(Review Article)

IJPSR (2013), Vol. 4, Issue 10

Received on 06 May, 2013; received in revised form, 20 August, 2013; accepted, 08 September, 2013; published 01 October, 2013

THE DIELS-ALDER-REACTION WITH INVERSE-ELECTRON-DEMAND - A REVIEW OF AN EFFICIENT & ATTRACTIVE CLICK-REACTION CONCEPT

Manfred Wiessler¹, Waldemar Waldeck², Ruediger Pipkorn³, Peter Lorenz¹, Jürgen Debus¹, Hans-Hermann Schrenk¹, and Klaus Braun^{*1}

Department of Imaging and Radio-oncology ¹, Division of Biophysics of Macromolecules ², Central Peptide Synthesis Unit ³, German Cancer Research Center, INF 280, D-69120 Heidelberg, Germany Radiation Oncology, University of Heidelberg ⁴, Heidelberg, INF 110, D-69120 Heidelberg, Germany

Keywords:

Bioorthogonal, Click-Chemistry, Ligation chemistry, inverse Diels Alder Reaction, Regioselectivity & Stereospecificity, Therapy & Diagnostics

Correspondence to Author:

Dr. Klaus Braun

Department of Imaging and Radiooncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany

E-mail: k.braun@dkfz.de

ABSTRACT: Here, we review the development of prospective image processing systems in molecular diagnostics and of pharmacologically active ingredients for patient-specific therapeutic approaches. These projects require not only high demands on quality, safety, and specificity but also, rapid, efficient and irreversible ligation routes during the synthesis of future pharmaceuticals. The Diels-Alder ligation reaction with inverse electron demand (DAR_{inv}) is an eligible technology not restricted to medical applications, but valuable in selective modification by functionalization of polymers, organic and inorganic surfaces and micro arrays. Additionally, the DAR_{inv} technology is considered as an attractive strategy-platform for efficient syntheses of promising pharmacologically active components and derivatives of natural molecules with an optimized therapeutic index. We like to encourage scientists working with the brilliant concept of Sharpless's "Click chemistry", to intensify their research with this valuable DAR_{inv} technology able to open the door for regioselective, stereospecific, and bioorthogonal exigent syntheses of substances of highest quality inconceivable so far.

INTRODUCTION: The pioneering work of Otto P.H. Diels and Kurt Alder started in 1926 in the field of chemical reactions between reaction partners with one ene- and diene- containing components to cyclohexene products. This cyclo-addition methodology was documented as "Diels-Alder-Reaction" (DAR) and started a meteoric rise in ligation chemistry. The Nobel Prize in Chemistry has been awarded in 1950¹.

The DAR principle and its chemical potential for the pharmaceutical research were well investigated ²⁻⁸. Dependent on the chemical properties of the dienes and the dienophiles, the reaction led to different but preferred variants. One variant was documented as "Hetero-Diels-Alder-Reaction" and described the chemical reaction with a heteroatom substitution of the diene- and the dienophilecomponents ^{9, 10}.

The DAR also fulfils the criteria of the "Click-Chemistry" compiled by Sharpless (Scheme 1)¹¹, comprising a cornucopia of qualified ligation reactions as shown in Huisgen's work ¹². The Staudinger ligation^{13, 14} and Bertozzi's variant ^{15, 16} which were reviewed by Wiessler¹⁷.

Under normal conditions the reaction rate was either low at room temperature or a catalyst was required. In the classical DAR, the dominating orbital interaction (corresponding to the lowest HOMO-LUMO energy separation) was between HOMO diene and LUMO dienophile ¹⁸⁻²⁰. In contrast, the Diels-Alder Reaction with inverseelectron demand (DAR_{inv}) was controlled mainly by the interaction of HOMO dienophile and LUMO diene and required an electron-rich dienophile and an electron-poor diene ²¹⁻²⁵.

Substituents with pushing electrons increased and, with pulling electrons reduced the electron density

2

Scheme 1: The scheme points out that the DAR_{inv} fulfils the criteria of the "Click"-Reaction principle $^{3, 27, 28}$. R₁ and R₂ represent different functional moieties harbouring -I and/or -M effects on the diene 1, which induces a decrease of the electron density of the tetrazine ring. In contrast, the R₃ features a +I effect resulting in a relatively high electron density in the dienophile compound 2. The stepwise reaction from 1 and 2 results in the stereoisomers 3 and 4, which can be attributed to the two different variants of intermediates (bracketed) after elimination of molecular nitrogen. As shown here, the reverse reaction is impossible (modified from Wiessler 17).

The DAR_{inv} can help to overcome obstacles, like long reaction times, stringent conditions and the need of catalysts for the ligation reactions ^{12, 29, 30}. The first DAR_{inv} documentation by Carboni and Lindsey in 1959²⁷ describes the chemical reactions between tetrazines 1 and unsaturated compounds 5-8. These are dienes, or acetylenes 9-12 and are 31-33 referred as the Carboni-Lindsey Reaction (Scheme 2). The scientific interest on this technology increased exponentially.

E-ISSN: 0975-8232; P-ISSN: 2320-5148

products were generated after a rapid and complete reaction at room temperature in organic solutions. The reaction of this ligation chemistry led to high purity, but with hurdles and difficulties on the way to the multifunctional drug-imaging-conjugates appropriate to multimodal "theranostic" approaches . The synthesis of complex nature identical pharmacologically active molecules was mentioned here 17 .

The wide spectrum of this universal and powerful DAR_{inv} methodology in the field of the complex macromolecular architecture is expounded here.

Scheme 2: illustrates the variability of synthetic routes of substituted tetrazines 1 with unsaturated compounds (dienes, acetylenes) **5-8** to the formation of 3,6-disubstituted pyridazines 9-12. R₁ and R₂ represent different functional moieties harbouring –I and/or –M effects on the diene 1. (R₃ $-R_6 = H$; Me; alkyl) (modified from Carboni and Lindsay²⁷).

It is obvious that in this rapidly increasing field of syntheses pharmacologically of active the substances, the DAR_{inv} technology offers a tremendous potential for the development of pharmaceutically interesting active nature identical molecules.

Wiessler et al., IJPSR, 2013; Vol. 4(10): 3678-3698.

The almost infinite variability of the DAR_{inv}products is supported by the huge reservoir of different diene and dienophile compounds as reaction partners which are referred in detail as follows.

Diene components: Heterocyclic molecules have a prominent role in the DAR_{inv} and were exemplarily reported elsewhere ³⁴⁻³⁶.

1. Synthesis of tetrazine compounds: The most frequently used diene in the DAR_{inv} is the available 1,2,4,5-tetrazine-3,6-dieasily carbonic acid 17, which can be produced in three-steps starting with diazo etylacetate 13 as shown in Scheme 3. The carboxylic acids 14 and 15 were synthesized first by Curtius ³⁷. The diazo ester and the hydrazine molecule 16 were isolated and described by Sauer ³⁶. Almost all these molecules underwent a quantitative reaction at room temperature within minutes as proposed by Nenitzescu. The research groups of Boger and Largeron comprehensively described regioselective properties of substituted 1,2,4,5-tetrazines in the DAR_{inv}³⁸. In 2012, derivatized tetrazines were lodged as an US Patent application for bio-orthogonal coupling agents ³⁹.

The electro negativity was crucial for maintaining the high diene-activity. The stability of functionalized tetrazine esters, however, proved to be insufficient, whereas functionalized tetrazine amides provided the ability for the synthesis of many functionalized derivatives. These could be obtained via the dihydrotetrazine-amides followed bv an oxidation step. Nevertheless the use of these tetrazine derivatives as described in Scheme 3 turned out to be problematic for two reasons:

- a) Their insufficient stability and
- b) Their poor solubility in aqueous solutions obviates applications in living systems.

The sensitivity against nucleophiles also seemed to be the cause of the low stability of these tetrazine derivatives in aqueous solutions. Because of these chemical decomposition processes, tetrazines modified with the dicarboxylic acid **15** were not qualified for ligation under conditions for the solid phase peptide synthesis (SPPS) and use under physiological conditions as proven in our experiments.

Considerations to circumvent these limitations the development gave rise to the synthesis of aryl substituted tetrazines featuring -I attributes. Following the reaction, the colour change during DAR_{inv} from a tetrazine (magenta) to a diazine (yellow) under degassing nitrogen occurred rapidly ⁴⁰.

Scheme 3: Illustrates the chemical route of the synthesis of the diamide of the tetrazine dicarbonic acid **17**. The reaction steps were initiated and carried out in i) **13**, a) 50% NaOH, b) H_2SO_4 ; ii) NaNO₂ in glacial acetic acid; iii) SOCl₂, MeOH; iv) NaNO₂ (modified from Wiessler¹⁷).

2. **Synthesis of triazine components:** Wu and Gomez-Galeno documented studies to investigations of the DAR_{inv}-based synthesis of purine and pyrimidine analogues **22** with 1,3,5-triazine derivatives **19** as diene compounds as reaction partners ^{23, 41, 42} (Scheme 4). De Rosa and Arnold investigated the electronic and steric effects of the DAR_{inv}'s reaction mechanism with 1, 3, 5-triazines **19**⁴³.

Scheme 4: Illustrates, strongly simplified, the chemical route of the reaction of 1,3,5-triazine derivative **19** and 2-aminopyrrole **18** to the final aromatic cycloadduct 22 (modified from De Rosa ⁴³).

Yu and co-workers published in 2001 a detailed theoretical study of a DAR_{inv} -based reaction mechanism with 1,3,5-triazine and 2-amino pyrrole as diene and dienophile reaction partners for the synthesis of purine analogues ²³.

The huge potential of triazines was substantiated by the work of Branowska who documented a direct chemical synthesis route with 5,5'-bi-1,2,4-triazines with bicyclo[2.2.1]hepta-2,5-dienes to disubstituted-2, 2'-bipyridine derivatives ⁴⁴⁻⁴⁶.

Whereas the Synder group showed the importance of the triazine as a diene reaction partner in the DAR_{inv} in 1,2,4-triazine studies ⁴⁷⁻⁴⁹, the Boger group systematically investigated the 1,2,3-triazines ^{50, 51}; earlier, the group exhibited expertise in the research of the DAR_{inv} azadiene chemistry in the field of the total synthesis of nature identical molecules ^{4, 5, 52}.

Diazines as diene reaction partners: Recently, in 2012, the DAR_{inv} of 1,2-diazines as azadienes and siloxy alkynes, which were silver-catalyzed, was published by the Rawal group. An example for a silver-catalyzed reaction phthalazines **23** and siloxy alkynes **24**, reacting under loss of nitrogen to silyl-protected 2-naphthols **26**⁵³ is shown in Scheme 5.

Scheme 5: illustrates the chemical route of the DAR_{inv} of 1,2-diazine **23** and siloxy alkyn **24** to the silyl-protected 2-naphthol (modified from Turkmen 53).

The van der Plas group investigated intramolecular DAR_{inv} -based cycloadditions and documented the synthesis of 7,7-dicyano-6,7dihydro-5h-1-pyridines from the intermediacy of cycloadducts 2-(1,1-dixyanopent-4-yn-1-yl)pyrimidine and 2-(1,1-dicyanohex-5-yn-1-yn)pyrimidine after reaction of 2-chloro- or 2-methylsulfonyl-pyrimidines and the

sodium salt of 5,5-dicyanopent-1-yne and 6,6-dicyanohex-1-yne⁵⁴.

Dienamine intermediates as diene reaction partners: In 2012, Albrecht and co-workers described an asymmetric variant of the DAR_{inv} using metal catalysis and organocatalysis facilitating the synthesis of optical active dihydropyran derivatives 27. This was achieved by DAR_{inv} using dienamines intermediates as reaction partners (Scheme 6). The high stereo- and regiocontrol was realized by use of a bifunctional H-bond aminocatalyst ⁵⁵.

Scheme 6: Illustrates the catalyst facilitated hetero DAR_{inv} (modified from Albrecht ⁵⁵). Further, aminocatalytic DAR and DAR_{inv} via HOMO activation were documented using dienamine species from α , β -unsaturated aldehydes which act

either as electron-rich dienes in normal-electrondemand DAR or as dienophiles in DAR_{inv} . All these reactions occur with high chemo-, regio-, and stereoselectivity as mentioned above ⁵⁶. Functionalization of dienes with imaging components:

1. Dienes can be considered as coupling molecules for diagnostic as well as for therapeutic use: The Devaraj group intensively investigated benzylaminotetrazines functionalized different with 57-60 fluorescent dyes in imaging studies Tetrazines derivatized with functional groups 3,6-diaryl-s-tetrazines, suitable like for labeling with biomolecules were demonstrated

Scheme 7: Illustrates the chemical reaction of **28** and **29**. The Cy7 reaction product **30** acts as a diene reaction partner for the DAR_{inv}.

The conjugate **30** is composed of the diene *N*-(2-aminopropyl)-4-(6-(pyrimidine-2-yl)-1, 2, 4, 5-tetra zine-3-yl)benzamide **29** and the indotricarbo cyanine fluorescent dye Cy7 **28** 26 . The synthesis of further diene building blocks improved the variability of the "Click Chemistry" for fluorescence imaging as exemplarily documented here by the coupling of 5-(dimethylamino)-naphthalene-1-sulfonyl (dansyl) **28** and bis2,6-[5-carboxylic acid-pyrid-2-yl]-tetrazine **29** $^{62, 63}$.

Hilderbrand *et al*, designed an asymmetric aryltetrazine derivative, functionalized with the chelators 1,4,7,10-tetraazacyclo-dodecane 1,4,7,10tetraacetic acid (DOTA) or desferrioxamine (DFO) bearing the positron emitting radioisotopes ⁶⁴Cu or ⁸⁹Zr. These functionalized components react in turn under the DAR_{inv} route with trastuzumab (Herceptin[®]), an antibody against the human epidermal growth factor receptor HER2/neu norbonene-modified ⁶⁴. by the Fox group. They developed an $\alpha_{v}\beta_{5}$ integrin targeted PET tracer by DAR_{inv} . reaction ⁶¹.

For optical imaging studies the Wiessler group developed $\alpha_{\nu}\beta_3$ and $\alpha_{\nu}\beta_5$ integrin addressed to cyclic RGD-BioShuttle carrier molecules. The chemical reaction to the tetrazine diene, exemplarily functionalized with the polymethine-based Cyanine dye Cy7 **30** as an imaging component suitable for NIR imaging, is illustrated in Scheme 7.

Functionalization of tetrazines with biologically active molecules: In future, dienes, functionalized with pharmacologically active molecules are definitely conceivable. The functionalization of a diaryl-tetrazine with "old fashioned" drugs like temozolomide (TMZ) and the effects of the DAR_{inv}. reaction product were first documented by the Wiessler group as an important example of reformulation of established drugs⁶⁵.

The synthesis of dienes used in our TMZ-BioShuttle studies was highly efficient but the synthesis of functionalized tetrazines suitable for the DAR_{inv} posed an experimental challenge 66 . As illustrated in Scheme 8. the nitriles 2cyanopyrimidine 31 and 4-cyanobenzoic acid 32 reacted with hydrazine 33 to the dihydrointermediate 34. The oxidation and the conversion to the acid chloride which in turn reacted with the Boc-mono-protected 1, 3-propylenediamine are the next steps to product 35. After deprotection, the amino group reacted with the acid chloride derivative of the TMZ 36 to the final product TMZdiaryl-tetrazine 37 acting as diene reaction partner for the DAR_{inv}-mediated ligation 17 .

Scheme 8: Illustrates the synthesis route of the TMZ tetrazine derivative **37** which reacts as a diene partner for DAR_{inv}. The 1,3-diaminopropyl modified 4-diaryl-3, 8-dihydro-1,2,4,5-tetrazine **35** is reacted with the acyl chloride derivative of the TMZ **36** (modified from Wiessler ¹⁷).

Functionalization of the peptide nucleic acidbackbone (PNA) with dienophile compounds: Our group also developed the following prototype of a theranostic agent (Scheme 9).

Scheme 9: The simplified illustration shows the reaction route to the ligation product **41** after the Reppe anhydride DAR_{inv} of the double functionalized peptide nucleic acid (PNA) pentamer 38. This is completely loaded with four diaryl-1,2,4,5-tetrazine-3,6 functionalized with two dansyl chloride 40 and the N-(2-aminopropyl)-4-(6-(pyrimidine-2-yl)-1,2,4,5-tetrazine-3-yl)benzamide. It is functionalized with 4-methyl-5-oxo-2,3,4,6,8pentazabicyclo[4.3.0]nona-2,7,9-triene-9-

carboxamide (temozolomide) **39** (modified from Wiessler 67).

Here, the synthesis of **41** was performed by a combined DAR_{inv}-mediated ligation of diene-functionalized pharmacologically active substances, like TMZ **39**, with fluorescent dyes like 5-(dimethylamino)naphthalene-1-sulfonyl chloride (Dansyl chloride) **40**. The Cyanine dyes C5 and C7 as further imaging components were also documented. A further possible reaction partner was a PNA-based polymer whose building blocks were functionalized with different dienophiles (instead of nucleobases) **42** (Scheme 10).

Scheme 10: Illustrates a PNA pentamer backbone which consists of momoners functionalized with dienophile structures offering different reactivity, like pentenoic acid and the Reppe anhydride 42 (modified from Wiessler⁶⁷).

The variability of the charge of a polymer consisting of different molecules in desired ratios confers the key properties to the DAR_{inv} products. They reach optimal effects and minimal adverse reactions and are simultaneously able to monitor metabolic processes at the cellular level. This was feasible with the theranostic molecule in expressing cells and tissues after coupling to functional peptides like the cRGD for targeting to the $\alpha_v\beta_3$ and $\alpha_v\beta_5$ integrins²⁶.

- 1. Synthesis of dienophile components: It should be mentioned that a lot of educts harbouring reactive terminal double bonds or double bonds in ring systems are commercially available or are easy to prepare. By this means a wide range of dienophilic compounds is available for certain DAR_{inv} reactions. In order to obtain reaction times in the range of minutes for the DAR_{inv}, the reactivity of the dienophile is decisive for the rapid reaction process besides the reactivity of the tetrazines as reactants. The allyl-group, a component of numerous chemical compounds which are easily accessible indeed may offer dienophileactivity, but nevertheless it is not qualified for a rapid chemical reaction. Therefore symmetric dienophiles with higher reactivity should be favoured.
- 2. Synthesis of the "Reppe-Anhydride": Already in 1966, Sauer documented a very high dienophile activity of double bonds in cyclic ring systems adjoining to the terminal double bonds ⁶⁸. Incipient with strained rings like cyclopropene possessing very high

dienophile reactivity, the reaction rate was reciprocally proportional to the ring's size; the minimum was reached with the six-atom ring and in larger rings the reaction rate increased slightly. In case of cyclobutene the derivatives disposed a sufficient stability as well as excellent dienophile reactivity.

A tetracyclic anhydride, synthesized and well described by Reppe (best-known under the name of Reppe-Anhydride), turned out to be the ideal compound for our purpose **45**. It was easily available by the classic DAR of cyclooctatetraene **43** and maleic anhydride **44** ⁶⁹⁻⁷¹. (Scheme 11 exemplifies the chemical route). Other ring systems, dedicated for chemical reactions, as described above, are the cyclobutene-3,4-dicarboxylic acid anhydride ⁷², ⁷³

Scheme 11: Illustrates the synthesis of a versatile building block for modification of peptides. The syntheses of the Reppe-Anhydride 44 and the corresponding (\pm) Boc-Lys derivative 46 were described ⁶⁵.

A valuable input to the fundamental research for the DAR_{inv} was given by Sauer's group from 1966 to 2004 $^{28;74-79}$, An intensive research in the field of cycloaddition reactions of azabenzols **47** with different reaction partners $^{80-85}$ was conducted by Neunhoeffer's group (exemplified in Scheme 12).

Scheme 12: Describes the chemical reaction of diazobenzol derivatives **47** with ethylene-based vinylamines using as an example 1-methoxy-N,N-

vinylamine [R = H; Me]; [X = OMe; Y = NMe₂] 48 to the structurally isomeric products **51** and **52** (modified from Neunhoeffer and Werner⁸⁶).

Molecules with reactivity as dienophiles: The bioorthogonal reaction is characterized by rapid reaction rates and without need for catalysis. In 1962, the Sauer group first documented the cyclooctene as a dienophile ²⁸. The dienophile cyclooct-4-enol also was lodged in the US patent application US2011/0268654 A1 ⁸⁷. The Fox and

the Robillard groups investigated the *trans*cyclooctene **53** as dienophile partner for DAR_{inv} with substituted *s*-tetrazines **54** as diene reaction partners with an excellent bioorthogonal reactivity ^{88, 89} (Scheme 13).

Scheme 13: Illustrates the DAR_{inv}.of 3,6-di-(2-pyridyl)-*s*-tetrazine 54 and *trans*-cyclooctene 53 to the (\pm) -4,5-dihydropyridizine 56 (modified from Blackman).

Schoch and co-workers first documented a bioorthogonal reaction established with DNA building blocks functionalized with cyclooctenebased dienophiles to rapidly synthesize oligonucleotides as reporter molecules for FRET studies ⁹⁰.

Alkenes, alkynes: The use of isolated olefinic double or triple bonds in hydrocarbon rings or linear systems as dienophile components **57** was comprehensively published by Wiessler⁹¹.

Scheme 14: Shows the DAR_{inv} "Click"-Reaction of the diene 1 with the alkyne 57. R_1 and R_2 represent functional moieties harbouring –I and/or –M effects on the diene 1.

In 2012, Fox and co-workers published coupling reactions with 3-substituted cycopropenes in organic and aqueous solvents ³⁹ and documented, already in 2006, that chiral cyclopropenes are considered as eligible dienophile reaction partners

for diastereoselective synthesis of methylene cyclopropanes ⁹².

Alkenes and alkynes also could act as typical dienophile counterparts for chemical reactions with dienes like dicyanocyclohexa-1,3-dienes and substituted phthalonitriles resulting in the synthesis of a broad class of heterocyclic derivatives like dicyano-indoles, and -carbazoles⁹³.

The use of 2(1H)quinolones acting as dienophile components was not restricted to the synthesis of 5(6H)-Phenanthridone derivatives, pharma-cologically active as inhibitors of poly (ADP-ribose)-polymerase (PARP)⁹⁴.

Mendez and co-workers investigated ethylene as a dienophile partner with oxazole under a DAR_{inv} whose reaction was facilitated by addition of Brønsted or Lewis acids ⁹⁵.

The Largeron group first documented a multistep electrochemical synthesis of polyfunctional 1,4benzoxazine derivatized by alkylamino substituents via a DAR_{inv}-based reaction route ^{96, 97}. Due to their pharmacological activity 1,4-benzoxazine derivatives could play a role as neuroprotective agents ⁹⁸.

During the cycloaddition reaction via the regiospecific and distereospecific DAR_{inv}, the reactions of *o*-iminoquinone with secondary alkylenamines were generated *in situ* and produced

aryl-2H-3,4-dihydro-1,4-benzoxazine intermediates which were unstable and chemically not accessible $\frac{99}{2}$.

Enamines: Bodwell *et al*, comprehensively described synthesis of $(\pm)-6H$ the dibenzo[b,d]pyran-6-one derivatives using the DAR_{inv}. Coumarin-fused electron-deficient 1,3-dienes ¹⁰⁰ were synthesized and reacted with a series of electron-rich enamines derived from acyclic carbonyl compounds, cyclic ketones and pyrrolidines. They led to the functionalized products dibenzopyranones 61 after aromatization by oxidation of the nondehydrogenated precursor intermediates which were due to be produced (Scheme 15). It is important to note, that the tested enamines 60 were chemically accessible by their generation before or *in situ*¹⁰¹.

The key importance of dibenzopyranones **59** as educts and intermediates in the synthesis of molecules with multi-faceted pharmacologically activities is clearly documented. We mention here a few examples of steroid hormone analogues, receptor agonists, growth factor inhibitors and flavonoid derivatives with protective properties against cardiovascular diseases and cancer¹⁰¹⁻¹⁰⁵.

Scheme 15: Illustrates in a simple way the DAR_{inv}based step of the chemical route for the synthesis of (\pm) -6*H*-dibenzo[*b*,*d*]pyran-6-one **61** with the enamine dienophile **60** (produced by reacting cyclopentenone and pyrrolidine) with the coumarin diene compound **59** as reaction partner (modified from Bodwell 100).

DAR_{inv}-strategy, An additional attractive documented by the Dujardin group ¹⁰⁶, is based on the reaction groups of electron-rich chiral enamines *N*-vinyl-2-oxazolidonones with the β , γ -unsaturated α -ketoesters to the heterocycloadducts N-2deoxyglykosyl-oxazolidinones. The distinctive feature was the oxazolidine compound, which acted not only as a chirally inducing agent but also as a monomer which allowed a stereocontrolled de novo synthesis of N-2-deoxyglykosides or sugar- α amino acid hybrid derivatives.

Total synthesis of pharmacologically active nature identical products: The old fashioned total synthesis of naturally occurring molecules was representative for undesired adverse reactions, which hampered the therapeutic success. The DAR_{inv}-methodology could help to use specific modifications of the molecular structure during synthesis of the active molecules realizing an optimization of their therapeutic index.

Synthesis of purine analogues with antibiotic properties: DAR_{inv}-based cycloaddition reactions with different π -electron rich heteroaromatic "inverse" dienophiles like furanes, pyrroles, thiophenes, and N-methylimidazoles **62** and a negatively substituted tetrazine derivative **1** were described by the Seitz group ¹⁰⁷⁻¹¹⁰ Scheme **16**). They provided a promising reaction for purine analogues which were pharmacologically highly active as repellents against microorganisms.

Scheme 16: Describes the reaction steps of the [4+2] cycloaddition of the tetrazine derivative **1** with *N*-methylimidazole **62** to the corresponding not isolatable cycloaddition intermediate

(bracketed) **63** [**64** and **65** represent tautomeric structures after nitrogen elimination] which are oxidized under recovery of the aromatic imidazole ring to the resulting reaction product **66** (modified from Seitz and Kämpchen ¹¹¹).

Synthesis of macrolides: The macrolide structural element is found in several pharmacologically active molecules like alkaloids and antibiotics. Despite the efforts in the development of synthetic lactones a challenge remained for the chemical synthesis. The Wang group presented the first approach of the macrolide synthesis. They used the asymmetric hetero DAR_{inv} to construct **69** after chemical reaction of cyclic ketones **68** with enones **67**, thereby affording densely functionalized bicyclic skeletons in (\pm)-macrolides **69**, **70** ¹¹² as shown in Scheme 17.

Scheme 17: Illustrates the catalytic asymmetric hetero DAR_{inv} during the synthesis of chiral (±)-macrolides 69 (modified from Jiang ¹¹²).

Synthesis of antibiotics with antitumor properties: The Boger and Snyder groups succeeded in the total synthesis of multifaceted substances identical to nature: as an example, the complex synthesis of streptonigrin **76**¹¹³. It is an antibiotic with antitumoral properties. A sequential implementation of the steps a and b of the DAR_{inv} methodology is illustrated in the highly simplified Scheme 18^{114; 115}.

Scheme 18 exemplifies the key chemical reactions of: The cycloaddition of tetrazine derivative dimethyl 1,2,4,5-tetrazine-3,6-dicarboxylate 1 with the heterodienophile S-methyl 6-methoxy-5-nitro-2-quinolinethio-imidate **71** for the formation of the 1,2,4-triazine streptonigrin ABC ring system **72**.

a) The [4+2] cycloaddition of the dimethyl 5-(6-methoxy-5-nitro-2-quinolyl)-1,2,4-tri azine-3,6-dicarboxylate 73 with the morpholino enamine derivative 2-(benzyl oxy)-3,4-dimethoxypropiophenone 74 to the formation of the CD biaryl ring system in a mixture which contains the Diels-Alder adducts 75 and 76. The adduct 76 is composed of streptonigrin's framework (modified from Boger ¹¹⁴).

Total synthesis of the antimitogenic (-)-Reveromycin A: El Sous in the Rizzacasa group reported the total synthesis of (-)-Reveromycin A **80** using the DAR_{inv} in a "hetero strategy" to construct the critical spiroketal moiety of the molecule ^{116, 117}. The central step, the Lewis acid catalyzing the hetero-DAR_{inv}, is visualized in Scheme 19.

Scheme 19: illustrates the key step of the Lewis acid $[Eu(fod)_3]$. Hexane as solvent at O°C promoted the cycloaddition of the diene 77 with methylene pyran 78 to the spiroketal fragment 79. The intermediate to the final product (-)-Reveromycin A is 80. The hetero DAR_{inv} was catalyzed by Eu(fod)₃. without solvent (modified from El Sous¹¹⁷). The natural product (-)-Reveromycin A 80 (Scheme 19) derived from a member of the soil actinomycete family Streptomyces sp. acts as an inhibitor of the mitogenic activity of the epidermal growth factor (EGF). It inhibited the human tumor cell lines KB ¹¹⁸ and K-562 ¹¹⁹ by blocking of the isoleucyl-tRNA-synthetase ¹²⁰⁻¹²².

Synthesis of antiinsectans: In the year 1996, Snider and Lu described the first total synthesis of the antiinsectans (\pm) -Leporin A 123, isolated from the sclerotia of Aspergillus-Leporis by the Gloer group in 1991 124 . The speciality of this synthesis was the "tandem Knoevenagel condensation" and intramolecular DARinv. It the was first documented by the Tietze group in 1995 $^{\rm 125}$ and qualified to construct the unstable tricyclic intermediate o-quinone methide 83 from 4hydroxy-5-phenyl-2-pyridone 81 and the acyclic 2methyl-6E,8E-decadienal **82**. This molecule underwent the intramolecular DARinv followed by hydroxylation and methylation steps resulting in the hydroxypyridone product (\pm) -Leporin A 84 as shown in Scheme 20.

Scheme 20: Shows the chemical tandem Knoevenagel-intramolecular DAR_{inv} reaction steps of the (±)-Leporin A synthesis 84 (modified from Snider ¹²³).

Total synthesis of alkaloids: The multi-facetted pharmacological potential of alkaloids and the increasing demand for therapeutic approaches are in contrast to their availableness because of their extensive isolation and purification procedures. The complex chemical synthesis hampered their clinical breakthrough, unfortunately. Therefore the DAR_{inv} increasingly comes into the pharmaceutical research's field of vision, as demonstrated exemplarily by the following syntheses.

Synthesis of Zarzissine: Here the synthesis of the cytotoxic guanidine alkaloid, an imidazole pyridazine derivative is documented. It was originally extracted from the Mediterranean sponge *Anchinoe paupertas*.

Zarsissine was first isolated and characterized by the Puel group 126 . The synthesis route by DAR_{inv} was described by Snyder 115 (Scheme 21).

Scheme 21: Shows the simplified chemical reaction of the cycloaddition of 2-aminoimidazole 85 with 1,2,4,5-tetrazine derivative 1 to the final product 2-amino-1*H*-imidazo[4,5-*d*]pyridazine derivative (zarzissine: $R_1 = R_2 = H$) **86** (modified from Synder ¹¹⁵).

The DAR_{inv} bases on the reaction of dienophilic heteroaromatic compounds **1** and imidazoles **85** as documented by Seitz ¹⁰⁹. Due to the pharmacological activity the imidazo[4,5-d]pyridazines ¹²⁷ as purine analogues were in the focus of the pharmaceutical research of heart diseases ^{128; 129}.

Synthesis of (±)-Epibatidine: The synthesis of the pyridazine analogue (±)-Epibatidine 90 is representative for the fact that the DAR_{inv} technology is not limited to the synthesis of derivatives offering structural similarity to naturally occurring molecules. The DAR_{inv} was critical in the synthesis of nicotinic also acetylcholine receptor agonists like the pyridazine analogue (\pm) -Epibatidine 90 which was exemplified by the Methfessel group ¹³⁰. Their synthetic route to **90** started with the commercially available 3-tropanone 87.

After the conversion to the corresponding racemic ester and transformation to the electron-rich dienophile enol ether **88** reacted with the electron-deficient diazadiene 1,2,4,5-tetrazine **1**. It was carried out in a LUMO_{diene}/HOMO_{dienophile}-regulated DAR_{inv} after inverse [4+2]-cycloaddition and elimination of nitrogen via the racemic intermediates **89a/89b**. This leads to the pyridazine analogon product (\pm)-Epibatidine **90** (Scheme 22).

Scheme 22: Shows the chemical DAR_{inv} reaction steps of the synthesis of (±)-Epibatidine products **90** (modified from Methfessel in a simple form ¹³⁰).

Epibatidine derivatives were used as highly effective non-opioid analgesic molecules, but due to their toxicity the therapeutical application had to to be restrained ^{131; 132}.

The synthesis of Epibatidine homologues may produce relief for approaches to potential nicotinic acetylcholine receptor ligands ¹³³.

Synthesis of isoquinoline derivatives: The Haider lab scrutinized the [4+2] cycloaddition potential of the DAR_{inv} on condensed pyridazines for the construction of higher order annealed ring systems ¹³⁴⁻¹³⁸.

Here, the key synthesis of the isoquinoline derivative 96 by DAR_{inv} of pyrido[3,4-d]pyridazine 91 with 1-pyrrolidino-1-cyclopentene 60¹³⁹ was illustrated (Scheme 23).

Scheme 23: Shows the reaction of the biphenylsubstituted pyrido[3,4-d]pyridazine 91 with 1pyrrolidino-1-cyclopentene 60 to the two notisolatable isomeric dihydro intermediate products 92 and 93 (in brackets) reacting to the two cycloadducts corresponding 94. **95**. The elimination of pyrrolidine and the following aromatization resulted in the formation of the single final isoquinoline derivative product 96 (modified from Haider ¹³⁹). It is worth to note, that cvclopentane-fused the isomeric dihvdroiso quinolines 94 and 95 react to the single final product 96.

Tetrahydroquinoline synthesis: Quinolines were of great interest for the pharmaceutical and chemical research as basic drug molecules and for the synthesis of herbicides and fungicides. The synthetic access by isolation from the gas tar exclusively was documented by Masson¹⁴⁰. The synthesis route of 2,3,4-trisubstituted tetrahydro quinolines **100** using the DAR_{inv} modified as a three-component aza-DAR_{inv} of aldehydes (R2) **99**, anilines **98** and isoeugenol **97**¹⁴⁰ is shown in Scheme 24.

Scheme 24: Illustrates the synthesis step of the three-component aza-DAR_{inv} of the synthesis of 2,3,4-trisubstituted tetrahydroquinolines 100. [R2= -CHO] (modified from Masson ¹⁴⁰).

The synthesis route is complex but the reaction mechanism was well investigated and described as a nucleophilic attack of isoeugenol to the N-arylimine under cyclization and formation of intermediates ¹⁴⁰.

Total synthesis of cannabinol and derivatives: The molecular class of cannabinoids consists of **70** natural products isolated from *Cannabis sativa*.

This alkaloid's synthesis is extensive and requires several steps. The Bodwell group clearly documented an efficient methodology (yields up to 79%) employed in a concise total synthesis of cannabinol 104 whose intermediate 6*H*dibenzo[b,d]pyranone (DBP) **103** was formed by an asymmetric DAR_{inv} of the compounds 6methoxy-3-pentyl-salicylaldehyde 101 and dimethyl glutaconate 102¹⁴¹ (Scheme 25). The generation of the enamine 60 acting as an electronrich dienophile was documented by Bodwell and co-workers as herein mentioned before 100. The process was already shown in Scheme 15.

Scheme 25: Describes the key steps and the DAR_{inv}-based reaction of 6-methoxy-3-pentyl-salicylaldehyde 101 and dimethyl glutaconate 102 and the enamine 1-pyrrolidino-1-cyclopentene 60 to 6H-dibenzo[b,d]pyranone (DBP) 103. After elimination of pyrrolidine and the following aromatization step (not shown), it shows the condensed route to the final cannabinol derivative product 104 (modified from Nandaluru¹⁴¹).

Total synthesis of analogues of natural hormones: The Posner group depicted the first DAR_{inv}-based synthesis step of dihydroxyvitamin D3 analogues by [4+2]-cycloaddition between the commercial 3-methoxycarbonyl-2-pyrone **105** as a diene and the difluorinated electron-rich vinyl ether 106 as a dienophile. The reaction product was the racemic (\pm)-lactone cycloadduct intermediate **107** ^{142; 143} which reacted under a nucleophilic opening of the lactone ring with the Li-allyloxide under formation of the polyfunctionalized racemic (\pm)-cyclohexene **108**.

This happened without inter- or intramolecular displacement of fluoride ions and the coupling of the enantiomerically pure ketone **109**. Additional

reaction steps resulted in the final reaction product 1α , 25-dihydroxyvitamin D3 **110** (shown in the condensed Scheme 26).

Scheme 26: Simply shows the DAR_{inv} reaction steps of the synthesis of the 1α , 25-dihydroxyvitamin D3 product **110** (modified from Posner¹⁴³).

The pharmacologic properties of dihydroxyvitamin D3 analogues were well investigated ¹⁴⁴. Currently, the analogues 1α , 25-dihydoxy-19-nor-vitamin D2 and calcipotriol are in clinical use for therapeutic intervention for hyperparathyroidism and psoriasis ¹⁴⁵.

Functionalization of Polymer Surfaces:

Glass carbohydrate-microarrays: The Wittmann group developed a promising carbohydrate microarray platform ¹⁴⁶ with inorganic SiO₂surfaces functionalized with tetrazine derivatives as diene molecules **113**. Molecules, like norbonenes or terminal alkenes which were ligated with carbohydrates **114** act as dienophile reaction partners for DAR_{inv} chemistry whose reaction kinetics realized an immobilization of the carbohydrates in a high homogeneity. This fulfilled the requirement criteria of glycomix highthroughput screening studies of carbohydrateprotein interactions ¹⁴⁷⁻¹⁵⁰.

Scheme 27: Describes the preparation of carbohydrate microarrays 115. The amine-coated glass slides 111 were diene-functionalized with 112 in DMSO/pyridine solution. Then follows the DAR_{inv} based ligation of 113 and the dienophile 114. This is connected via a linker to a carbohydrate (modified from Wittmann ¹⁴⁶).

Biocompatible silicon surfaces: The Beck-Sickinger group investigated the potential of inorganic SiO₂-surfaces as possible linkers and coupling sites for functional peptides in biomaterials. The Scheme 28 highlights the SiO₂-surface **116** functionalized with different linkers realizing independently ligation reactions.

The 1,4-diaryl-1,2,4,5-tetrazine reacts with dienophiles like the Reppe anhydride in a DAR_{inv} click reaction. The well-established copper(I) catalyzed Huisgen azide-alkyne [3+2] cyclo-addition (CuAAC) is possible using the cyclic azides.

Scheme 28: Describes schematically the structure of the inorganic SiO_2 material whose surface is functionalized with silica binding peptides which in turn are connected to different linkers like the diaryl tetrazine as diene component for DAR_{inv} (upper part) and the cyclic azide for the copper (I) catalyzed Huisgen azide-alkyne cycloaddition (CuAAC) (lower part). (Modified from Beck-Sickinger).

The functionalization was exemplarily carried out with the well investigated cRGD ¹⁵¹⁻¹⁵³, a small molecule which acts as a ligand for specific binding to the $\alpha_{\nu}\beta_5$ integrin receptor, involved in neoangiogenic and metastasis processes ¹⁵⁴⁻¹⁵⁶. The characteristics of the used DAR_{inv}-allowed a bioorthogonal click reaction strategy ¹⁵⁷⁻¹⁵⁹ for a bridge formation between inorganic surfaces and biological active molecules ¹⁶⁰.

CONCLUSION: The DAR_{inv} chemistry is an increasing and expanding technology for rapid, efficient, irreversible ligations of user-defined functional molecules or genetic materials. These properties fulfil not only the requirements for the "Click Chemistry", but also for chemical reactions under conditions for bioorthogonal chemistry. These topics were introduced and developed further

by Bertozzi in 2000^{15; 161; 162}, and are currently in the focus of the scientific interest.

Additionally, these reaction products are dedicated as a combination of cargo to carrier and as biological address-molecules to realize high local concentrations of active substances in living cells. These chemical reaction products are able to overcome cellular membrane barriers during a safe and efficient transfer of therapeutic and / or diagnostics cargos into target cells and tissues. It is important to point out that this DAR_{inv} technology is not restricted to application and easier handling of our developed BioShuttle delivery platform ^{67, 163} and other related carrier molecules.

An enhancement towards functionalization of surfaces and polymers by a proper ligation at surfaces like biotechnical arrays for genome or transcriptome analysis can be realized by this technique. Depending on the scientific subject and formulation of the scientific project, the coupling of dienes and dienophiles at a defined surface could be demonstrated.

The following points support this technology:

- The presented kinetic data with high reaction rates demonstrate the potential of the Diels-Alder-Reaction with inverse electron demand (DAR_{inv}) as a method of choice for ligation of molecules.
- II) The reaction process could be easily monitored by use of photometrical methods with a decreasing absorption maximum at 520 nm, which is typical for tetrazines.
- III) We could demonstrate that the DAR_{inv} features all the conditions for the successful "Click"-Chemistry and as a consequence, it turns out to be a dedicated tool for ligation reactions important but not restricted to the medical and pharmaceutical science.

The great advantage of DAR_{inv} is based on

- A) Compounds' accessibility ¹⁶⁴,
- B) The high and quantitative reaction rate,
- C) Bioorthogonal reactions,

- D) The potential for selective multiple reactions at the identical molecule,
- E) High regioselectivity,
- F) The ease of monitoring of the chemical reaction and
- G) The feasibility of the reaction on surfaces.

With this report we like to emphasize the great potential of the DAR_{inv} technology in many attractive fields. It was exemplarily documented in field of drug-re-formulation, which the dramatically increased the therapeutic potential of classic drugs as pointed out here with the alkylating agent temozolomide (TMZ). It was also able to enhance the therapeutic spectrum in malignant gliomas or in hormone-refractory prostate cancer^{65,} ^{66, 164}. Additionally this DAR_{inv} technology attracts increasing notice to further medical applications, especially in oncological diagnostics and therapy at the cellular and molecular level.

As illustrated above impressively, the DAR_{inv} technology is considered as an attractive strategyplatform for efficient syntheses of promising pharmacologically active components and derivatives of natural molecules (Scheme 16 -Scheme 26) with an optimized therapeutic index. The DAR_{inv} methodology contributed to the enhancement of the quality of already established syntheses of natural materials which are difficult to isolate and enrich ¹⁶⁵. The technical superiority like chemoselectivity, regio- and stereo-selectivity allow the synthetic access to increasingly more and more complex target structures ¹⁶⁶.

ACKNOWLEDGEMENTS: This work was supported in part by grant from the Deutsche Krebshilfe Foundation (Project No. 106335).

REFERENCES:

- 1. Alder K, Diels O. [Otto Diels and Kurt Alder; winners of the Nobel Prize in chemistry]. Cienc Invest 1951, 7(3): 143-144.
- Bachmann WE, Chemerda JM. The Diels Alder Reaction of 1-Vinyl-6-Methoxy-3,4-Dihydronaphthalene with Citraconic Anhydride. J Americ Chem Soc 1948, 70(4): 1468-1473.
- Bachmann WE, Deno NC. The Diels-Alder Reaction of 1-Vinylnaphthalene with a,@- and a,p,y,G- Unsaturated Acids and Derivatives. J Americ Chem Soc 1949, 71: 362-363.

- 4. Boger DL. Diels-Alder Reactions of Azadienes. 1983, 39(18): 2869-2939.
- Boger DL. Diels-Alder Reactions of Heterocyclic Azadienes - Scope and Applications. 1986, 86(5): 781-793.
- 6. Ibrahim-Ouali M. Diels-Alder route to steroids and associated structures. Steroids 2008, 74(2): 133-162.
- Gong J, Xu W. Different synthetic strategies of oseltamivir phosphate: a potent influenza neuraminidase inhibitor. Curr Med Chem 2008, 15(30): 3145-3159.
- Ishida M, Inagaki S. pi-Facial Selectivity of Diels-Alder Reactions. Top Curr Chem 2010, 289: 183-218.
- 9. Bodnar BS, Miller MJ. The nitrosocarbonyl hetero-Diels-Alder reaction as a useful tool for organic syntheses. Angew Chem Int Ed Engl 2011, 50(25): 5630-5647.
- 10. Nakagawa H. Photocontrollable nitric oxide (NO) and nitroxyl (HNO) donors and their release mechanisms. Nitric Oxide 2011, 25(2): 195-200.
- 11. Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl 2001, 40(11): 2004-2021.
- Huisgen R. Theory of 1,3-Dipolar Cycloadditions. In: Padwa A, ed. 1,3-Dipolar Cycloaddition Chemistry. New York: Wiley, 1984;1-176.
- 13. Soellner MB, Nilsson BL, Raines RT. Staudinger ligation of alpha-azido acids retains stereochemistry. 2002, 67(14): 4993-4996.
- 14. Kohn M, Breinbauer R. The Staudinger ligation-a gift to chemical biology. Angew Chem Int Ed Engl 2004, 43(24): 3106-3116.
- 15. Chang PV, Prescher JA, Sletten EM, *et al.* Copper-free click chemistry in living animals. Proc Natl Acad Sci U S A 2010, 107(5): 1821-1826.
- 16. Saxon E, Armstrong JI, Bertozzi CR. A "traceless" Staudinger ligation for the chemoselective synthesis of amide bonds. Org Lett 2000, 2(14): 2141-2143.
- 17. Wiessler M, Waldeck W, Kliem C, *et al.* The Diels-Alder-reaction with inverse-electron-demand, a very efficient versatile click-reaction concept for proper ligation of variable molecular partners. Int J Med Sci 2009, 7(1): 19-28.
- Sustmann R. Simple Model for Substituent Effects in Cycloaddition Reactions .1. 1,3-Dipolar Cycloadditions. 1971,(29): 2717.
- 19. Sustmann R. Simple Model for Substituent Effects in Cycloaddition Reactions .2. Diels-Alder Reaction. 1971,(29): 2721.
- Sauer J, Sustmann R. Mechanistic Aspects of Diels-Alder Reactions - A Critical Survey. 1980, 19(10): 779-807.
- 21. Liu J, Niwayama S, You Y, *et al.* Theoretical prediction and experimental tests of conformational switches in transition states of Diels-Alder and 1,3-dipolar cycloadditions to enol ethers. 1998, 63(4): 1064-1073.
- 22. Zhuo JC, Wyler H. Hetero-Diels-Alder cycloadditions of alpha,beta-unsaturated acyl cyanides part 4 substituent effects in reactions

with p-substituted styrenes. 1999, 82(7): 1122-1134.

- Yu ZX, Dang Q, Wu YD. Aromatic dienophiles.
 A theoretical study of an inverse-electron demand Diels-Alder reaction between 2aminopyrrole and 1,3,5-triazine. J Org Chem 2001, 66(18): 6029-6036.
- Marko IE, Evans GR. Diastereoselective, Lanthanide-Catalyzed, Inverse Electron-Demand Diels-Alder (Iedda) Reactions of 3-Carbomethoxy-2-Pyrone (3-Cmp) Derivatives. 1994, 35(17): 2767-2770.
- 25. Marko IE, Evans GR, Declercq JR, et al. Improved Enantioselectivity in the Inverse Electron Demand Diels-Alder Cycloadditions of 3-Carbomethoxy-2-Pyrone Catalyzed by Chiral Ytterbium Complexes. 1994, 103(5-6): 295-297.
- Wiessler M, Hennrich U, Pipkorn R, et al. Theranostic cRGD-BioShuttle Constructs Containing Temozolomide- and Cy7 For NIR-Imaging and Therapy. Theranostics 2011, 1: 381-394.
- Carboni RA, Lindsey RV. Reactions of Tetrazines with Unsaturated Compounds - A New Synthesis of Pyridazines. J Americ Chem So 1959, 81(16): 4342-4346.
- 28. Sauer J, Wiest H. Diels-Alder-Additionen Mit Inversem Elektronenbedarf. 1962, 74(10): 353.
- 29. Bock VD, Hiemstra H, van Maarseveen JH. Cu-Icatalyzed alkyne-azide "click" cycloadditions from a mechanistic and synthetic perspective. 2005,(1): 51-68.
- Tornoe CW, Christensen C, Meldal M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. 2002, 67(9): 3057-3064.
- 31. Kovalyev YG, Postovskii IY, Rusinov GL, *et al.* Cyclo-Addition to Sym-Tetrazines (Carboni-Lindsey Reaction). 1981,(11): 1462-1478.
- 32. Rusinov GL, Ishmetova RI, Latosh NI, *et al.* [4+2]-cycloaddition of 3,6-bis(3,5-dimethyl-4-R-pyrazol-1-yl)-1,2,4,5-tetrazines with alkenes. 2000, 49(2): 355-362.
- Helm MD, Plant A, Harrity JPA. Substituent effects in Carboni-Lindsey reactions of 1,2,4,5tetrazines and aryl-substituted alkynylboronates. 2007,(18): 2885-2887.
- 34. Neunhoeffer.H, Werner G. Reaction of Pyridazinecarboxylates with 1-Diethylaminopropine. 1972,(16): 1517.
- 35. Neunhoeffer H, Lehmann B. Cycloaddition Reactions with Azabenzenes .11. Cycloaddition Reactions with Methoxy-1,2,4-Triazines and Dialkylamino-1,2,4-Triazines. 1977,(9): 1413-1420.
- 36. Boger DL, Coleman RS, Panek JS, *et al.* A detailed, convenient preparation of dimethyl 1,2,4,5-tetrazine-3,6-dicarboxylate. J Org Chem 1985, 50(25): 5377-5379.
- Curtius T, Darapsky A, Muller E. Über die Umwandlungsprodukte des Diazoessigesters unter dem Einfluss von Alkalien. Chem Ber 1908, 41(2): 3161-3172.

- Boger DL, Schaum RP, Garbaccio RM. Regioselective Inverse Electron Demand Diels-Alder Reactions of N-Acyl 6-Amino-3-(methylthio)-1,2,4,5-tetrazines. J Org Chem 1998, 63(18): 6329-6337.
- 39. Fox JM, Blackman MA, Royzen M, et al. Tetrazine-based bio-orthogonal coupling reagents and methods. US Pat. 8,236,949 B2.
- 40. Chang YS, Jeong JM, Lee YS, *et al.* Preparation of 18F-human serum albumin: a simple and efficient protein labeling method with 18F using a hydrazone-formation method. Bioconjug Chem 2005, 16(5): 1329-1333.
- 41. Dang Q, Gomez-Galeno JE. An efficient synthesis of pyrrolo[2,3-d]pyrimidines via inverse electron demand diels-alder reactions of 2-amino-4-cyanopyrroles with 1,3,5-triazines. J Org Chem 2002, 67(24): 8703-8705.
- 42. Yu ZX, Dang Q, Wu YD. Clarification of the mechanism of the cascade reactions between amino-substituted heterocycles and 1,3,5-triazines. J Org Chem 2005, 70(3): 998-1005.
- 43. De RM, Arnold D. Electronic and steric effects on the mechanism of the inverse electron demand Diels-Alder reaction of 2-aminopyrroles with 1,3,5-triazines: identification of five intermediates by 1H, 13C, 15N, and 19F NMR spectroscopy. J Org Chem 2009, 74(1): 319-328.
- 44. Branowska D. A direct route to 6,6'-disubstituted-2,2'-bipyridines by double Diels-Alder/retro Diels-Alder reaction of 5,5'-bi-1,2,4-triazines. Molecules 2005, 10(1): 274-278.
- 45. Branowska D. Synthesis of unsymmetrical annulated 2,2'-bipyridine analogues with attached cycloalkene and piperidine rings via sequential Diels-Alder Reaction of 5,5'-bi-1,2,4-triazines. Molecules 2005, 10(1): 265-273.
- Branowska D, Ostrowski S, Rykowski A. Tandem vicarious nucleophilic substitution of hydrogen/intramolecular Diels-Alder reaction of 1,2,4-triazines into functionalized cycloalkenopyridines. Chem Pharm Bull (Tokyo) 2002, 50(4): 463-466.
- Lahue BR, Wan ZK, Snyder JK. Dienophilicity of imidazole in inverse electron demand Diels-Alder reactions. 4. Intermolecular reactions with 1,2,4triazines. J Org Chem 2003, 68(11): 4345-4354.
- Lahue BR, Lo SM, Wan ZK, *et al.* Intramolecular inverse-electron-demand Diels-Alder reactions of imidazoles with 1,2,4-triazines: a new route to 1,2,3,4-tetrahydro-1,5-naphthyridines and related heterocycles. J Org Chem 2004, 69(21): 7171-7182.
- 49. Ma Z, Ni F, Woo GH, *et al.* An intramolecular inverse electron demand Diels-Alder approach to annulated alpha-carbolines. Beilstein J Org Chem 2012, 8: 829-840.
- 50. Anderson ED, Boger DL. Inverse electron demand Diels-Alder reactions of 1,2,3-triazines: pronounced substituent effects on reactivity and cycloaddition scope. J Am Chem Soc 2011, 133(31): 12285-12292.
- 51. Anderson ED, Boger DL. Scope of the inverse electron demand Diels-Alder reactions of 1,2,3-triazine. Org Lett 2011, 13(9): 2492-2494.

- Clark RC, Pfeiffer SS, Boger DL. Diastereoselective Diels-Alder reactions of Nsulfonyl-1-aza-1,3-butadienes with optically active enol ethers: an asymmetric variant of the 1azadiene Diels-Alder reaction. J Am Chem Soc 2006, 128(8): 2587-2593.
- Turkmen YE, Montavon TJ, Kozmin SA, *et al.* Silver-catalyzed formal inverse electron-demand Diels-Alder reaction of 1,2-diazines and siloxy alkynes. J Am Chem Soc 2012, 134(22): 9062-9065.
- Frissen AE, Marcelis ATM, Geurtsen G, et al. Intramolecular Diels-Alder Reactions of 2-(Alkynyl)Pyrimidines and 2-(Alkynyl)Pyridines. 1989, 45(16): 5151-5162.
- 55. Albrecht L, Dickmeiss G, Weise CF, *et al.* Dienamine-Mediated Inverse-Electron-Demand Hetero-Diels-Alder Reaction by Using an Enantioselective H-Bond-Directing Strategy. Angew Chem Int Ed Engl 2012, 51(52): 13109-13113.
- 56. Li JL, Liu TY, Chen YC. Aminocatalytic asymmetric Diels-Alder reactions via HOMO activation. Acc Chem Res 2012, 45(9): 1491-1500.
- Devaraj NK, Hilderbrand S, Upadhyay R, *et al.* Bioorthogonal Turn-On Probes for Imaging Small Molecules inside Living Cells. Angew Chem Int Ed Engl 2010, 49(16): 2869-2872.
- 58. Devaraj NK, Weissleder R, Hilderbrand SA. Tetrazine-based cycloadditions: application to pretargeted live cell imaging. Bioconjug Chem 2008, 19(12): 2297-2299.
- 59. Devaraj NK, Weissleder R. Biomedical applications of tetrazine cycloadditions. Acc Chem Res 2011, 44(9): 816-827.
- 60. Haun JB, Devaraj NK, Hilderbrand SA, *et al.* Bioorthogonal chemistry amplifies nanoparticle binding and enhances the sensitivity of cell detection. Nat Nanotechnol 2010, 5(9): 660-665.
- 61. Selvaraj R, Liu S, Hassink M, *et al.* Tetrazinetrans-cyclooctene ligation for the rapid construction of integrin alpha(v)beta(3) targeted PET tracer based on a cyclic RGD peptide. Bioorg Med Chem Lett 2011, 21(17): 5011-5014.
- 62. Pipkorn R, Wiessler M, Waldeck W, *et al.* Enhancement of the click chemistry for the inverse Diels Alder technology by functionalization of amide-based monomers. Int J Med Sci 2011, 8(5): 387-396.
- 63. Braun K, Wiessler M, Pipkorn R, *et al.* A cyclic-RGD-BioShuttle functionalized with TMZ by DARinv "Click Chemistry" targeted to alphavbeta3 integrin for therapy. Int J Med Sci 2010, 7(6): 326-339.
- 64. Zeglis BM, Mohindra P, Weissmann GI, *et al.* Modular strategy for the construction of radiometalated antibodies for positron emission tomography based on inverse electron demand diels-alder click chemistry. Bioconjug Chem 2011, 22(10): 2048-2059.
- 65. Waldeck W, Wiessler M, Ehemann V, *et al.* TMZ-BioShuttle--a reformulated temozolomide. Int J Med Sci 2008, 5(5): 273-284.

- 66. Pipkorn R, Waldeck W, Didinger B, *et al.* Inverse-electron-demand Diels-Alder reaction as a highly efficient chemoselective ligation procedure: Synthesis and function of a BioShuttle for temozolomide transport into prostate cancer cells. J Pept Sci 2009, 15(3): 235-241.
- 67. Wiessler M, Waldeck W, Pipkorn R, *et al.* Extension of the PNA world by functionalized PNA monomers eligible candidates for inverse Diels Alder Click Chemistry. Int J Med Sci 2010, 7(4): 213-223.
- Sauer J, Heinrich G. Kinetik und Umsetzungen Von 1.2.4.5-Tetrazinen Mit und Elektronenreichen Doppelbindungen. 1966,(41): 4979.
- 69. Reppe W, Schlichting O, Klager K, *et al.* Cyclisierende Polymerisation von Acetylen I. 1948, 560: 1-92.
- Avram M, Mateescu G, Nenitzescu CD. Die Konfiguration der Addukte des Cyclooctatetraens Mit Maleinsaureanhydrid und Acetylendicarbonsaure-Dimethylester. 1960, 636(1-3): 174-183.
- 71. Huisgen R, Mietzsch F. Valence Tautomerism of Cyclooctatetraene. 1964, 3(2): 83-&.
- 72. Vogel E. Kleine Kohlenstoff-Ringe .2. Uber Die Thermische Stabilitat des Kohlenstoff-Vierrings. 1958, 615(1-3): 14-21.
- Hartmann W. Photosensitized Addition of Maleic Anhydride to Terminal Alkynes. 1969, 102(12): 3974.
- 74. Sauer J, Lang D, Wiest H. Reaktivitat Cis-Trans-Isomerer Dienophile Bei der Diels-Alder-Addition. 1962, B 17(3): 206.
- 75. Sauer J, Lang D, Mielert A. Reaktivitatsfolge Von Dienen Gegenuber Maleinsaureanhydrid Bei der Diels-Alder-Reaktion. 1962, 74(10): 352.
- 76. Sauer J, Bauerlein P, Ebenbeck W, et al. [4+2] cycloadditions of 1,2,4,5-tetrazines and cyclopropenes - Synthesis of 3,4diazanorcaradienes and tetracyclic aliphatic azo compounds. 2001,(14): 2629-2638.
- Sauer J, Pabst GR, Holland U, *et al.* 3,6-bis(2H-tetrazol-5-yl)-1,2,4,5-tetrazine: A versatile bifunctional building block for the synthesis of linear oligoheterocycles. 2001,(4): 697-706.
- 78. Sauer J. Diels-Alder-Reactions I. New Preparative Aspects. 1966, 5(2): 211.
- 79. Sauer J, Kredel J. Asymmetrische Induktion Bei Diels-Alder-Reaktionen. 1966,(51): 6359.
- Neunhoeffer H, Bachmann M. Cycloaddition Reactions with Azabenzenes .10. Cycloaddition Reactions with 1,3,5-Triazines. 1975, 108(12): 3877-3882.
- Oeser E, Neunhoeffer H, Fruhauf HW. Cycloaddition Reactions with Azabenzenes, .9. Synthesis and Structure of Cyclopenta[C]-Pyrido[2.1-F][1,2,4]Triazines. 1975,(7-8): 1445-1454.
- 82. Ewald H, Lehmann B, Neunhoeffer H. Cycloaddition Reactions with Azabenzenes .12. Reactions of 1,2,4-Triazines with Dimethyl Acetylenedicarboxylate. 1977,(10): 1718-1724.
- 83. Neunhoeffer H, Schaberger FD. Synthesis of 1,2,4-Triazines .10. Cycloaddition Reactions of

Azabenzenes .15. Attempted Synthesis of 1-Azaheptalenes. 1983,(11): 1845-1858.

- 84. Diaz-Ortiz A, de la Hoz A, Prieto P, *et al.* Diels-Alder cycloaddition of 4,6-dimethyl-1,2,3-triazine with enamines, or their precursors, under microwave irradiation. 2001,(2): 236-237.
- 85. Mattner M, Neunhoeffer H. 1,3-dipolar cycloaddition reactions with 1,2,3-triazinium ylides. 2004,(20): 4234-4238.
- Neunhoeffer H, Werner G. Cycloaddition Reactions with Azabenzenes .6. Reaction of Pyridazines with 1-Methoxy-N,N-Dimethylvinylamine. 1973,(12): 1955-1962.
- Hilderbrand SA, Devaraj NK, Weissleder R. Compositions and methods for delivering a substance to a biological target. US Pat. 2011/0268654 A1.
- Blackman ML, Royzen M, Fox JM. Tetrazine ligation: fast bioconjugation based on inverseelectron-demand Diels-Alder reactivity. J Am Chem Soc 2008, 130(41): 13518-13519.
- Rossin R, Verkerk PR, van den Bosch SM, *et al.* In vivo chemistry for pretargeted tumor imaging in live mice. Angew Chem Int Ed Engl 2010, 49(19): 3375-3378.
- 90. Schoch J, Staudt M, Samanta A, *et al.* Sitespecific one-pot dual labeling of DNA by orthogonal cycloaddition chemistry. Bioconjug Chem 2012, 23(7): 1382-1386.
- 91. Wiessler M, Müller E, Lorenz P, et al. Process for the covalent coupling of two molecules by means of a Diels-Alder Reaction with inverse electron requirement. US Pat. 2010/0016545 A.
- Yang Z, Xie X, Fox JM. Diastereoselective synthesis of methylenecyclopropanes from chiral cyclopropene derivatives. Angew Chem Int Ed Engl 2006, 45(24): 3960-3962.
- 93. Alfini R, Cecchi M, Giomi D. Reactivity and synthetic applications of 4,5-dicyanopyridazine: an overview. Molecules 2010, 15(3): 1722-1745.
- 94. Fujita R, Yoshisuji T, Wakayanagi S, *et al.* Synthesis of 5(6H)-phenanthridones using Diels-Alder reaction of 3-nitro-2(1H)-quinolones acting as dienophiles. Chem Pharm Bull (Tokyo) 2006, 54(2): 204-208.
- Suarez-Moreno GV, Gonzalez-Zamora E, Mendez F. Oxazole as an electron-deficient diene in the Diels-Alder reaction. Org Lett 2011, 13(24): 6358-6361.
- 96. Largeron M, Neudorffer A, Vuilhorgne M, et al. Regiospecific inverse-electron-demand Diels-Alder reaction of simultaneously electrogenerated diene and dienophile: an expeditious route to polyfunctionalized 1,4-benzoxazine derivatives. Angew Chem Int Ed Engl 2002, 41(5): 824-827.
- 97. Blattes E, Fleury MB, Largeron M. Simultaneously electrogenerated cycloaddition partners for regiospecific inverse-electron-demand Diels-Alder reactions: a route for polyfunctionalized 1,4-benzoxazine derivatives. J Org Chem 2004, 69(3): 882-890.
- 98. Xu DW, Chiaroni A, Fleury MB, *et al.* Electrochemically induced cascade reaction for the assembly of libraries of biologically relevant

1,4-benzoxazine derivatives. 2006, 71(17): 6374-6381.

- Gurowitz WD, Joseph MA. Enamines .2. Factors Determining Structure of Enamines of 2-Substituted Ketones. 1967, 32(11): 3289.
- 100. Bodwell GJ, Pi Z, Pottie IR. Electron deficient dienes. 2. One step synthesis of a coumarin-fused electron deficient diene and its inverse electron demand Diels-Alder reactions with enamines. 1999,(4): 477-479.
- 101. Pottie IR, Nandaluru PR, Benoit WL, *et al.* Synthesis of 6H-dibenzo[b,d]pyran-6-ones using the inverse electron demand Diels-Alder reaction. J Org Chem 2011, 76(21): 9015-9030.
- 102. Jung ME, Chu HV. Preparation of a functionalized tetracyclic intermediate for the synthesis of rhodexin A. Org Lett 2008, 10(16): 3647-3649.
- 103. Jung ME, Yoo D. First total synthesis of rhodexin A. Org Lett 2011, 13(10): 2698-2701.
- 104. Cuzzupe AN, Hutton CA, Lilly MJ, *et al.* Total synthesis of the epidermal growth factor inhibitor (-)-reveromycin B. J Org Chem 2001, 66(7): 2382-2393.
- 105. Pottie IR, Nandaluru PR, Bodwell GJ. An Inverse Electron-Demand Diels-Alder-Based Total Synthesis of Urolithin M7. 2011,(15): 2245-2247.
- 106. Gaulon C, Dhal R, Chapin T, *et al.* N-vinyl-2oxazolidinones: efficient chiral dienophiles for the [4 + 2]-based de novo synthesis of new N-2deoxyglycosides. J Org Chem 2004, 69(12): 4192-4202.
- 107. Seitz G, Overheu W. ["Inverse" Diels-Adler additions, 6. "Inverse" cycloadditions with lactimethers]. Arch Pharm (Weinheim) 1977, 310(11): 936-938.
- 108. Seitz G, Kampchen T. [Inverse Diels-Alder additions. 5. A new synthesis approach to substituted 1,2,4-triazoles]. Arch Pharm (Weinheim) 1977, 310(3): 269-271.
- 109. Seitz G, Kampchen T. ["Inverse" Diels-Alder additions, VII: pi-Electron rich heteroaromatic compounds as "inverse" dienophiles (author's transl)]. Arch Pharm (Weinheim) 1978, 311(9): 728-735.
- 110. Kampchen T, Massa W, Overheu W, *et al.* Reactions of Dimethyl "1,2,4,5-Tetrazine-3,6-Dicarboxylate with Nucleophiles. Chem Ber 1982, 115(2): 683-694.
- 111. Seitz G, Kampchen T, Overheu W. Inverse Diels-Alder Additions, .8. Azepines As Inverse Dienophiles. 1978, 311(9): 786-795.
- 112. Jiang X, Wang L, Kai M, *et al.* Asymmetric inverse-electron-demand hetero-Diels-Alder reaction for the construction of bicyclic skeletons with multiple stereocenters by using a bifunctional organocatalytic strategy: an efficient approach to chiral macrolides. Chemistry 2012, 18(36): 11465-11473.
- 113. Gould SJ, Weinreb SM. Streptonigrin. Fortschr Chem Org Naturst 1982, 41: 77-114.
- 114. Boger DL, Panek JS. Inverse Electron Demand Diels-Alder Reactions of Heterocyclic Azadienes
 Formal Total Synthesis of Streptonigrin. 1985, 107(20): 5745-5754.

- 115. Wan ZK, Woo GHC, Snyder JK. Dienophilicity of imidazole in inverse electron demand Diels-Alder reactions: cycloadditions with 1,2,4,5tetrazines and the structure of zarzissine. 2001, 57(26): 5497-5507.
- 116. El Sous M, Ganame D, Tregloan PA, *et al.* Total synthesis of (-)-reveromycin a. Org Lett 2004, 6(17): 3001-3004.
- 117. El Sous M, Rizzacasa MA. Hetero-Diels-Alder synthesis of the spiroketal fragment of reveromycin A. 2000, 41(44): 8591-8594.
- 118. EAGLE H. Propagation in a fluid medium of a human epidermoid carcinoma, strain KB. Proc Soc Exp Biol Med 1955, 89(3): 362-364.
- 119. Lozzio BB, Lozzio CB. Properties of the K562 cell line derived from a patient with chronic myeloid leukemia [letter]. Int J Cancer 1977, 19(1): 136.
- 120. Osada H, Koshino H, Isono K, *et al.* Reveromycin A, a new antibiotic which inhibits the mitogenic activity of epidermal growth factor. J Antibiot (Tokyo) 1991, 44(2): 259-261.
- 121. Miyamoto Y, Machida K, Mizunuma M, *et al.* Identification of Saccharomyces cerevisiae isoleucyl-tRNA synthetase as a target of the G1specific inhibitor Reveromycin A. J Biol Chem 2002, 277(32): 28810-28814.
- 122. Takahashi H, Osada H, Koshino H, et al. Reveromycins, new inhibitors of eukaryotic cell growth. II. Biological activities. J Antibiot (Tokyo) 1992, 45(9): 1414-1419.
- 123. Snider BB, Lu Q. Total Synthesis of (+/-)-Leporin A. J Org Chem 1996, 61(8): 2839-2844.
- 124. Tepaske MR, Gloer JB, Wicklow DT, *et al.* Leporin-A - An Antiinsectan N-Alkoxypyridone from the Sclerotia of Aspergillus-Leporis. 1991, 32(41): 5687-5690.
- 125. Tietze LF. Domino Reactions in Organic-Synthesis. 1995,(12): 453-457.
- 126. Bouaicha N, Amade P, Puel D, *et al.* Zarzissine, a new cytotoxic guanidine alkaloid from the Mediterranean sponge Anchinoe paupertas. J Nat Prod 1994, 57(10): 1455-1457.
- 127. Elion GB. The Purine Path to Chemotherapy. 1989, 244(4900): 41-47.
- 128. Barraclough P, Firmin D, Iyer R, *et al.* Protonation Equilibria of Cardiotonic Polyaza Heterocycles. 1988,(10): 1839-1846.
- 129. Gibson KH, Wood R, Oldham AA, *et al.* The Synthesis of Heterosubstituted Benzimidazole Derivatives with Potent Angiotensin-Ii Antagonist Activity. 1993, 3(6): 1019-1024.
- 130. Che DQ, Wegge T, Stubbs MT, *et al.* exo-2-(pyridazin-4-yl)-7-azalbicyclo[2.2.1]heptanes: Syntheses and nicotinic acetylcholine receptor agonist activity of potent pyridazine analogues of (+/-)-epibatidine. 2001, 44(1): 47-57.
- 131. Rupniak NM, Patel S, Marwood R, *et al.* Antinociceptive and toxic effects of (+)epibatidine oxalate attributable to nicotinic agonist activity. Br J Pharmacol 1994, 113(4): 1487-1493.
- 132. Mu L, Drandarov K, Bisson WH, et al. Synthesis and binding studies of epibatidine analogues as

ligands for the nicotinic acetylcholine receptors. Eur J Med Chem 2006, 41(5): 640-650.

- 133. Malpass JR, Patel AB, Davies JW, *et al.* Modification of 1-substituents in the 2azabicyclo[2.1.1]hexane ring system; approaches to potential nicotinic acetylcholine receptor ligands from 2,4-methanoproline derivatives. J Org Chem 2003, 68(24): 9348-9355.
- 134. Haider N. Inverse-Electron-Demand Diels-Alder Reactions of Condensed Pyridazines .1. Synthesis of Phthalazine Derivatives from Pyridazino[4,5-D]Pyridazines. 1991, 47(24): 3959-3968.
- 135. Haider N, Wanko R. Inverse-Electron-Demand Diels-Alder Reactions of Condensed Pyridazines
 .5. 1,4-Bis(Trifluoromethyl)-Pyridazino[4,5-B]Indole As An Azadiene. 1994, 38(8): 1805-1811.
- 136. Haider N, Mereiter K, Wanko R. Inverse-Electron-Demand Diels-Alder Reactions of Condensed Pyridazines .4. Synthesis and Cycloaddition Reactions of 1,4-Bis(Trifluoromethyl)Pyrido[3,4-D]Pyridazine. 1994, 38(8): 1845-1858.
- 137. Haider N, Mereiter K, Wanko R. [4+2] Cycloaddition Reactions of 1,4-Bis(Trifluoromethyl)Pyrido[3,4-D]Pyridazine with Indole-Type Dienophiles. 1995, 41(7): 1445-1459.
- 138. Haider N. Inverse-Electron-Demand Diels-Alder Reactions of Condensed Pyridazines .8. Convenient Synthesis of Cycloalkene-Fused Phthalazinones. 1995, 41(11): 2519-2525.
- Haider N. Inverse-Electron-Demand Diels-Alder Reactions of Condensed Pyridazines .2. Synthesis of Isoquinoline Derivatives from Pyrido[3,4-D]Pyridazines. 1992, 48(35): 7173-7184.
- 140. He L, Bekkaye M, Retailleau P, *et al.* Chiral phosphoric acid catalyzed inverse-electron-demand aza-Diels-Alder reaction of isoeugenol derivatives. Org Lett 2012, 14(12): 3158-3161.
- 141. Nandaluru PR, Bodwell GJ. Multicomponent synthesis of 6H-dibenzo[b,d]pyran-6-ones and a total synthesis of cannabinol. Org Lett 2012, 14(1): 310-313.
- 142. Petersen KS, Dolan PM, Kensler TW, *et al.* Lowcalcemic, highly antiproliferative, 23-oxa ether analogs of the natural hormone 1 alpha,25dihydroxyvitamin D3: design, synthesis, and preliminary biological evaluation. J Med Chem 2007, 50(23): 5824-5832.
- 143. Posner GH, Woodard BT, Crawford KR, *et al.* 2,2-Disubstituted analogues of the natural hormone 1 alpha,25-dihydroxyvitamin D(3): chemistry and biology. Bioorg Med Chem 2002, 10(7): 2353-2365.
- 144. Sinishtaj S, Jeon HB, Dolan P, *et al.* Highly antiproliferative, low-calcemic, side-chain amide and hydroxamate analogs of the hormone 1alpha,25-dihydroxyvitamin D3. Bioorg Med Chem 2006, 14(18): 6341-6348.
- 145. Kubodera N. [Progress in research on vitamin D analogs]. Clin Calcium 2006, 16(7): 1167-1172.
- 146. Beckmann HS, Niederwieser A, Wiessler M, *et al.* Preparation of carbohydrate arrays by using Diels-

Alder reactions with inverse electron demand. Chemistry 2012, 18(21): 6548-6554.

- 147. Seeberger PH. Chemical glycobiology: why now? Nat Chem Biol 2009, 5(6): 368-372.
- 148. 148. Krishnamoorthy L, Mahal LK. Glycomic analysis: an array of technologies. ACS Chem Biol 2009, 4(9): 715-732.
- 149. Lonardi E, Balog CI, Deelder AM, *et al.* Natural glycan microarrays. Expert Rev Proteomics 2010, 7(5): 761-774.
- 150. Gao J, Ma L, Liu D, *et al.* Microarray-based technology for glycomics analysis. Comb Chem High Throughput Screen 2012, 15(1): 90-99.
- 151. Burke PA, DeNardo SJ, Miers LA, *et al.* Cilengitide targeting of alpha(v)beta(3) integrin receptor synergizes with radioimmunotherapy to increase efficacy and apoptosis in breast cancer xenografts. Cancer Res 2002, 62(15): 4263-4272.
- 152. Smith JW. Cilengitide Merck. Curr Opin Investig Drugs 2003, 4(6): 741-745.
- 153. Marchini M, Mingozzi M, Colombo R, *et al.* Cyclic RGD peptidomimetics containing bifunctional diketopiperazine scaffolds as new potent integrin ligands. Chemistry 2012, 18(20): 6195-6207.
- 154. Takada Y, Ye X, Simon S. The integrins. Genome Biol 2007, 8(5): 215.
- 155. Haier J, Nicolson GL. Cell biology and clinical implications of adhesion molecules in colorectal diseases: Colorectal cancers, infections and inflammatory bowel diseases. 2001, 18(8): 623-638.
- 156. Haier J, Goldmann U, Hotz B, *et al.* Inhibition of tumor progression and neoangiogenesis using cyclic RGD-peptides in a chemically induced colon carcinoma in rats. Clin Exp Metastasis 2002, 19(8): 665-672.

- 157. Karver MR, Weissleder R, Hilderbrand SA. Synthesis and evaluation of a series of 1,2,4,5tetrazines for bioorthogonal conjugation. Bioconjug Chem 2011, 22(11): 2263-2270.
- 158. Best MD. Click chemistry and bioorthogonal reactions: unprecedented selectivity in the labeling of biological molecules. 2009, 48(28): 6571-6584.
- 159. Weisbrod SH, Marx A. Novel strategies for the site-specific covalent labelling of nucleic acids. Chem Commun (Camb) 2008,(44): 5675-5685.
- 160. Hassert R, Pagel M, Ming Z, *et al.* Biocompatible Silicon Surfaces through orthogonal Click Chemistries and a high Affinity Silicon Oxide Binding Peptpide. Bioconjug Chem 2012.
- 161. Saxon E, Bertozzi CR. Cell surface engineering by a modified Staudinger reaction. 2000, 287(5460): 2007-2010.
- 162. Agard NJ, Baskin JM, Prescher JA, *et al.* A comparative study of bioorthogonal reactions with azides. ACS Chem Biol 2006, 1(10): 644-648.
- 163. Braun K, Pipkorn R, Waldeck W. Development and Characterization of Drug Delivery systems for Targeting Mammalian Cells and Tissues: A Review. 2005, 12: 1841-1858.
- 164. Braun K, Wiessler M, Ehemann V, *et al.* Treatment of glioblastoma multiforme cells with temozolomide-BioShuttle ligated by the inverse Diels-Alder ligation chemistry. Drug Design, Development and Therapy 2008, 2: 289-301.
- 165. Hoffmann RW. Natural Product Synthesis: Changes over Time. Angew Chem Int Ed Engl 2013, 52(1): 123-130.
- 166. Bartmann W, Trost BM. Selectivity-a Goal for Synthetic Efficiency. Weinheim: Verlag Chemie, 1984.

How to cite this article:

Wiessler M, Waldeck W, Pipkorn R, Lorenz P, Debus J, Hans Schrenk H, and Braun K: The Diels-Alder-reaction with Inverse-Electron-Demand - A review of an efficient & attractive Click-reaction concept. *Int J Pharm Sci Res* 2013: 4(10); 3678-3698. doi: 10.13040/IJPSR. 0975-8232.4(10).3678-98

All © 2013 are reserved by International Journal of Pharmaceutical Sciences and Research. This Journal licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

This article can be downloaded to ANDROID OS based mobile. Scan QR Code using Code/Bar Scanner from your mobile. (Scanners are available on Google Playstore)