

Received on 08 October 2025; received in revised form, 13 January 2026; accepted, 22 January 2026; published 01 February 2026

A REVIEW ON: ENVIRONMENTAL IMPACT OF IMPROPER DRUG DISPOSALS

Satish Kumar Singh ^{*}, Divya Verma and Shashi Alok

Institute of Pharmacy, Bundelkhand University, Jhansi - 284128, Uttar Pradesh, India.

Keywords:

Pharmaceutical waste management, Safe drug disposal, Green pharmacy, Environmental pollution, Public awareness programs, Drug take-back programs

Correspondence to Author:

Mr. Satish Kumar Singh

Student,
Institute of Pharmacy,
Bundelkhand University, Jhansi -
284128, Uttar Pradesh, India.

E-mail: singhsatish873784@gmail.com

ABSTRACT: Improper disposal of unused, expired, or partially consumed medicines through household trash or drains releases active drug residues into soil and water, harming aquatic life, disturbing microbial balance, and promoting antibiotic resistance. In India, limited waste management systems and low public awareness worsen this problem. Article shown that most people were unaware of proper disposal methods or formal take-back/collection programs and commonly mixed medicines with domestic waste or flushed them, indicating a major knowledge gap. Pharmacies can act as key intervention points by serving as collection centers, providing counselling, and displaying educational materials on safe disposal. Integrating green pharmacy concepts into pharmacy education and community health activities can build long-term responsible behavior. A “Safe Drug Disposal Program” involving pharmacy-based collection bins, public guidance campaigns, and authorized biomedical waste handlers, supported by health authorities and regulators, can substantially reduce pharmaceutical pollution and its health and environmental risks. Additionally, collaboration with local NGOs, schools, and community groups can strengthen outreach, ensuring broader participation and sustained impact of safe disposal initiatives. Regulatory support through policies mandating pharmacy take-back programs and incentives for compliance will ensure scalability and effectiveness across urban and rural areas.

INTRODUCTION: Pharmaceutical contamination of the environment occurs through multiple pathways, with improper disposal being a significant contributor. When medications are flushed down toilets, thrown into household trash, or discharged through wastewater systems, they enter environmental matrices including surface water, groundwater, soil, and sediments. Unlike many traditional pollutants, pharmaceuticals are specifically designed to be biologically active at low concentrations, meaning even trace amounts in the environment can have profound effects on ecosystems and potentially on human health¹.

The biological activity of these compounds at therapeutic levels translates into ecological risks when they are introduced into environmental systems where non-target organisms may be exposed. The scale of this problem is staggering. Global pharmaceutical consumption has increased dramatically over the past few decades, driven by factors including aging populations, increased prevalence of chronic diseases, expanded healthcare access in developing nations, and the development of new therapeutic agents².

This increased consumption inevitably leads to more pharmaceutical waste. Studies have detected hundreds of different pharmaceutical compounds in environmental samples from every continent, including remote areas such as the Arctic, demonstrating the truly global nature of this contamination. Concentrations of pharmaceuticals in surface waters typically range from nanograms

QUICK RESPONSE CODE

DOI:
10.13040/IJPSR.0975-8232.17(2).499-10

This article can be accessed online on
www.ijpsr.com

DOI link: [https://doi.org/10.13040/IJPSR.0975-8232.17\(2\).499-10](https://doi.org/10.13040/IJPSR.0975-8232.17(2).499-10)

to micrograms per liter, though higher concentrations have been documented near pharmaceutical manufacturing facilities, hospitals, and wastewater treatment plant effluents.

- ❖ Significant proportion of populations in various countries dispose of unused or expired medications improperly through toilets, household trash, or sinks.
- ❖ Hospitals contribute high volumes of potent medications to waste streams: cytotoxic chemo agents, hormones, antibiotics, diagnostic agents.
- ❖ Pharmaceutical manufacturing in countries with weak environmental regulations releases effluents containing active pharmaceutical ingredients at levels much higher than municipal wastewater.
- ❖ Pollution hotspots near manufacturing plants in India, China, and other countries show alarming pharmaceutical contamination in water and soil.
- ❖ Healthcare facilities (hospitals, clinics, nursing homes) generate large amounts of pharmaceutical waste, including unused/expired drugs, contaminated materials, and patient excreta.
- ❖ Key reasons for improper disposal include lack of awareness of environmental impacts, no convenient disposal options, fears of medication theft/misuse, and poor guidance from healthcare providers and pharmacists³.

This review explores the environmental impacts of improper drug disposal, examining the pathways through which pharmaceuticals enter the environment, their persistence and fate in different environmental compartments, and their effects on ecosystems and human health. The scope of this study encompasses both prescription and over-the-counter medications, including antibiotics, hormones, analgesics, antidepressants, and chemotherapy agents, among others.

The Primary Objectives are Multifaceted and Interconnected:

1. Identify and analyze major pharmaceutical contamination sources and pathways, focusing

on household, healthcare, and manufacturing disposal practices.

2. Examine pharmaceutical fate, transport, persistence, and bioaccumulation across aquatic, soil, and air compartments.
3. Assess ecological impacts on aquatic life, wildlife, microbes, and plants, including toxicity, endocrine disruption, and antibiotic resistance.
4. Evaluate human health risks from environmental exposure, drinking water, food chains, and antibiotic resistance development.
5. Review regulations, policies, and disposal methods worldwide; identify gaps and best practices.
6. Propose mitigation strategies including technological, policy, education, and industry approaches throughout the pharmaceutical lifecycle.

Significance of the Study: The significance of studying the environmental impacts of improper drug disposal cannot be overstated, as it addresses a critical gap at the intersection of public health, environmental protection, and sustainable development. This issue has gained increasing recognition from the scientific community, regulatory agencies, and international organizations over the past two decades, yet it remains inadequately addressed in many parts of the world.

Environmental Significance: Pharmaceutical pollution is a unique environmental threat because these compounds are biologically active at low doses and designed to affect specific physiological processes⁴. Ecologically, this pollution causes feminization of fish, alters aquatic animal behavior, and disrupts vital microbial communities involved in nutrient cycling. These effects can cascade through food webs, destabilizing ecosystems and reducing biodiversity.

Public Health Significance: Pharmaceutical pollution represents a distinct and growing environmental challenge due to the unique properties of these compounds. Unlike traditional pollutants, pharmaceuticals are designed to exert

biological effects at very low concentrations, targeting specific processes in humans and animals. Their release into the environment can disrupt non-target organisms in unforeseen ways, with some compounds persisting for long periods and accumulating in environmental reservoirs. This persistence allows pharmaceuticals, especially antibiotics and hormones, to travel long distances through air and water pathways. Ecological consequences include feminization⁵ of fish, behavioral changes in aquatic animals, and disruption of crucial microbial communities responsible for nutrient cycling, all of which can destabilize ecosystems and reduce biodiversity.

Economic and Social Significance: From a public health perspective, even though environmental concentrations of pharmaceuticals are typically much lower than therapeutic doses, the cumulative exposure through drinking water, contaminated food, and environmental contact poses significant concerns. One of the most critical issues is the development and spread of antibiotic-resistant bacteria, which the World Health Organization has identified as a leading global health threat.

FIG. 1: PATHWAYS OF PHARMACEUTICAL COMPOUNDS ENTERING THE ENVIRONMENT THROUGH IMPROPER DISPOSAL PRACTICES (ADAPTED FROM KÜMMERER, 2010)⁹

Environmental contamination promotes this resistance, which then spreads to humans *via* multiple pathways. Additionally, endocrine-disrupting pharmaceuticals, even at trace levels, can interfere with hormonal systems and cause

reproductive, developmental, and metabolic health problems. Economically, pharmaceutical pollution results in increased costs for advanced water treatment, healthcare related to resistant infections, and lost ecosystem services.

Literature Review: The literature underscores the multifaceted nature of pharmaceutical pollution, encompassing sources from households, healthcare, and manufacturing; environmental fate and transport; ecological and public health risks; and the urgent need for improved treatment technologies and regulatory frameworks. These foundational studies have shaped current understanding and continue to drive advances in environmental pharmaceutical research and policy.

Christian G. Daughton & Thomas A. Ternes (1999): This pioneering review spotlighted pharmaceuticals as "agents of subtle change" causing chronic low-level ecosystem alterations rather than acute toxicity. It identified key entry routes: human excretion (30-90% unchanged or active metabolites), improper disposal, and insufficient wastewater treatment. Pharmaceuticals including analgesics, antibiotics, and hormones were found ubiquitously in surface and drinking waters at low concentrations, raising concerns over antibiotic resistance and long-term effects⁶.

Adriano Joss et al. (2005): This study assessed removal efficiencies of 35 pharmaceuticals in Swiss wastewater treatment plants. Removal varied widely from high (ibuprofen 90%) to very low (carbamazepine 7%). Biodegradation and sorption were main removal mechanisms, influenced by sludge retention time and seasonality. The study flagged transformation products that could be as toxic as parent compounds. It emphasized that conventional treatment is inadequate for many pharmaceuticals, underscoring the need for advanced methods like ozonation and activated carbon⁷.

Karl Fent, Anna A. Weston & Daniel Caminada (2006): This review documented ecotoxic effects of human pharmaceuticals at environmentally relevant levels. Synthetic estrogens induced fish feminization at nanogram concentrations; antidepressants altered aquatic behavior; beta-blockers caused developmental defects; NSAIDs

led to kidney damage in fish. It highlighted antibiotic concentrations sufficient to promote resistance gene transfer⁸.

Klaus Kümmerer (2009): Focused on antibiotics in aquatic environments, this review detailed their frequent detection globally, high concentrations near manufacturing hubs, and main sources: human, veterinary, and aquaculture use. It described mechanisms of antibiotic resistance emergence in environmental bacteria and transfer to human pathogens. Resistance genes for key antibiotic classes were widely found in multiple environmental matrices. The paper underscored antibiotics' critical role in antimicrobial resistance and called for improved treatment, use reduction, and monitoring⁹.

Paola Verlicchi et al., (2012): This meta-analysis of 118 pharmaceuticals across global urban wastewater systems revealed widespread presence of antibiotics, analgesics, and psychiatric drugs. Removal efficiencies in secondary treatment varied widely, with some compounds showing poor removal. Large pharmaceutical loads discharge into the environment despite treatment, posing ecological risks. Hospital wastewater was identified as more concentrated and diverse, suggesting need for pre-treatment¹⁰.

Tim aus der Beek et al., (2016): They provided a global overview of pharmaceutical pollution, finding widespread contamination in 71 countries across all continents. Highest contamination occurs near urban centers, pharmaceutical manufacturing in India and China, and downstream of wastewater treatment plants. The review identified 631 pharmaceutical compounds globally, with antibiotics, analgesics, and psychiatric drugs most frequent. The authors emphasized the need for global cooperation on monitoring, harmonized methods, and pollution prevention strategies¹¹.

Thilo Hofmann et al., (2020): Hofmann et al. revealed microplastics act as carriers for pharmaceuticals, concentrating drugs like antibiotics up to 1000 times more than surrounding water. Aquatic organisms ingest these microplastic-bound drugs, leading to higher toxicity than from waterborne pharmaceuticals alone. Combined exposure to microplastics and pharmaceuticals

caused gut damage, immune impairment, and reproductive issues in fish, highlighting underestimated ecological risks. The study urged integrated management of both pollutants due to their interactive effects in aquatic ecosystems¹².

Muhammad Usman et al., (2021): Usman et al. reported a sharp rise in pharmaceutical contamination during COVID-19, with global use of antivirals, antibiotics, anti-inflammatories, and antimalarials increasing 200-500%. Wastewater showed 5-10 times higher drug concentrations than before, including azithromycin at 50-100 µg/L. The study calls for integrating pharmaceutical waste management into pandemic preparedness to avoid environmental crises¹³.

Manoj Kumar et al., (2022): Kumar et al. conducted a global assessment revealing widespread pharmaceutical contamination in urban soils across 45 countries, with concentrations up to 100 mg/kg. High levels occurred in biosolid-amended soils, near wastewater plants, and irrigated agricultural land. Over 150 pharmaceuticals, mainly antibiotics, NSAIDs, and psychiatric drugs, persist long-term due to sorption in soil. The study highlights food safety risks and calls for regulation and remediation of pharmaceutical-contaminated soils¹⁴.

Emma L. Schymanski et al., (2023): Schymanski et al. applied AI and machine learning to predict environmental behavior and toxicity of 2,000+ pharmaceuticals with 80-90% accuracy. Models identified molecular features linked to persistence and toxicity, aiding early drug design for environmental safety.

Integrated high-resolution mass spectrometry and machine learning revealed many unknown toxic transformation products often exceeding parent drug levels. This approach allows proactive environmental risk assessment, detecting pollution hotspots and trends to guide regulation, marking a paradigm shift from reactive to predictive management¹⁵.

Aim and Scope: The pharmaceutical sector plays a vital role in improving human health; however, the growing consumption of medicines has also led to a significant increase in pharmaceutical waste.

Improper disposal of unused, expired, or contaminated drugs has emerged as a major environmental concern worldwide. Pharmaceutical residues have been detected in surface water, groundwater, soil, and even drinking water, posing potential risks to ecosystems and human health^{16, 17}. The primary aim of this review is to critically analyze and summarize previously published studies related to the environmental impact of improper drug disposal. This review intends to compile scientific evidence on how pharmaceuticals enter the environment, their persistence, bioaccumulation, and toxicological effects on aquatic life, terrestrial organisms, and human populations. By evaluating reported data

from global as well as Indian studies, the review highlights the seriousness of pharmaceutical pollution as an emerging environmental hazard. Another important aim of this review is to examine existing green pharmacy practices and environmentally sustainable approaches discussed in the literature. Green pharmacy emphasizes the design, production, use, and disposal of pharmaceuticals in a manner that minimizes negative environmental impacts. This review explores documented strategies such as eco-friendly drug design, waste minimization during manufacturing, and environmentally responsible disposal systems that have been suggested or implemented in different countries.

FIG. 2: CONCEPTUAL FRAMEWORK DEPICTING THE SCOPE OF THE PRESENT REVIEW (ADAPTED FROM TONG ET AL., 2011)³¹

The scope of this review also includes an assessment of currently reported safe drug disposal programs, such as drug take-back initiatives, regulatory guidelines issued by organizations like the World Health Organization (WHO), United States Food and Drug Administration (USFDA), and Central Pollution Control Board (CPCB), India. The role of pharmacists and healthcare professionals in spreading awareness and implementing safe disposal practices, as highlighted in prior studies, is also discussed. Furthermore, this review critically evaluates published case studies that demonstrate the real-world environmental consequences of improper drug disposal, such as the decline of vulture populations due to diclofenac exposure and the presence of antibiotics and hormones in aquatic ecosystems. These examples emphasize the

urgency of addressing pharmaceutical waste management. Finally, the review identifies key challenges and barriers reported in the literature, including lack of public awareness, inadequate regulations, poor infrastructure, and limited enforcement. Based on a synthesis of existing findings, the review outlines future perspectives and recommendations to strengthen pharmaceutical waste management policies. Overall, this review aims to serve as a consolidated scientific resource for students, pharmacists, researchers, and policymakers to promote environmentally responsible drug disposal and sustainable pharmacy practices¹⁸.

Green Pharmacy Practice: Green pharmacy practice represents an emerging paradigm in pharmaceutical care that integrates environmental

stewardship into all aspects of pharmacy operations, from procurement and dispensing to patient counseling and waste management. This holistic approach recognizes that pharmacists, as medication experts and accessible healthcare providers, have a unique responsibility and opportunity to minimize the environmental footprint of pharmaceutical products throughout their lifecycle¹⁹.

Green pharmacy extends beyond traditional clinical and business concerns to encompass ecological sustainability, requiring pharmacists to consider not only the therapeutic efficacy and safety of medications for individual patients, but also their broader environmental consequences for ecosystems and communities. The concept of green pharmacy emerged in response to growing scientific evidence documenting widespread pharmaceutical contamination of water resources, soil, and wildlife, coupled with increasing awareness of healthcare's substantial environmental impact.

The healthcare sector accounts for approximately 4-5% of global carbon emissions, with pharmaceuticals contributing significantly to this burden through energy-intensive manufacturing, transportation, packaging waste, and environmental contamination from disposal. Green pharmacy practice addresses these concerns through multiple strategies including rational prescribing to minimize waste, patient education on proper disposal, implementation of take-back programs, selection of environmentally preferable products when therapeutically equivalent, and advocacy for sustainable pharmaceutical policies.

Core Principles of Green Pharmacy:

Waste Prevention and Source Reduction: The most effective environmental strategy is preventing pharmaceutical waste generation at the source through appropriate prescribing and dispensing practices²⁰. Pharmacists play a critical role in optimizing medication therapy to ensure patients receive the right drug, in the right dose, for the right duration, thereby minimizing leftover medications. This involves collaborative practice with prescribers to avoid unnecessary prescriptions, selecting appropriate package sizes to match treatment duration, and conducting regular

medication reviews to identify and discontinue unnecessary medications. Studies demonstrate that 30-50% of prescribed medications are not taken as directed, resulting in substantial quantities of unused drugs in households that eventually require disposal.

Key Waste Reduction Strategies:

Medication Therapy Management (MTM): Conduct comprehensive medication reviews to identify and eliminate unnecessary medications.

Appropriate Package Sizing: Dispense quantities that match prescribed duration, avoiding excess medication.

Medication Synchronization: Align all refill dates to reduce partial fills and improve adherence²¹.

Unit-Dose Packaging: Use precise dosing systems that minimize waste from bulk dispensing.

Environmentally Conscious Product Selection: When therapeutically equivalent alternatives exist, green pharmacy practice involves considering environmental factors in product selection decisions. This includes evaluating the environmental persistence and ecotoxicity of active pharmaceutical ingredients, with preference for drugs that are more readily biodegradable and less toxic to aquatic organisms²².

Environmental Selection Criteria:

Biodegradability: Select medications with shorter environmental half-lives (<7 days preferred).

Ecotoxicity Profile: Choose drugs with lower toxicity to aquatic organisms (higher LC50/EC50 values).

Excretion Rates: Prefer medications that are extensively metabolized rather than excreted unchanged.

Patient Education and Behavioural Change: Patient education forms a cornerstone of green pharmacy practice, as individual disposal behaviors significantly impact environmental contamination. Pharmacists are ideally positioned to provide disposal guidance during routine interactions at prescription pickup, medication reviews, or health screenings.

Patient Education Components:

Why it Matters: Explain environmental and safety impacts of improper disposal in simple, relatable terms.

What NOT To Do: Clearly state that flushing (except FDA flush list) and regular trash disposal contaminate water.

Effective Communication Strategies:

- Use brief, scripted talking points (30-60 seconds) that fit into busy workflow.
- Include disposal information on prescription labels or bag inserts.

Practical Green Pharmacy Implementations:

Medication Take-Back Programs:

Program Models:

Permanent Collection Kiosks: Year-round disposal receptacles in pharmacy for patient convenience.

Periodic Collection Events: Quarterly or biannual events coordinated with DEA National Take-Back Days.

Implementation Steps:

Regulatory Compliance: Register with DEA as authorized collector, obtain required permits.

Equipment Acquisition: Purchase DEA-compliant collection receptacles (tamper-evident, securely mounted).

Pharmacy Operations and Workflow Integration:

Daily Practice Integration:

Prescription Processing: Review quantities, question excessive amounts, suggest appropriate package sizes.

Dispensing Workflow: Incorporate environmental checkpoint before finalizing prescription.

Challenges and Solutions:

Challenge: Busy pharmacy workflow leaves little time for environmental counselling.

Solution: Develop brief scripted messages (30 seconds), integrate into existing workflow, use printed materials for detailed information.

Challenge: Initial investment for kiosks and program setup.

Solution: Seek grant funding, partner with community organizations, emphasize long-term patient loyalty benefits.

FIG. 3: KEY PRINCIPLES OF GREEN PHARMACY AIMED AT REDUCING ENVIRONMENTAL IMPACT (ADAPTED FROM KÜMMERER, 2009)⁹

Proposed Safe Programs in Pharmacy: Safe disposal programs in pharmacy settings prevent pharmaceutical environmental contamination while addressing medication misuse and accidental poisoning. These programs provide accessible disposal options commonly found in community pharmacies worldwide²³.

In-Pharmacy Drop Box Program: Permanent locked boxes in pharmacies for disposing expired or unused medications.

Common Features:

Location: Near pharmacy counter or entrance.

Access: During pharmacy business hours (9 AM - 9 PM typically).

Cost: Free for patients.

Accepts: Tablets, capsules, syrups, ointments, inhalers.

How it Works:

- Patient brings unused medications to pharmacy.

- Removes personal information from containers.
- Drops medications in secure box slot.

Take-Back Days/Collection Events: Community collection events held periodically where residents bring medications for proper disposal²⁴.

How it Works:

- ❖ Pharmacy announces event through posters, social media.
- ❖ Residents drive up and hand over medications.
- ❖ Volunteers sort and pack for destruction.
- ❖ Collected medications sent for incineration.

Return-to-Pharmacy Program: Patients return unused medications directly to the pharmacy where purchased.

Common Practices

Prescription Returns: Unused portions returned within 30 days.

Expired Medication Returns: Anytime acceptance.

Partial Packages: Accepted from non-adherent patients.

End-of-Treatment: Cancer, antibiotics, pain medications after recovery.

How it Works:

- ❖ Patient brings medications to pharmacy counter.
- ❖ Pharmacist verifies (some pharmacies check for recalls).
- ❖ Medications placed in designated waste container.
- ❖ Pharmacy logs return (optional, varies by location).

Other Methods Are:

- Home Collection Service²⁵
- Hospital Discharge Disposal Program

- School and University Programs
- Mail-Back Envelope Program
- Packaging Take-Back Program
- Pharmacy Counter Counseling Program.

Case Study:

Case Study 1: Pharmaceutical Contamination in Patancheru, India (2007-2009): Patancheru-Bollaram industrial area near Hyderabad, India, housed over 90 pharmaceutical manufacturing facilities producing antibiotics and other medications for global markets. In 2007, Swedish researchers discovered this site to be one of the world's most severely contaminated pharmaceutical pollution hotspots.

The Problem: Pharmaceutical manufacturers discharged untreated or poorly treated wastewater directly into local water bodies. The common effluent treatment plant was overwhelmed and ineffective. Researchers detected ciprofloxacin concentrations up to 31 mg/L in effluent approximately one million times higher than typical environmental levels.

Total pharmaceutical concentrations reached 21,000 µg/L in surface water, with 21 different active pharmaceutical ingredients detected simultaneously. The contamination extended to the Musi River system, groundwater, agricultural soil, and affected several hundred thousand residents downstream.

Impacts: The ecological damage was severe, with aquatic life devastated in the Musi River and antibiotic-resistant bacteria proliferating throughout the environment. Local communities faced drinking water contamination, increased antibiotic resistance in the population, and food chain contamination through crops irrigated with polluted water. The environmental bacteria showed multiple antibiotic resistance genes, creating a reservoir for resistance that could spread to human pathogens²⁶.

Case Study 2: Feminization of Fish in North American Rivers (1990s Present):

The Problem: Synthetic estrogens from oral contraceptives, particularly 17 α -ethynodiol, were being excreted by users (30-40% unchanged)

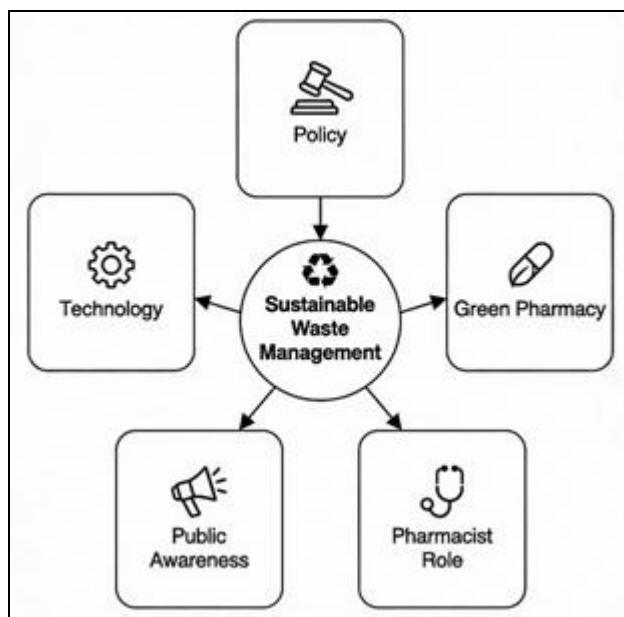
and passing through wastewater treatment plants into rivers at concentrations of 0.5-10 ng/L. Despite these extremely low concentrations, they were sufficient to cause biological effects in fish. Male fish were developing female characteristics, a condition called intersex, which included developing eggs in their testes and producing vitellogenin, an egg yolk protein normally produced only by females.

Documented Findings: A comprehensive Potomac River study from 2003-2006 found that 80% of male smallmouth bass exhibited intersex characteristics, with fish tissue containing measurable estrogen levels and reproductive organs showing abnormal development. A USGS nationwide survey (2007-2009) documented that 18% of male smallmouth bass across the country were intersex, with rates reaching 50% at some Colorado River sites. The frequency of intersex fish correlated directly with proximity to wastewater treatment plant discharges, affecting over 37 fish species including bass, catfish, and various minnow species.

Impacts and Implications: The reproductive dysfunction raised serious concerns about population sustainability and long-term species viability in affected areas. Reduced reproductive success, altered sex ratios favouring females, and potential population declines were documented in heavily impacted locations²⁷. The phenomenon demonstrated that even extremely low pharmaceutical concentrations (parts per trillion) could cause significant biological effects when organisms experience continuous, long-term exposure. This case fundamentally changed scientific understanding of pharmaceutical environmental risks and prompted regulatory agencies to recognize endocrine-disrupting pharmaceuticals as serious environmental contaminants.

Challenges and Barriers: Managing the environmental impact of improper drug disposal faces many challenges. People are not aware of safe disposal methods, and proper collection or take-back systems are often missing. Waste-treatment facilities are limited, regulations are not strictly followed, and monitoring of drug residues in the environment is weak. High costs, industrial

waste discharge, and rising antibiotic resistance make the problem even more difficult to control²⁸. These barriers together slow down effective and safe pharmaceutical waste management. The issue of pharmaceutical pollution is compounded by several interrelated challenges. Public awareness regarding safe disposal of medicines remains low, leading to improper practices such as household trash disposal or flushing.


There is no standardized disposal system or widely accessible drug take-back program in many regions, and healthcare facilities often exhibit poor segregation of pharmaceutical waste. Pharmacy participation in collection or return initiatives is limited, and weak enforcement of environmental and health regulations further exacerbates the problem. Additionally, high operational costs of proper disposal systems discourage implementation. The persistent nature of active pharmaceutical ingredients (APIs) in the environment, coupled with the lack of regular monitoring, contributes to long-term contamination of soil and water.

Wastewater treatment plants are often unable to fully remove drug residues, while illegal dumping of pharmaceutical waste continues unchecked. Insufficient research data and poor coordination among regulatory agencies hinder informed decision-making. Rapid growth in drug consumption and household stockpiling add to the volume of unused medications. Industrial effluents containing pharmaceuticals, combined with inadequate rural waste management, worsen the issue. The absence of biodegradable drug alternatives and the rising threat of antimicrobial resistance (AMR) highlight the urgent need for coordinated policies, public training, and sustainable waste management practices²⁹.

Future Perspectives & Recommendations: The increasing detection of pharmaceutical residues in the environment highlights the urgent need for improved strategies to manage drug disposal practices. Evidence from previously published studies clearly indicates that improper disposal of medicines is a persistent and growing environmental challenge. Future efforts must therefore focus on strengthening regulatory frameworks, enhancing public awareness, and

integrating sustainability principles into pharmaceutical education and practice. One of the most important future perspectives identified in the literature is the implementation of robust drug take-back and return programs. Several studies suggest that nationwide, pharmacy-based take-back systems can significantly reduce the entry of pharmaceuticals into water bodies and landfills. Expanding such programs, particularly in developing countries like India, can ensure safe collection and environmentally sound disposal of unused and expired medicines. Collaboration between government agencies, pharmaceutical industries, and community pharmacies is essential

for the success and long-term sustainability of these initiatives. Another key recommendation emphasized in existing research is the promotion of green pharmacy concepts. Future pharmaceutical development should prioritize environmentally benign drug design, including biodegradable active pharmaceutical ingredients and reduced toxicity to non-target organisms³⁰. Sustainable manufacturing processes, waste minimization techniques, and life-cycle assessment of drugs should become integral components of pharmaceutical research and industrial practices. Incorporating green chemistry principles into regulatory approval processes may further reduce environmental contamination.

FIG. 4: INTEGRATED APPROACH FOR SUSTAINABLE PHARMACEUTICAL WASTE MANAGEMENT (ADAPTED FROM DAUGHTON, 2016)⁶

The role of pharmacists and healthcare professionals is critical in shaping future drug disposal practices. Literature consistently indicates that pharmacists can act as frontline educators by counseling patients on safe disposal methods and environmental risks associated with improper drug disposal. Integrating environmental safety and pharmaceutical waste management topics into undergraduate and postgraduate pharmacy curricula can help prepare future professionals to address this issue effectively. Public awareness remains a major gap, and future strategies should focus on community-based educational campaigns. Studies reveal that a significant proportion of patients are unaware of appropriate drug disposal methods. Awareness programs using digital media, print materials, and public health campaigns can play a

crucial role in changing consumer behavior. Clear labeling instructions on medicine packaging regarding safe disposal may further enhance public compliance.

From a policy perspective, future directions should include strengthening regulations and enforcement mechanisms related to pharmaceutical waste management. Harmonization of international guidelines and adaptation to local contexts can improve compliance and monitoring. Investment in advanced wastewater treatment technologies capable of removing pharmaceutical residues is also recommended in several studies to minimize environmental exposure³¹. In conclusion, future efforts to mitigate the environmental impact of improper drug disposal must adopt a

multidisciplinary and proactive approach. Strengthened regulations, green pharmacy practices, professional responsibility, and public awareness collectively offer a sustainable pathway toward environmentally responsible pharmaceutical care. Continued research and policy-driven interventions are essential to protect ecosystems and public health from pharmaceutical pollution.

CONCLUSION: Ultimately, this isn't pie-in-the-sky theory it's a hard-hitting blueprint for pharmacies to seize the reins on change, bridging glaring knowledge voids with hands-on tools that shield our shared water, wildlife, and the very future of effective medicines from going rogue. Improper disposal has stealthily brewed an environmental and health catastrophe, from intersex fish in hormone-laced rivers to superbugs brewing in India's polluted backwaters like Patancheru. Yet, "green pharmacy" flips the narrative, empowering pharmacists as eco-guardians who rethink the entire lifecycle from curbing over-dispensing (which idles 30-50% of scripts) to syncing refills and favoring nature-friendly formulations. The magic lies in accessibility: make returns as effortless as buying, with locked drop boxes in every community pharmacy, color-coded for safety (purple for cytotoxics, blue for daily meds), and take-back events turning lots into disposal hubs. Quick 30-second counter chats, backed by posters and flyers, shatter myths about flushing or trashing. Tailored action plans, like Kanpur's surveys via Google Forms, soil tests, and awareness blasts, expose habits and hurdles, paving the way for "Safe Drug Disposal Programs" with authority tie-ins, grants for kiosks, and multi-agency enforcement. Challenges low awareness, infrastructure gaps, rural reach fall to workflow hacks, no-stockpiling campaigns, and policy nudges for eco-incentives. By embedding green thinking in pharmacy curriculums and fostering counseling/events, we slash pollution at its root. This review screams urgency: act now, or pay later with resistant plagues and barren ecosystems. Pharmacies aren't just pill-pushers; they're the linchpin for a healthier planet.

ACKNOWLEDGEMENTS: Nil

CONFLICTS OF INTEREST: Nil

REFERENCES:

1. Quinn B, Gagné F and Blaise C: Human pharmaceuticals in the aquatic environment: A review of recent toxicological studies and considerations for toxicity testing. *Science of the Total Environment* 2009; 407(18): 4091-4103.
2. Kayode-Afolayan SD: "Impacts of pharmaceutical effluents on aquatic ecosystems." *Science Direct* Cited by 2022; 157.
3. Mompelat S, Le Bot B and Thomas O: Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. *Environment International* 2009; 35(5): 803-814.
4. Corcoran J, Winter MJ and Tyler CR: Pharmaceuticals in the aquatic environment: A critical review of the evidence for health effects in fish. *Critical Reviews in Toxicology* 2010; 40(4): 287-304.
5. Joakim Larsson DG, de Pedro C and Paxeus N: Effluent from drug manufactures contains extremely high levels of pharmaceuticals. *Journal of Hazardous Materials* 2007; 148(3): 751-755.
6. Daughton CG and Ternes TA: Pharmaceuticals and personal care products in the environment: Agents of subtle change? *Environmental Health Perspectives* 2006; 107(6): 907-938.
7. Joss A, Keller E, Alder AC, Göbel A, McArdell CS, Ternes T and Siegrist H: Removal of pharmaceuticals and fragrances in biological wastewater treatment. *Water Research* 2005; 39(14): 3139-3152.
8. Fent K, Weston AA and Caminada D: Ecotoxicology of human pharmaceuticals. *Aquatic Toxicology* 2006; 76(2): 122-159.
9. Kümmerer K: Antibiotics in the aquatic environment – A review – Part I. *Chemosphere* 2009; 75(4): 417-434.
10. Verlicchi P, Al Aukidy M and Zambello E: Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment—A review. *Science of the Total Environment* 2012; 429: 123-155.
11. Aaus der Beek T, Weber FA, Bergmann A, Hickmann S, Ebert I, Hein A and Küster A: Pharmaceuticals in the environment—Global occurrences and perspectives. *Environmental Toxicology and Chemistry* 2016; 35(4): 823-835.
12. Hofmann T, Mitrano DM, Praetorius A, Wagner M and von der Kammer F: Environmental exposure and risk assessment of microplastics and associated chemical contaminants. *Science* 2020; 369(6509): 1430-1433.
13. Usman M, Saleem MH, Tasleem S, Mahmood A, Alataway A and Ali S: Potential environmental impacts due to pharmaceutical contamination linked with COVID-19: A Review. *Exposure and Health* 2021; 13: 141-153.
14. Kumar M, Sridharan S, Sawarkar AD, Shakeel A, Anerao P, Mannina G, Sharma P and Pandey A: Current research trends on emerging contaminants pharmaceutical and personal care products (PPCPs): A comprehensive review. *Science of the Total Environment* 2022; 859: 160031.
15. Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP and Hollender J: Identifying small molecules via high resolution mass spectrometry: communicating confidence. *Environmental Science & Technology* 2023; 48(4): 2097-2098.
16. Central Pollution Control Board (CPCB), India. "Guidelines for Management of Pharmaceutical and Healthcare Waste." Official regulatory framework

outlining disposal and waste treatment standards specific to pharmaceutical pollutants in India 2018.

17. Azuma T, Nakada N, Yamashita N and Tanaka H: Mass balance of antibiotic residues in the aquatic environment. *Environmental Science & Technology*. American Chemical Society, Washington, DC, USA 2013; 47(20): 11372-11379.
18. MacLeod M, Arp HPH, Tekman MB and Jahnke A: The global threat from plastic pollution. *Science* 2021; 373(6550): 61-65.
19. Sanderson H, Johnson DJ, Reitsma T, Brain RA, Wilson CJ and Solomon KR: Ranking and prioritization of environmental risks of pharmaceuticals in surface waters. *Regulatory Toxicology and Pharmacology*. Academic Press, San Diego, CA, USA 2004; 39(2): 158-183.
20. Bound JP and Voulvoulis N: Household disposal of pharmaceuticals as a pathway for aquatic contamination in the United Kingdom. *Environmental Health Perspectives*. National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA 2005; 113(12): 1705-1711.
21. Glassmeyer ST, Hinckley EK, Boehme SE, Daughton CG, Ruhoy IS, Conerly O, Daniels RL, Lauer L, McCarthy M, Nettlesheim TG, Sykes K and Thompson VG: Disposal practices for unwanted residential medications in the United States. *Environment Intern* 2009; 35(3): 566-572.
22. Carvalho IT and Santos: Antibiotics in the aquatic environments: A review of the European scenario. *Environment International* 2016; 94: 736-757.
23. Seehusen DA and Edwards J: Patient practices and beliefs concerning disposal of medications. *Journal of the American Board of Family Medicine* 2006; 19(6): 542-547.
24. Persson M, Sabelström E and Gunnarsson B: Handling of unused prescription drugs knowledge, behaviour and attitude among Swedish people. *Environment International* 2009; 35(5): 771-774.
25. Larsson DGJ, de Pedro C & Paxius N: "Pharmaceutical Contaminants in Wastewater and Natural Waters – A Review". *Environmental Science & Technology* 2007; 42(4): 765-774.
26. Elsevier BV, Amsterdam, Netherlands. Jobling S, Nolan, M, Tyler CR, Brighty G and Sumpter JP: Widespread sexual disruption in wild fish. *Environmental Science & Technology* 1998; 32(17): 2498-2506.
27. Kusturica MP, Sabo A, Tomic Z, Horvat O and Šolak Z: Storage and disposal of unused medications: knowledge, behavior, and attitudes among Serbian people. *International J of Clinical Pharmacy* 2012; 34(4): 604-610.
28. Blazer VS, Iwanowicz LR, Iwanowicz DD, Smith DR, Young JA, Hedrick JD, Foster SW and Reeser SJ: Intersex (testicular oocytes) in smallmouth bass from the Potomac River and selected nearby drainages. *Journal of Aquatic Animal Health* 2007; 19(4): 242-253.
29. Kidd KA, Blanchfield PJ, Mills KH, Palace VP, Evans RE, Lazorchak JM and Flick RW: Collapse of a fish population after exposure to a synthetic estrogen. *Proceedings of the National Academy of Sciences* 2007; 104(21): 8897-8901.
30. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB and Buxton HT: Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, a national reconnaissance. *Environmental Science & Technology* 1999-2000; 36(6): 1202-1211.
31. Tong AY, Peake BM and Braund R: Disposal practices for unused medications around the world. *Environment International* 2011; 37(1): 292-298.

How to cite this article:

Singh SK, Verma D and Alok S: A review on: environmental impact of improper drug disposals. *Int J Pharm Sci & Res* 2026; 17(2): 499-10. doi: 10.13040/IJPSR.0975-8232.17(2).499-10.

All © 2026 are reserved by International Journal of Pharmaceutical Sciences and Research. This Journal licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

This article can be downloaded to **Android OS** based mobile. Scan QR Code using Code/Bar Scanner from your mobile. (Scanners are available on Google Playstore)