelan S and Rajasekar M: RP-HPLC method development and validation for simultaneous estimation of losartan potassium, amlodipine besilate and hydrochlorothiazide in tablet dosage form. Scholars Research Library Der Pharma Chemica 2010; 2(3): 31-36.
- 37. Safeer K and Anbarasi B: Analytical method development and validation of amlodipine and hydrochlorothiazide in combined dosage form by RP-HPLC. Int J Chem Tech Res 2010; 2(1): 21-25.
- Gupta KR and Mahapatra AD: Simultaneous UV spectrophotometric determination of valsartan and amlodipine in tablet. Int J Chem Tech Res 2010; 2(1): 551-56.
- 39. Bhatia NM, Deshmane SJ, More HN and Choudhari PB: Validated RP-HPLC method for simultaneous determination of amlodipine besylate and hydrochlorothiazide from pharmaceutical preparation and biological samples. Research Journal of Pharmacy and Technology 2009; 2(1) 482-86.

#### How to cite this article:

Patchala A and Nadendla R: Quantification and validation of amlodipine besylate, olmesartan medoxomil and hydrochlrothiazide by RP-HPLC in marketed dosage form. Int J Pharm Sci & Res 2020; 11(5): 2350-55. doi: 10.13040/IJPSR.0975-8232.11(5).2350-55.

All © 2013 are reserved by the International Journal of Pharmaceutical Sciences and Research. This Journal licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

This article can be downloaded to Android OS based mobile. Scan QR Code using Code/Bar Scanner from your mobile. (Scanners are available on Google Playstore)