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ABSTRACT 

Autism is a spectrum of developmental disorders characterized by 
impairments in social interaction, communication, often accompanied by 
stereotypical or repetitive behaviours. There are numerous hypotheses 
holding to the etiology and pathology of Autism but actual mechanism of the 
ailment is still unknown. Although a number of rare mutations and dosage 
abnormalities are specific to autism, these explain no more than 10% of all 
cases making the problem more complex. In this regard, shift from a narrow 
focus on individual candidate genes towards a broader view of affected 
protein networks and associated biological pathways have achieved the 
significant role. We have used network biology approach to identify 
important molecules and pathways which play significant role in autism 
through molecular interaction map (MIP) containing 248 nodes linked with 
892 edges. Our studies elucidate the relationship between topological 
properties of MIP and the role played by molecules in biological systems. 
Further by applying the graph theory hub proteins were obtained and the 
pathways in which they are involved were analyzed. Our results showed link 
between many signalling pathways forming 22% in combination with other 
pathways like adherens junction. These insights provide useful clues in 
understanding how and to what extent each pathway is contributing in 
pathophysiology of this heterogeneous disorder. 

INTRODUCTION: Autism is a developmental disorder 
characterized by impairments in social interaction and 
communication, often accompanied by stereotypical or 
repetitive behaviour 1. The condition manifests within 
the first 3 years and has a prevalence rate of 60-70 per 
10,000 children in broader diagnostic criteria as per the 
most recent estimates 2. Although a number of rare 
mutations and dosage abnormalities are specific to 
autism, these explain no more than 10% of all cases 3.  

There are numerous hypotheses holding to the 
etiology and pathology of Autism but actual 
mechanism of the ailment is still unknown.  Since, 
Pharmacologic research that targeted interfering 
symptom domains associated with autism, has showed 
low or medium efficacy, the increasing rates of this 
disorder every year 4 demand to unearth the alternate 
ways in mining the clues that would finally provide 
definite molecular targets. 
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While the involvement of single gene mutations in 
individual autism cases cannot be excluded, the 
concept of a complex genetic model with multiple 
genes contributing to disease susceptibility remains 
highly plausible 5. In this regard the shift from a narrow 
focus on individual candidate genes towards a broader 
view of affected gene networks and associated 
biological pathways has achieved the significant role.  

The Biological networks are being used as a means to 
decipher the important key controllers inside the 
complex networks. These essential nodes/hubs may 
serve as candidates of drug targets for developing 
novel therapy for various diseases. In this approach, 
the diseases can be seen as emergent from a complex 
network of underlying molecular activity influenced by 
genes and environment. Indeed, complex networks are 
a natural way of representing any data with 
complicated dependency relationships. 

Methodology: The genes responsible for autism were 
collected from GeneCards database (www.genecards. 
org) which provides a comprehensive, authoritative 
compendium of annotative information on responsible 
genes for a particular disease based on text mining 
algorithm [6]. A specific set of 60 genes which come 
above the score limit (score>0.3) belonging to various 
Categories like protein-coding, RNA gene etc were 
selected. Molecular interaction map was built up by 
using Cytoscape 7. 

Mimi plugin 8 based on Query genes + nearest 
neighbor algorithm. The obtained interactions are 
cross validated using string Database which correctly 
uncovers and annotates all functional interactions 9. 
ClusterONE clustering with Overlapping Neighborhood 
Expansion), the graph clustering algorithm is used for 
detecting protein complexes in protein-protein 
interaction networks with associated confidence 
values. The generated modules are then refined based 
on density (> = 0.7) and P-value (< = 0.00). As a further 
process of refinement cytohubba is used to obtain best 
10 biomolecules based on the topology-based scoring 
methods which include Degree 10, BottleNeck 11 Edge 
percolated component 12 MNC, DMNC and The double 
screening scheme. The biomolecules which were 
commonly offered by all algorithms are extracted to 
identify their pathways to generate a relationship of 
various pathways in the disease mechanism. 

RESULTS AND DISCUSSION: Autism as a hetero-
geneous syndrome is characterized by impairments in 
three core domains: social interaction, language and 
range of interests. Several studies have led to the 
identification of quite a lot of autism susceptibility 
genes and there has been an increased appreciation 
for the contribution of de novo and inherited copy 
number variation understanding the pathology of the 
disease. The idea suggesting the involvement of many 
Genes, associated with Common Pathways was first 
put forward by 13.  

Although the three decades of research on autism 
involving twin and family studies sustain a significant 
genetic contribution to its pathology, it does not 
necessarily demand a particular model of genetic 
transmission or involvement of a particular gene 
causing the disorder. On the other hand, the last 
decade of research has witnessed a significant genetic 
heterogeneity which served as foundation for “many 
genes common pathway theory”.   

Promising strategies such as Systems biology 
approaches are poised to provide additional insights in 
such kind of diseases in which heterogeneity, both 
genetic and phenotypic, is emerging as a dominant 
theme. One such approach is to model the virtual 
biological network by considering all susceptible genes 
as nodes and connected to each other through edges. 
Sometimes as neighbourhood gene interactions with 
the susceptible genes also attain much importance in 
determining the diseased state it is better to take 
those genes that have direct interaction with the 
susceptible ones while building up the network.   

In this case, it is believed that mutations in the 
causative gene alter its interactions with neighbouring 
genes that are required to perform specific biological 
functions, and the effects of these alterations become 
compounded when binding partners downstream of 
the causative agent are also mutated or otherwise 
dysfunctional. After overall network analysis of 
molecular interaction map as briefed in methodology 
proteins along with their pathways that have been 
implicated in Autism were obtained (Table 5). All of 
these proteins are involved in neurodevelopment and 
many have roles in synaptic function. These proteins 
can be schematically divided into at least eight distinct 
ensembles depending on their involvement in; 
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(i) Signalling pathways,  

(ii) Actin cytoskeleton dynamics,  

(iii) Response to hypoxia,  

(iv) Neurotransmission,  

(v) Glioma,  

(vi) Apoptosis,  

(vii)  Focal adhesion or; 

(viii) Regulation of transcription.  

Cell-matrix adhesions play essential roles in important 
biological processes including cell motility, cell 
proliferation, cell differentiation, regulation of gene 
expression and cell survival. At the cell-extracellular 
matrix contact points, specialized structures are 
formed and termed focal adhesions, where bundles of 
actin filaments are anchored to transmembrane 
receptors of the integrin family through a multi-
molecular complex of junctional plaque proteins. Some 
of the constituents of focal adhesions participate in the 
structural link between membrane receptors and the 
actin cytoskeleton, while others are signalling 
molecules, including different protein kinases and 
phosphatases, their substrates, and various adapter 
proteins.  

Integrin signaling is dependent upon the non-receptor 
tyrosine kinase activities of the FAK and src proteins as 
well as the adaptor protein functions of FAK, src and 
Shc to initiate downstream signaling events. These 
signalling events culminate in reorganization of the 
actin cytoskeleton; a prerequisite for changes in cell 
shape and motility, and gene expression. Similar 
morphological alterations and modulation of gene 
expression are initiated by the binding of growth 
factors to their respective receptors, emphasizing the 
considerable crosstalk between adhesion- and growth 
factor-mediated signalling.  

The core areas affected in autism involve rapid and 
coherent integration of information from multiple, 
higher-level association areas 14. Accordingly, the 
predominant genetic model supposes the presence of 
multigenic inheritance of common polymorphisms 

contributing to autism risk in multiplex families 13 
leading to disruption of normal function. Such 
functions could be easily perturbed by minor, but 
relatively widespread disruptions in a set of 
pathways. To mine these details we have constructed a 
Molecular Interaction Map for the selected 60 nodes 
(refined by score) by taking into account of its 
neighboring interaction molecules through MiMI plug-
in of Cytoscape.  

Totally 248 molecules as nodes and 892 edges as 
interactions were obtained. The molecular interaction 
map can be explained as a mathematical graph, 
permitting analysis with graph theoretical algorithms. 
Molecules like genes, proteins, transcriptional factors 
are denoted as nodes in the graph and interactions 
between them are called as edges.  This MIP is a scale 
free network which obeys power law distribution of 
connectivity (figure 1). 

 
FIGURE 1: MOLECULAR INTERACTION MAP CONTAINING QUERY 
GENES AND THEIR INTERACTIONS 
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Network Analysis: We have represented Molecular 
Interaction graph as an undirected graph M (N, E), 
consisting of set of nodes as N and set of edges as E. 
The size of the graph is given by the number of its 
nodes. The degree of its nodes indicates the number of 
interactions to a single node with the other nodes.  The 
network obtained by MiMI was analyzed to know the 
wide range of pathways which directly or indirectly 
play role in autism. The analysis of all the genes 
obtained through MIMi gave almost 57 varied 
pathways out of which some of the genes were 
continuously repeating for Neurodegenerative 
Diseases, protein kinase cascade etc but majority of 
molecules in the interaction map were showing a high 
frequency of focal adhesion, signaling, Melanogenesis 
and cell cycle pathways.  

Figure 2 shows the important pathways present in the 
molecular interaction map on x- axis and on Y-axis is 
the frequency of these pathways occurring for the 
respective Biomolecules. Figure 3 and 4 represent the 
two highly connected modules that were obtained 
after refined by merging the cohesive subgroups from 
the molecular interaction map based on the Quality of 
the cluster, measured by the in-weight divided by the 
sum of the in-weight and the out-weight. The rationale 
behind this measure is that a good cluster contains 
many heavyweight edges within the cluster itself, and 
it is connected to the rest of the network only by a few 
lightweight edges. P- Value showing the validity of the 
cluster.   

 
FIGURE 2: MAJOR PATHWAYS PRESENT IN 248 NODES OF THE 
MOLECULAR INTERACTION MAP 

The NetworkAnalyzer plug-in 15 is used to calculate the 
topological properties of each module individually that 
were tabulated in Table 1. Figure 3 and Figure 4 
represent the two modules formed from molecular 
interaction network using clusterONE plug-in of 
cytoscape. 

 
FIGURE 3: MODULE 1(34 NODES) OBTAINED FROM MOLECULAR 
INTERACTION NETWORK USING CLUSTERONE PLUG-IN OF 
CYTOSCAPE. 

 
FIGURE 4: MODULE 2(30 NODES) OBTAINED FROM MOLECULAR 
INTERACTION NETWORK USING CLUSTERONE PLUG-IN OF 
CYTOSCAPE 
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Once the two modules are selected the topological 
parameters of each node in the modules are calculated 
to identify relative importance of nodes based on 
graph theory by considering each module as 

undirected network. Table 2 and 3 represent the 
topolocial parameters of nodes present in Module1 
and 2. 

TABLE 1:  THE TOPOLOGICAL PROPERTIES OF EACH MODULE OBTAINED THROUGH NETWORKANALYZER PLUG-IN 

Topological Parameters Module1 Module2 

Cluster Coefficient 0.656 0.469 

Network Diameter 3 3 

Network Density 0.303 0.30 

Network Heterogenity 0.625 0.463 

Network Radius 2 2 

Network Centralization 0.443 0.303 

Charecterisic Path Length 1.748 1.795 

Avg No: Of Neighbours 9.697 8.8 

No: Of Nodes 34 30 

TABLE 2: THE TOPOLOGICAL PARAMETERS OF INDIVIDUAL NODES IN MODULE 1 

Name Topological coefficient Closeness Neighbourhood connectivity Cluster coefficient Degree Radiality Stress 

CBL 0.42 0.67 13.38 0.53 16 0.83 176.00 

CDH1 0.57 0.53 18.25 0.67 4 0.71 30.00 

CTTN 0.48 0.54 15.40 0.60 5 0.72 16.00 

DAB1 0.68 0.49 19.00 1.00 3 0.66 0.00 

DNM2 0.43 0.54 12.86 0.57 7 0.72 28.00 

EGFR 0.34 0.76 10.82 0.37 22 0.90 492.00 

GAB1 0.54 0.56 16.33 0.86 9 0.74 10.00 

GNB2L1 0.40 0.52 11.50 0.40 6 0.70 26.00 

GRB2 0.40 0.70 12.67 0.52 18 0.85 222.00 

HGS 0.72 0.48 19.33 1.00 3 0.65 0.00 

INPP5D 0.54 0.53 16.33 1.00 6 0.71 0.00 

INPPL1 0.61 0.54 19.60 1.00 5 0.72 0.00 

ITGB4 0.50 0.53 15.40 0.60 5 0.71 8.00 

KDR 0.55 0.54 16.43 0.81 7 0.72 10.00 

MET 0.33 0.73 10.45 0.34 20 0.88 398.00 

PDGFRB 0.42 0.64 13.43 0.55 14 0.81 186.00 

PIK3R1 0.41 0.67 13.19 0.53 16 0.83 222.00 

PLCG1 0.40 0.67 12.75 0.49 16 0.83 238.00 

PLSCR1 0.65 0.52 20.67 1.00 3 0.70 0.00 

PRKCA 0.45 0.57 14.38 0.50 8 0.75 64.00 

PTK2 0.41 0.64 13.21 0.49 14 0.81 226.00 

PTPN11 0.40 0.70 12.89 0.50 18 0.85 244.00 

PTPRJ 0.64 0.50 18.00 0.83 4 0.67 2.00 

PXN 0.41 0.56 12.44 0.56 9 0.74 64.00 

SH3KBP1 0.63 0.52 17.67 0.93 6 0.69 2.00 

SHC1 0.40 0.68 12.94 0.53 17 0.84 166.00 

SNX2 0.75 0.47 18.67 0.67 3 0.63 2.00 

SRC 0.33 0.78 10.70 0.34 23 0.91 574.00 

STAT3 0.45 0.56 12.13 0.61 8 0.74 38.00 

TLN1 0.43 0.57 13.63 0.57 8 0.75 68.00 

TRIP6 0.54 0.48 13.50 1.00 4 0.64 0.00 

VAV1 0.55 0.54 16.43 0.76 7 0.72 20.00 

VCL 0.38 0.51 9.50 0.46 8 0.68 30.00 
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TABLE 3: THE TOPOLOGICAL PARAMETERS OF INDIVIDUAL NODES IN MODULE 2 

Name Topological coefficient Closeness Neighbourhood connectivity Clustering coefficient Degree Radiality Sterss 

AKT1 0.47 0.54 12.14 0.62 7.00 0.71 32.00 

AR 0.37 0.69 10.75 0.43 16.00 0.85 286.00 

ATF2 0.46 0.52 11.14 0.52 7.00 0.69 34.00 

BAG1 0.56 0.48 12.25 0.50 4.00 0.63 12.00 

BRCA1 0.39 0.64 11.23 0.50 13.00 0.82 174.00 

CALM1 0.42 0.55 10.43 0.19 7.00 0.72 92.00 

CCND1 0.42 0.60 12.20 0.56 10.00 0.78 96.00 

COPS6 0.53 0.49 13.33 0.67 3.00 0.66 2.00 

CREBBP 0.36 0.69 10.56 0.42 16.00 0.85 290.00 

CSNK2A1 0.42 0.56 11.00 0.39 8.00 0.74 64.00 

CTNNB1 0.41 0.59 11.00 0.45 11.00 0.77 130.00 

EP300 0.35 0.67 9.75 0.39 16.00 0.84 268.00 

ESR1 0.34 0.71 9.94 0.34 17.00 0.86 430.00 

FAS 0.48 0.48 9.80 0.40 5.00 0.63 14.00 

HNF1A 0.46 0.52 11.14 0.52 7.00 0.69 36.00 

HNF4A 0.35 0.67 10.27 0.37 15.00 0.84 366.00 

MECP2 0.34 0.53 7.78 0.33 9.00 0.70 94.00 

NCOR1 0.36 0.57 10.13 0.39 8.00 0.75 122.00 

NR3C1 0.32 0.63 9.17 0.27 12.00 0.80 242.00 

POLR2A 0.38 0.58 10.78 0.47 9.00 0.76 110.00 

RARA 0.45 0.50 11.25 0.50 4.00 0.67 20.00 

SIN3A 0.42 0.46 8.25 0.50 4.00 0.61 14.00 

SKI 0.41 0.48 9.00 0.67 4.00 0.63 20.00 

SMARCA2 0.44 0.52 11.00 0.53 6.00 0.69 26.00 

SMARCB1 0.44 0.50 10.17 0.53 6.00 0.67 24.00 

STAT3 38.00 0.56 3.00 0.61 8.00 12.13 0.74 

TCF3 0.55 0.48 11.80 0.40 5.00 0.64 12.00 

TFF1 0.45 0.56 13.00 0.67 6.00 0.74 42.00 

TP53 0.40 0.63 11.25 0.44 12.00 0.80 222.00 

UBE2I 0.40 0.59 11.67 0.47 9.00 0.77 116.00 

 

In order to visually depict the relationship between the 
topological parameters Regression graph has been 
generated. In Figure 5, first graph represents the linear 
relationship between closeness (X-axis) and Degree (Y- 
axis) and second graph represents the linear 
relationship between Cluster Coefficient (X-axis) and 
Topological coefficient (Y- axis) for the Module1.  

Likewise, in Figure 6 first graph represents the linear 
relationship between closeness (X-axis) and Degree (Y- 
axis) and second graph represents the linear 
relationship between Cluster Closeness (X-axis) and 
Betweeness (Y- axis) for the Module2.  The R² value 
obtained confirms the uniformity in the Result. 

  
FIGURE 5: LINEAR RELATIONSHIP BETWEEN THE TOPOLOGICAL 
PARAMETERS FOR MODULE1 
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FIGURE 6: LINEAR RELATIONSHIP BETWEEN THE TOPOLOGICAL 
PARAMETERS FOR MODULE2 

Further, the two was analysed using the cytoHubba 
plugin (http:// hub.iis.sinica.edu.tw/cytoHubba/) to 
explore the key regulatory nodes in the network. The 
top 10 hubs (i.e. highly connected nodes) were 
identified by using the all the algorithms (Degree, EPC, 
DMNC, BottleNeck and DSS), displayed in Table 4 and 
5.  The proteins that were identified commonly by at 
least 5 algorithms are selected to identify the major 
pathways in which they are involved. 

Finally the hub proteins that were selected commonly 
by at least 5 algorithms in both the modules are 
extracted and their pathways are identified (Table 6). 
Most of the hub proteins obtained are involved in 
signaling, while the rest of the proteins are involved in 
Focal adhesion, Glioma, and Regulation of 
transcription.  

TABLE 4: THE TOP 10 HUB PROTEINS IDENTIFIED BY USING THE ALL THE ALGORITHMS OF CYTOHUBBA PLUG-IN FOR MODULE 1 

Algorithm Top 10 Hub Proteins 

DSS CBL, GAB1, GRB2, PDGFRB, PIK3R1, PLCG1, PTK2, PTPN11, PXN, SHC1 

Degree CBL, EGFR, GRB2, MET, PIK3R1, PLCG1, PTK2, PTPN11, SHC1, SRC 

BottleNeck EGFR, GRB2, MET, PIK3R1, PLCG1, PTK2, PTPN11, SRC, TLN1, VCL 

EPC CBL, EGFR, GRB2, MET, PDGFRB, PIK3R1, PLCG1,    PTPN11, SHC1, SRC 

MNC CBL, EGFR, GRB2, MET, PIK3R1, PLCG1, PTK2, PTPN11, SHC1, SRC 

DMNC CBL, GAB1, GRB2, INPP5D, INPPL1, KDR, SH3KBP1, SHC1, TRIP6, VAV1 

TABLE 5: THE TOP 10 HUB PROTEINS IDENTIFIED BY USING THE ALL THE ALGORITHMS OF CYTOHUBBA PLUG-IN FOR MODULE 2 

Algorithm Top 10 Hub Proteins 

DSS AR, BRCA1, CCND1, CREBBP, CTNNB1, EP300, HNF4A, POLR2A, TP53, UBE2I 

Degree AR, BRCA1, CCND1, CREBBP, CTNNB1, EP300, ESR1, HNF4A,  NR3C1, TP53 

BottleNeck AR, BRCA1, CALM1, CREBBP, EP300, ESR1, HNF4A, NCOR1, NR3C1, TP53 

EPC AR, BRCA1, CCND1, CREBBP, CTNNB1, EP300, ESR1, HNF4A,  NR3C1, TP53 

MNC AR, BRCA1, CCND1, CREBBP, CTNNB1, EP300, ESR1, HNF4A,  NR3C1, TP53 

DMNC AKT1, AR, BRCA1, CCND1, CREBBP, CTNNB1, SIN3A, STAT3, TFF1, TP53 

TABLE 6: PATHWAYS FOR HUB PROTEINS IDENTIFIED BY AT LEAST 5 ALGORITHMS OF CYTOHUBBA PLUG-IN 

Hub proteins Chromosome Pathways 

CBL 11 ErbB signaling pathway ; Jak-STAT signaling pathway 
SHC1 1 ErbB signaling pathway ; Focal adhesion 

GRB2 17 Focal adhesion; Gap junction; Jak-STAT signaling pathway; Glioma 

PLCG1 20 ErbB signaling pathway ; Glioma 
PTPN11 12 Jak-STAT signaling pathway 

PIK3R1 5 
ErbB signaling pathway; Regulation of actin cytoskeleton ; Jak-STAT signaling pathway; Glioma;  

Melanogenisis; Focal adhesion 

AR X cell-cell signaling; regulation of transcription 
BRCA1 17 DNA repair 
CCND1 11 cell cycle 

CREBBP 16 response to hypoxia; signal transduction ; regulation of transcription 

EP300 22 cell cycle; regulation of transcription; signal transduction; regulation of transcription 

TP53 17 Apoptosis 
CTNNB1 3 Wnt receptor signaling pathway 
HNF4A 20 blood coagulation; transcription 
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FIGURE 7: PERCENTAGE OF OCCURRENCE OF PATHWAYS IN HUB 
PROTEINS IDENTIFIED BY AT LEAST 5 ALGORITHMS OF 
CYTOHUBBA PLUG-IN (HIGHLY OCCURRED PATHWAYS ARE 
LABELED) 

CONCLUSION: In an effort to identify the important 
pathways involved in the Autism mechanism, the set of 
biomolecules which are highly connected (Modules) 
are identified from Molecular interaction map and the 
topological parameters for each individual node within 
the modules (Module 1 and Module 2) are calculated.  

Further, the best 10 nodes in each module are 
obtained by using all the algorithms of cytohubba and 
the commonly occurring hub proteins in at least 5 
algorithms are extracted to identify the pathways in 
which they are involved. Our Analysis has revealed that 
ErbB signaling pathway and Jak-STAT signaling 
pathways are the major pathways in autism.  

In addition, Focal adhesion, Glioma, and Regulation of 
transcription are also involved in the pathology of the 
disease.  
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