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ABSTRACT: One of the major obstacles to the successful chemotherapy towards 

several cancers is multidrug resistance of human cancer cells to anti-cancer drugs. 

An important contributor to multidrug resistance is the human multidrug resistance 

protein-1 transporter (MRP1), which is an efflux pump of the ABC (ATP binding 

cassette) superfamily. Thus, highly efficacious, third generation MRP1 inhibitors, 

like tariquidar analogues, are promising inhibitors of multidrug resistance and are 

under clinical trials. To maximize the efficacy of MRP1 inhibitors and to reduce 

systemic toxicity, it is important to limit the exposure of MRP1 inhibitors and 

anticancer drugs to normal tissues and to increase their co-localization with tumor 

cells. Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular 

Similarity Indices Analysis (CoMSIA) associated with 3D-Quantitiative structure-

activity relationship (3D-QSAR) studies were performed on a series of tariquidar 

analogues, as selective MDR modulators. Best predictability was obtained with 

CoMFA model r
2
(non-cross-validated square of correlation coefficient) = 0.968, F 

value = 151.768 with five components, standard error of estimate = 0.107 while the 

CoMSIA yielded r
2
 = 0.982, F value = 60.628 with six components, and standard 

error of estimate = 0.154. These results indicate that steric, electrostatic, 

hydrophobic (lipophilic), and hydrogen bond donor substituents play significant 

roles in multidrug resistance modulation of tariquidar analogues upon MRP1. The 

tariquidar analogue and MRP1 binding and stability data generated from CoMFA 

and CoMSIA based 3D-contour maps may further aid in study and design of 

tariquidar analogues as novel, potent and selective MDR modulator drug candidates. 

INTRODUCTION: Multidrug resistance and 

ABC transporters: Multidrug resistance in cancer 

can significantly hamper the response to 

chemotherapy and increase the likelihood of 

mortality 
1, 2

.  
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Multidrug resistance occurs when cancer cells 

exposed to one anticancer drug show cross-

resistance to various anticancer drugs that are 

structurally and functionally different 
1
. Intrinsic 

and acquired MDR has long been recognized as 

causes of chemotherapeutic failure 
3
. Acquired 

multidrug resistance is highly problematic in cases 

where drugs respond to chemotherapy in the 

beginning but lose sensitivity later 
4
. Over 

expression within the cellular membrane of 

different efflux pumps from various transporter 

families can lead to multidrug resistance 
5
. 
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Expression of primary active (energy-dependent) 

ATP-binding cassette (ABC) efflux pumps has 

been linked to tumor aggressiveness in different 

tumor types as the drugs are carefully channeled 

across the biological membrane 
1
. ABC 

transporters are highly expressed in 

pharmacologically important tissues and translocate 

a wide variety of solutes across biological 

membranes 
1
. Thus, efflux by ABC transporters 

serves to detoxify and protect cells from anticancer 

compounds and have been found to be critical in 

the absorption, excretion, and distribution of drugs 
6
. Elevated expression of ABC transporters and 

insertion into the bacterial cell membrane decrease 

the bioavailability of drugs by hindering cellular 

accumulation below the required standard threshold 

or by redistributing anticancer drugs away from 

target organelles, thus conferring MDR (Fig. 1) 
6
. 

Therefore, ABC transporters are important 

elements which should be considered when 

developing anti-cancer drugs; especially when 

developing specifically targeted MDR-cancer 

therapy 
7
.  

 

 
FIG.1: MRP1 EFFLUX AND TARIQUIDAR ANALOGUES AS 

MRP1 EFFLUX BLOCKERS  

 

Fig. 1 A illustrates the efflux mechanism MRP1 

employs to pump anti-cancer drugs out of the cell, 

thereby imparting drug resistance to cancer cells. In 

step 1, anti-cancer drug enters the cancer cell 

through porins. In this case, there is no MRP1 

inhibitor in the extracellular space to be taken up 

by the cancer cell porins. In step 2, because of the 

absence of MRP1 inhibitor, the efflux mechanism 

by MRP1 is activated, pumping the anti-cancer 

drug out of the cancer cell. This leads to decreased 

concentrations of anti-cancer drug inside the cell, 

and thus the cancer cell resists the drug and 

survives. Fig. 1 B illustrates the MRP1 efflux 

blocking mechanism. In step 1, anti-cancer drug 

enters the cancer cell through porins. There are 

tariquidar analogues present in the extracellular 

space of the cancer cell. These tariquidar analogues 

will be taken up by the cancer cell through porins. 

These tariquidar analogues will block the MRP1 

efflux pump. In step 2, as the MRP1 efflux pump is 

blocked, anti-cancer drugs will stay in the cancer 

cell. Increased concentration of anti-cancer drug 

inside the cancer cell will aid in the death of the 

cancer cell. MRP1 blockers can effectively inhibit 

anti-cancer drug efflux thereby enhancing the 

efficacy of anti-cancer therapy 
8
.  

 

Multidrug resistance protein 1 (MRP1): 

Of the fifty different human ABC transporters from 

seven subfamilies, over-expressed P-glycoprotein 

(P-gp), multidrug resistance protein 1 

(MRP1)/ABCC1, and breast cancer resistance 

protein (BCRP)/ABCG2/MXR/ABCP were found 

to be critical for dissemination of multidrug 

resistance in cancer cells 
9
. MRP1 (NCBI ID: 

NP_004987) (www.ncbi.nlm.nih.gov/protein) (Uni 

Prot ID: P33527) (www.uniprot.org) located on 

chromosome 16p13.1 is a 190 kDa (1531 amino 

acids) efflux pump encoded by the human genes 

ABCB1 and ABCC1 which confer multidrug 

resistance 
10, 11

. MRP1 extrudes anti-cancer drug as 

substrates, allowing the growth of cancers, 

including those of the lung, breast and prostate, as 

well as of childhood neuroblastoma 
12

.  

 

The structure of the MRP1 pump contains 17 

transmembrane (TM) helices distributed between 

three TM membrane spanning domains (MSD) for 

substrate recognition and transport and two 

cytosolic nucleotide-binding domains (NBD) for 

energy generation by ATP hydrolysis (Fig. 2) 
3, 13, 

14
. The two NBDs form a common binding site 

where the energy of ATP is harvested to promote 

drug efflux through a pore that is delineated by the 

TM helices 
15-17

. Comparing the sequences of 

various ABC proteins, Nucleotide binding sites 

http://www.ncbi.nlm.nih.gov/protein
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revealed the presence of conserved signature 

sequence motifs in NBD1 and NBD2 namely, 

Walker A, Walker B, Motif C, Q loop, D loop, and 

H loop 
18

. The Q, D and H loops contain highly 

conserved Glu, Asp, and His residues, respectively, 

contributing to stabilization and catalysis on 

binding of nucleotides. In NBD1, the conserved 

sequence of Walker A is GXXGXGKS; Q- loop is 

QXXWIXN; C motif is LSGGQXXR; Walker B is 

XYI/LXD; D loop is SAV/LD; and H-loop is TXX. 

In NDB2, the conserved sequence of Walker A is 

GXXGXGKS; Q- Loop is DDXXXXXG; C motif 

is LSXGXRQ; Walker B is I/VI/LXXD; D-Loop is 

XAXD; and H-loop is XHR 
18

. On binding, 

conformational changes in Walker A and Q loop 

were predicted according to the hypothetical MRP1 

transport model (Fig.2) 
19-21

. 

 

 
FIG. 2: TWO-DIMENSIONAL (2D) STRUCTURE OF 

MULTIDRUG RESISTANCE PROTEIN 1 (MRP1) 

 

This Fig. indicates 17 transmembrane domains 

distributed between membrane spanning domains 

(MSD) 0, 1 and 2.  MSD0 and MSD1 are 

connected together by a cytoplasmic loop 3 (CL3). 

MSD1 is connected to MSD2 by a nucleotide 

binding domain (NBD), hosting an ATP binding 

site with conserved signature sequences. MSD2 is 

connected to the C- terminal by an NBD2 domain. 

In NBD1, and NMD2, various conserved sequences 

are represented in colors. Signature sequence for 

Walker A is GXXGXGKS; Q- loop is QXXWIXN; 

C motif is LSGGQXXR; Walker B is XYI/LXD; D 

loop is SAV/LD; and H-loop is TXX. In NDB2, the 

conserved sequence of Walker A is GXXGXGKS; 

Q- Loop is DDXXXXXG; C motif is LSXGXRQ; 

Walker B is I/VI/LXXD; D-Loop is XAXD; and H-

loop is XHR 
18, 20

. 

 

The MRP1 transporter is expressed in intestine, 

liver, and kidney cells as well as in the blood brain 

barrier and regulates the intracellular 

concentrations of substances by transporting a 

broad variety of organic anions out of the cell 
22, 23

. 

The MRP1 transporter and glutathione conjugates 

play pivotal roles in mediating drug resistance by 

modulating pharmacokinetics and altering the 

bioavailability and toxicity of anticancer 

compounds, such as anthracyclines, 

epipodophyllotoxins, vinca alkaloids, 

camptothecins, vincristine, daunorubicin, taxanes, 

topoisomerase inhibitors, and antimetabolites 
24-26

.  

 

Tariquidar analogues to block MRP1 efflux: 

Blocking of these MRP1 transporters, which 

represent significant barriers to chemotherapy, can 

aid in effective reversal of multidrug resistance in 

cancer patients 
26

. One strategy for the reversal of 

MRP1transporter-associated chemo-resistance is 

the combined use of anticancer drugs with efflux 

modulators or inhibitors that act as chemo 

sensitizers 
26

. Specific binding at the MRP1 active 

site on cancer cells and related clinical toxicity of 

currently available MRP1 modulators is uncertain; 

exploring novel and potent non-toxic modulators 

with high specificity for cancer cell embedded 

MRP1 active site is critical 
27

. Tariquidar (XR9576) 

is a MRP1 inhibitor undergoing investigation as an 

adjuvant against multidrug resistance in cancer 

(Fig.3) 
8
.  

 

 
FIG. 3: CHEMICAL STRUCTURE OF TARIQUIDAR 

(XR9576) DRAWN USING ISIS. (Adopted from8)  
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Tariquidar non-competitively binds to the MRP1 

transporter, thereby inhibiting efflux of anticancer 

drugs across the membrane showing significant 

effects on the pharmacokinetics of paclitaxel, 

doxorubicin, and vincristine (Fig.1)
8, 28

. Previous 

studies have shown that tariquidar analogues act 

like MRP1 modulators, thus possibly enhancing the 

therapeutic potential of anticancer drugs by 

blocking efflux pumps and overcoming multidrug 

resistance 
8, 29

. Inhibition of drug transport across 

the membrane may result in increased intracellular 

concentrations of an anticancer drug, thereby 

augmenting its cytotoxicity 
30, 31

.  

 

The mechanism of tariquidar analogues acting as 

MRP1 efflux blockers is delineated in Fig.1 
29, 32-34

. 

Because these compounds demonstrate high 

activity at clinically achievable concentrations, we 

anticipate that this class of drugs will be a 

promising and valuable tool for future applications 

in the fight against cancer and drug resistance 
28, 34-

37
. 

 

Molecular modeling, docking, 3D- QSAR and 

contour map analysis: 

Molecular modeling attempts to be the perfect 

algorithm for fitting flexible molecules into the 

active sites of corresponding selected proteins 
38

. 

FlexX exploits molecular flexibility of the ligand, 

and the development of a docking model includes 

the physicochemical properties of the molecules 
39

. 

Using FlexX to ―dock‖ potential drugs gives 

important insights into their binding mechanisms 

and makes a focused optimization of the potential 

drug molecule possible 
40

. 

 

3D QSAR analyses generate virtual receptors and 

determine the quantitative relationships between 

the biological activity of a set of compounds and 

their 3D properties via statistical correlation 

methods 
41

. The basic principle behind CoMFA is 

that changes in binding affinities of ligands are 

related to changes in shape and strength of non-

covalent interaction fields surrounding the 

molecules, such as steric, electrostatic, 

hydrophobic, and hydrogen bond accepting or 

donating fields 
42, 43

. The CoMFA QSAR equation 

is summarized graphically as a 3D contour map, 

showing those fields in which the lattice points are 

associated with extreme values 
44, 45

. These contour 

map values correspond to the molecular fields 

which are considered crucial for binding affinity
44, 

46
. CoMSIA is an extension of the CoMFA and 

involves comparison of molecular similarity, given 

in terms of similarity indices 
47

. In CoMSIA, steric 

and electrostatic fields along with hydrophobic 

fields and hydrogen bond donor/acceptor fields are 

computed 
47

. 

 

Computational methods: 

Molecular modeling: 

Homology modeling was adopted in order to 

construct a three dimensional (3D) structure for 

human MRP1 protein (NCBI ID: NP_004987). 

This protein was further employed to perform 

docking and contour map studies. Swiss-model was 

employed to thread all the possible templates and to 

construct the best homology model of MRP1 

protein. The crystal structure of the multidrug 

transporter P-glycoprotein (PDB code: 4F4C; 

www.pdb.org) was used as a base template to 

construct the 3D model for MRP1. The quality of 

the model was analyzed using QMEAN4 

(Qualitative Model Energy Analysis 4) and GMQE 

(Global Model Quality Estimation) values 

generated by the Swiss-model server. 

 

Geometry optimization: 

Twenty six tariquidar analogues reported to be 

efficient MRP1 blockers were chosen for this study 
8
. IC50 values available in the literature were used 

to calculate pIC50 (-log IC50) values for all of the 26 

compounds 
8
. Among those 26 tariquidar 

analogues, compound 18 has the least activity 

(pIC50= 5.309804) and compound 20 (pIC50= 

7.420216) is highly active. Chemical structures of 

these 26 tariquidar analogues were drawn using 

ISIS, and were geometrically optimized on SYBYL 

using default parameters and convergence criterion 

of 0.001 kcal/mol (Supplementary table 1) 
48

. The 

energy minimization of these 26 compounds was 

performed viatripos force field and the Gasteiger-

Huckel charges using a distance-dependent 

dielectric and powell conjugate gradient algorithm 

with a convergence criterion of 0.05 kcal/mol 
49, 50

. 

Further geometric optimization of these tariquidar 

analogues was done using the default set semi-

empirical program MOPAC 6.0; MOPAC charges 

were used for entire calculations 
51

. 
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Alignment: In 3D-QSAR studies, a geometric 

similarity should exist between the structures, so 

MOPAC geometry optimized structures were 

aligned on the most active molecule (determined 

from the literature) from the set as a template
52

. 

Doing so adjusts the geometry of the molecules 

such that the steric and electrostatic fields of the 

molecules match the fields of the template 

molecule 
52, 53

.  

 

Molecular docking:  

Receptor-ligand docking is highly specific and is 

crucial for many biological functions 
54

. In this 

study FlexX interfaced with SYBYL 6.0 was used 

to dock tariquidar compounds to the active site of 

MRP1 efflux pump protein 
55

. In SYBYL 6.0 

docking model, tariquidar compounds are 

considered to be the flexible molecules whereas 

MRP1 protein is predicted to be rigid. In docking 

automated process, all the new fragments are joined 

to the base fragment at the active site in every 

possible angle and conformation
56

. SYBYL 6.0 

interfaced with FlexX was used to compute the 

predictable binding conformations of these 26 

inhibitors around an active radius of 6.5Å17
38

. 

Default FlexX docking parameters were employed 

to obtain the docking scores. The interactions of 26 

tariquidar analogues with MRP1 protein were 

calculated and the highest scoring compound was 

considered as the best fit. Energy calculations and 

structural information was also computed on 

SYBYL-FlexX.  

 

3D- QSAR- CoMFA and CoMSIA and contour 

analyses: 

Three-dimensional quantitative structure activity 

relationship (QSAR) studies that include 

comparative molecular field analysis (CoMFA) and 

molecular similarity indices in comparative 

analysis (CoMSIA) methods were conducted on 

these 26 tariquidar analogues to assess their 

potential as MRP1 blockers. CoMFA employs 

tripos force field with a distance-dependent, 

dielectric constant in all interactions in a regularly 

spaced (2 × 10
-10

 m) grid taking a sp3 carbon atom 

as steric probe and a +1 charge as electrostatic 

probe
38, 57

. The cut-off was set to 30 Kcal/mol 
38, 57

. 

CoMSIA uses a Gaussian-type distance-dependent 

dielectric constant to minimize changes in atomic 

positions and charge potentials at the grids 
58

. 

CoMSIA calculates using a C+ probe atom with a 

radius of 1 × 10
-10

 m placed at a regular grid 

spacing of 2 × 10
-10

 m to enclose all the binding 

conformations of the inhibitors 
59

. Using default 

parameters, steric, electrostatic, and hydrophobic 

field parameters were calculated. The steric filed 

contribution is denoted by the third power of the 

atomic radii of the atoms and electrostatic 

properties were given as atomic charges that were 

obtained from FlexX docking 
60

.  

 

Hydrophobicity was calculated as atom dependent 

parameter and an approximately 4Å lattice grid was 

used to include all the binding conformations of the 

inhibitors. In this study, similarity indices were 

computed using a probe atom (Wprobe,k) with 

charge +1, radius 1Å, hydrophobicity +1, and 

attenuation factor, a, of 0.3 for the Gaussian type 

distance 
38

. The statistical analysis for the CoMSIA 

analyses was similar to CoMFA
61

.  

 

The pIC50 data will couple 3-log units offering a 

wide and similar set of data for 3D-QSAR analysis. 

Compounds were divided into test and training sets 

in 1:3 ratio to improve the predictability of the 3D-

QSAR models. Cross-validation and partial least 

score (PLS) analyses were used where the cross-

validated coefficient (q
2
), leaving optimal number 

of components and lowest standard error of 

prediction, was considered for the accuracy 

determination of the predicted models 
43, 61

.  

 

The reliability of a 3D-QSAR model depends on 

the activity prediction ability of the model. 

Pearson’s correlation coefficient, r
2
, is the squared 

correlation coefficient that measures the precision 

of adjustment for the fitted values to the observed 

ones 
61

. In cross-validation, the outcome of the 

LOO procedure is a cross-validated correlation 

coefficient (r
2
, cv or q

2
) that indicates the 

robustness and predictive ability of the model 
56

. 

The cross-validated correlation coefficient, q
2
, is 

regarded as a measure of internal consistency of the 

derived model 
56

. Fischer statistic (F value) 

parameter was used as a measure of the level of 

statistical significance of the regression model; a 

higher F value implies a more significant 

correlation 
56

. 
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RESULTS AND DISCUSSION: 

Homology modeled protein indicating an 

effective 3D structural conformation: The 3D 

structural conformation of the molecular modeled 

MRP1 protein that was generated using Swiss-

model server is shown in Fig. 4. This model was 

validated based on the statistically significant 

QMEAN4 value, indicating the current model to be 

close to the Z-score of the template (PDB ID: 

4F4C) from PDB. A higher GMQE value close to 

0.5 indicates the greater reliability of the model.  

 

 
FIG. 4: FIG. 4: HOMOLOGY MODELED 3D STRUCTURAL CONFORMATION OF MRP1:  

Protein structure indicating 17 TM's as helices and loops. The structure was constructed using Swiss-model (swissmodel.expasy.org) 11 and 

visualized on PSI (http://www.proteinmodelportal.org/). 

 

Docking results indicate tariquidar analogues as 

potential MRP1 modulators because of their 

interaction with the MRP1 at the active site:                                             

The FlexX dock score and amino acid interactions 

are considered as the base with which to assess the 

potential of the tariquidar analogues in blocking the 

active site of the MRP1 drug efflux pump 
11

.  This  

 

docking study on tariquidar analogues as MRP1 

efflux blockers predicted a considerable correlation 

in the FlexX scores attained. Many polar amino 

acid residues present in the active site of MRP1 

were found to be interacting with the tariquidar 

analogues in this study (Table 1).  

 

TABLE 1: FLEXX DOCK SCORES; INTERACTING AMINO ACIDS, MOLECULES AND ATOMS OF TARIQUIDAR 

ANALOGUE COMPOUNDS THAT ARE SIGNIFICANT FOR BINDING TO THE MRP1 ACTIVE SITE AND THEIR 

DISTANCES FROM MRP1 PROTEIN. 

S. No Interacting amino acids, 

molecules or atoms 

FlexX dock score Distance (Å) No. of interactions 

1 GLN 713 -15.0 2.08  

 

5 

 O3  2.20 

 LYS 684  2.12 

   2.26 

 GLY 681  1.67 

 

2 O3 -14.8 2.23  

 

6 

 GLN 713  2.11 

 GLY 681  1.65 

 LYS 684  1.69 

   2.15 

   2.28 
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3 GLN 713 -14.8 2.11  

 

6 

 O3  2.23 

 LYS 684  1.69 

   2.28 

   2.15 

 GLY 618  1.65 

 

4 LYS 684 -15.2 2.06  

 

 

7 

   2.26 

   1.77 

 GLY 681  1.90 

 O3  2.53 

   3.41 

 GLN 713  2.04 

 

5 GLN 713 -20.7 2.04  

 

5 

 LYS 684  1.92 

 VAL 680  1.78 

 GLY 681  2.36 

   1.88 

 

6 GLN 713 -19.1 1.97  

 

5 

 LYS 684  1.91 

 VAL 680  1.89 

 GLY 681  2.37 

   1.83 

 

7 GLY 681 -22.4 2.05  

 

5 

   2.28 

 VAL 680  1.89 

 LYS 684  2.10 

 GLN 713  2.02 

 

8 ASN94 -26.5 2.75  

 

 

 

 

10 

   1.39 

 O3  2.34 

   2.33 

 SER 686  2.40 

 GLY 683  1.93 

   1.72 

 LYS 684  2.17 

   2.44 

 GLY 681  2.24 

 

9 GLN 713 -31.4 2.01  

 

 

 

 

 

 

14 

 Mg2+  1.79 

 LYS 684  1.94 

   1.99 

   1.99 

 GLY 683  2.07 

 GLN 713  2.01 

 03  2.19 

   2.57 

   1.68 

 SER 686  4.97 

   2.68 

   2.15 

 ASN94  2.76 
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10 GLY 681 -26.6 2.18  

 

 

 

 

 

 

 

 

17 

 LYS 684  1.69 

   2.68 

 SER 685  2.15 

   2.64 

   2.66 

 Mg2+  2.12 

   1.82 

 GLN 713  1.73 

   2.04 

   2.39 

 O3  2.93 

   2.26 

   2.93 

   2.68 

   2.39 

   0.93 

 

11 SER 685 -18.9 2.65  

 

 

6 

 SER 686  2.18 

 GLY 683  1.76 

 LYS 684  2.16 

 O3  1.77 

   0.78 

 

12 GLY 681 -24.9 1.56  

 

 

6 

   1.76 

   2.20 

 VAL  680  2.04 

 GLN 713  2.05 

 LYS 684  1.90 

 

13 LYS 684 -24.9 1.90  

 

 

6 

 GLN 713  2.05 

 GLY  681  2.20 

   1.56 

   1.76 

 VAL 680  2.04 

 

14 GLN 713 -22.0 2.11  

 

 

6 

 LYS 684  2.09 

 VAL 680  1.89 

   2.31 

 GLY 681  1.92 

   1.60 

 

15 GLY 681 -26.8 1.85  

 

 

6 

   2.10 

 VAL 680  1.80 

   2.31 

 LYS 684  1.98 

 GLN 713  2.05 

 

16 GLN 713 -22.2 2.22  

 

5 

 GLY 681  1.84 

   1.74 

 THR 660  2.11 

   1.59 

 

17 O3 -22.1 2.10  
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 ASN94  2.60  

 

6 

 GLY 683  2.0 

 LYS 684  1.93 

   2.32 

 GLY 681  1.94 

 

18 GLN 713 -24.6 2.08  

 

 

6 

 VAL 680  1.99 

 GLY 681  2.29 

 LYS 684  2.00 

 LYS 682  2.02 

   1.66 

 

19 LYS 684 -21.7 2.09  

 

 

6 

 VAL 680  1.89 

 GLY 681  1.92 

   2.31 

   1.60 

 GLN 713  2.11 

 

20 GLN 713 -23.2 4.78  

 

 

 

 

 

11 

   2.11 

 O3  2.48 

 SER 686  2.06 

 ASN94  2.81 

   2.46 

 GLY 681  1.90 

 LYS 684  2.06 

   2.26 

   5.00 

   1.76 

 

21 GLY 681 -20.7 1.64  

 

4 

   2.21 

 VAL 680  1.94 

 GLN 713  1.87 

 

22 GLY 681 -21.2 2.40  

 

5 

   1.83 

 VAL 680  1.97 

 LYS 684  1.98 

 GLN 713  2.06 

 

23 GLN 713 -21.5 1.74  

 

 

 

6 

 LYS 684  1.89 

 VAL 680  2.12 

   2.06 

 GLY681  2.08 

   1.78 

 

24 GLN 713 -24.2 1.76  

 

 

 

 

 

 

13 

 

 O3  1.76 

   2.44 

   1.53 

   1.33 

 ASN94  2.10 

 SER 686  1.79 

   2.42 

   2.89 

   2.66 
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 LYS 684  1.99 

   2.32 

 GLY 683  2.11 

 

25 TRP 633 -30.3 2.190  

 

 

 

 

11 

 SER 686  1.807 

   1.725 

 SER 685  1.792 

   2.554 

 LYS 684  2.206 

   2.143 

   2.367 

   2.610 

 LYS 682  2.687 

 GLY 681  2.674 

 

26 GLN 713 -19.6 1.93  

 

5 

 GLY 681  1.70 

   2.16 

 VAL 680  2.03 

   1.89 
 

The FlexX dock scores and the interactions of all 

26 tariquidar analogues with the active site of 

MRP1 are tabulated in Table 1. Among the 26 

compounds docked, compound 9 showed 14 

interactions with the active site of MRP1 and has a 

highest dock score of -31.4 KJ/mol (Fig. 5) 

Compound 2 has shown the lowest dock score of -

14.8 KJ/ mol with six interactions (Fig. 8). 

Compound 20, most active compound, has shown a 

significant dock score of -23.2 KJ/mol with 11 

interactions (Fig.6) and Compound 18, the least 

active compound, has shown a dock score of -24.6 

KJ/ mol with six interactions with the active site of 

MRP1 protein (Fig. 7). 

 

 
FIG. 5: COMPOUND 9 SHOWING 14 INTERACTIONS 

(REPRESENTED AS YELLOW LINES) WITH THE ACTIVE 

SITE OF MRP1 AND HAVING THE HIGHEST DOCK 

SCORE OF -31.4 KJ/MOL.  
 

 

 

The structure in ball-and-stick model represents 

compound 9, and the structure in lines represents 

MRP1 protein. 

  

 
FIG.6: FIGURE SHOWING INTERACTIONS (11 

REPRESENTED IN YELLOW LINES) AND - 23.2 KJ/MOL 

DOCK SCORE OF COMPOUND 20, THE HIGHLY ACTIVE 

COMPOUND WITH ACTIVE SITE OF MRP1 PROTEIN.  

 

The structure in the ball-and-stick model represents 

compound 20, and the structure in lines represents 

the MRP1 protein. 

 
FIG.7: FIGURE SHOWING INTERACTIONS (6 

REPRESENTED IN YELLOW LINES) AND -24.6 KJ/MOL 

DOCK SCORE OF COMPOUND 18, THE LEAST ACTIVE 

COMPOUND WITH ACTIVE SITE OF MRP1 PROTEIN.  
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The structure in ball-and-stick model represents 

compound 18, and the structure in lines represents 

MRP1 protein. 

 

 
FIG. 8: COMPOUND 2 SHOWING SIX INTERACTIONS 

(REPRESENTED IN YELLOW LINES) WITH THE ACTIVE 

SITE OF MRP1 AND HAVING THE LEAST DOCK SCORE 

OF -14.8 KJ/MOL.  
 

The structure in ball-and-stick model represents 

compound 2, and the structure in lines represents 

MRP1 protein. 

 

CoMFA and CoMSIA results agree with the 

experimental values, signifying tariquidar 

analogues as MRP1 blockers: 

The CoMFA method was used for deriving a 3D-

QSAR model for 21 tariquidar compounds, which 

are reported as multi drug resistance modulators. 

The molecules were aligned, one over the other, to 

generate a common-core ring structure. Molecules 

that do not have a common-core ring were not 

included in the study. Fig.9 shows the alignment of 

26 molecules and the common-core ring. The 

leave-one-out partial least-squares (PLS) analysis 

of the obtained model yielded a high, cross-

validated q
2
-value of 0.698 (five components) and a 

non-cross-validated correlation-coefficient, r
2
, of 

0.983. This correlation coefficient suggests that our 

model is reliable and accurate.  

 

Table 2 lists CoMFA and CoMSIA experimental 

activities, predicted activities, and residual values 

of the training set and test set. CoMFA and 

CoMSIA 3D-QSAR models were generated using 

tariquidar analogues reported to be MRP1 

inhibitors. The chemical structures of all these 

molecules were provided in supplementary Table 1 

along with their IC50 and pIC50 activity values in 

supplementary table 2. Upon analyzing IC50 and 

pIC50 values, compound 18 was the least active 

compound, and compounds 20 and 26 were the 

most active compounds (Table 3).  

 

 
FIG. 9: THE ALIGNMENT. 

 

The picture shows the aligned structure of all 26 

tariquidar analogues and the common core ring 

present in all those molecules, thus aiding QSAR 

studies.

 

TABLE 2: CoMFA AND CoMSIA PREDICTED AND RESIDUAL VALUES FOR THE DATA SET.  

S. No. pIC50 COMFA COMSIA 

  Predicted Residual Predicted Residual 

1 5.769551 5.921 -0.151 5.925 -0.155 

2 5.568636 5.654 -0.084 5.675 -0.105 

3 5.638272 5.584 0.056 5.551 0.089 

4 6.00 5.28 0.72 5.94 0.06 

5 6.60206 6.262 0.358 6.185 0.435 

6 6.070581 6.355 -0.285 6.114 -0.044 

7 6.13 5.47 0.66 5.32 0.81 

8 5.481486 5.881 -0.401 5.952 -0.472 

9 6.036212 5.672 0.358 5.574 0.456 

10 6.69 6.91 -0.22 6.78 -0.09 

11 7.173925 6.690 0.480 6.985 0.185 

12 6.17 6.00 0.17 6.02 0.15 
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13 6.055517 6.240 -0.190 6.032 0.018 

14 7.17 6.90 0.27 6.23 0.94 

15 7.03 6.67 0.50 6.84 0.19 

16 6.102373 6.171 -0.071 6.261 -0.473 

17 7.06 7.52 -0.46 7.44 -0.38 

18 5.309804 6.250 -0.950 6.108 -0.808 

19 7.221849 6.776 0.454 7.249 -0.029 

20 7.420216 7.005 0.145 6.785 0.635 

21 6.826814 6.798 0.022 6.898 -0.078 

22 6.850781 6.873 -0.023 6.119 0.731 

23 6.657577 6.893 -0.243 7.123 -0.473 

24 6.533132 6.725 -0.195 6.892 -0.362 

25 7.346787 7.035 0.305 7.289 0.051 

26 7.420216 6.774 0.646 6.817 0.603 

 

The table indicates the experimental activities, 

predicted activities, and residual values of the 

training set and test set used to generate the 

CoMFA model. Values in grey represent the test 

set, and the other values represent training set.  

 

CoMFA analysis and statistical validity predict 

compound 20 to be the most potent and stable 

MRP1 modulator: 

Eleven and seven out of twenty six MRP1 

inhibitors total were used in training and test sets, 

respectively. The compounds in the test set were 

chosen manually to ensure that the compounds 

included possess a broad activity range. The steric 

and electrostatic field descriptors explain 54.0 % 

and 46.0 % of the variance, respectively (Table 3). 

Predicted values support the statistical validity of 

the developed models and correlate with the 

experimental values, supporting the reliability of 

predicted CoMFA model (Table 3). 

 
TABLE 3: PLS STATISTICS OF CoMFA AND CoMSIA, 3D-

QSAR MODELS.  

Fields Comfa Comsia 

q
2
 0.698 0.695 

r
2
 0.983 0.968 

SEE 0.107 0.154 

F 151.768 60.628 

Field contribution  

Steric 54.0% 12.8% 

Electrostatic 46.0% 22.7% 

Hydroscopic - 26.2% 

Donor - 0.07% 

Acceptor - 31.1% 

 

The q
2
- LOO-cross-validated correlation 

coefficient, r
2
, non-cross-validated correlation 

coefficient, n- number of components used in the 

PLS analysis, SEE-standard error estimation, F- 

 

 

statistic for the analysis values shown demonstrate 

the accuracy and stability of our model. 

 

CoMSIA analysis demonstrates the accuracy of 

predicted models: 

Four major field descriptors: steric, electrostatic, 

hydrophobic, and hydrogen bond donor fields were 

used to run the CoMSIA analysis. The CoMSIA 

analysis demonstrated a cross-validated q
2
 of 0.695, 

a conventional r
2
 of 0.968 with a SEE of 0.154, and 

F value of 60.628 for training set (Table 3). The 

steric, the electrostatic, hydrophobic field, 

hydrogen bond donor, and hydrogen bond acceptor 

field descriptors explain 12.8 %, 22.7 %, 26.2 %, 

0.07 % and, 31.1 % of the variance, respectively 

(Table 3). The above results demonstrate that the 

predicted CoMSIA model is reliable and accurate. 

These results demonstrate that the CoMFA and 

CoMSIA models can be reliably used in the design 

of novel MRP1 inhibitors. 

 

Contour analysis with all the major field 

descriptors analyzed predict compound 20 to be 

the most active and stable MRP1 blocker, 

whereas compound 18 to be the least active and 

less stable one: 

Contour map analysis was performed on SYBYL 

6.0 to visualize the generated CoMFA and 

CoMSIA models. During contour map analysis, 

contour with contribution values of 80% for 

favored region and 20% for disfavored region were 

set as the default level. 

 

CoMFA contour maps with steric and 

electrostatic contours indicate the stability of 

compound 20 as MRP1 blocker: 

Images of CoMFA steric and electrostatic contours 

with lowest (compound 18) and highest activity 
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(compound 20) compounds are shown in Fig’s. 10 

to 13. In Fig.10 and 11 of CoMFA – steric 

interactions in counter maps of tariquidar MDR 

modulators with lowest (compound 18) and highest 

activity (compound 20) – the green and yellow 

polyhedrons indicate regions where increased or 

decreased steric bulk, respectively, are predicted to 

enhance activity. 

 

In the CoMFA steric contour map of compound 18, 

a large green contour indicating increased steric 

bulk was located away from the MRP1 protein 

whereas in the CoMFA steric contour map of 

compound 20, this steric bulk was found making 

interaction with the protein because of the 

additional functional groups attached (Fig. 10 and 

11). The CoMFA electrostatic counter map of 

tariquidar MDR modulators with lowest 

(compound 18) and highest activity (compound 20) 

are shown in Fig.12 and 13. The red and blue 

polyhedrons indicate regions of higher electron 

density with high binding affinity (negative charge) 

and lower electron density with less affinity of the 

compounds to bind the protein (partial positive 

charge), respectively, predicting activity 

enhancement.  

 

In CoMFA electrostatic contour map, a block in red 

representing a high electron dense region was 

located away from the protein whereas in CoMFA 

electrostatic contour map of compound 20, this 

highly electron-dense region was found close to the 

protein MRP1 (Fig. 12 and 13). This is possibly a 

reason why compound18 is less potent as a 

modulator and compound 20, with additional 

functional groups attached, is more potent. Thus, 

these CoMFA models demonstrate that the 

functional groups attached to the modulator 

increase its activity, thereby making it more potent. 

 

 
FIG.10: COMFA STERIC COUNTER MAP OF TARIQUIDAR MDR 

MODULATORS WITH HIGHEST ACTIVITY (COMPOUND 20).  

The green and yellow polyhedrons indicate regions 

where increased or decreased steric bulk, 

respectively, are predicted to enhance activity. 

 

 
FIG.11: COMFA STERIC COUNTER MAP OF TARIQUIDAR 

MDR MODULATOR COMPOUND WITH LEAST ACTIVITY 

(COMPOUND 18). 

 

The green and yellow polyhedrons indicate regions 

where increased or decreased steric bulk, 

respectively, are predicted to enhance activity.  

 

 
FIG. 12: COMFA ELECTROSTATIC COUNTER MAP OF 

TARIQUIDAR MDR MODULATORS WITH MOST 

ACTIVITY (COMPOUND 20). 

 

The red and blue polyhedrons indicate regions 

where higher electron density (negative charge) and 

lower electron density (partial positive charge), 

respectively, are predicted to enhance activity. 

 

 
FIG.13: COMFA ELECTROSTATIC COUNTER MAP OF 

TARIQUIDAR MDR MODULATOR COMPOUND WITH 

LOWEST ACTIVITY (COMPOUND 18). 
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The red and blue polyhedrons indicate regions 

where higher electron density (negative charge) and 

lower electron density (partial positive charge), 

respectively, are predicted to enhance activity. 

 

CoMSIA contour maps CoMFA contour maps 

with steric, electrostatic, hydrophobic, and 

hydrogen bond donor and acceptor fields 

indicate compound 20 to be the most active and 

stable MRP1 blocker: 

The steric, electrostatic, hydrophobic, and 

hydrogen bond donor and acceptor fields were used 

to construct the CoMSIA contours maps (Fig.14- 

23). The steric and electrostatic contour maps of 

CoMFA and CoMSIA are almost identical, 

indicating a similar role. The CoMSIA steric and 

electrostatic contours maps are shown in Fig.14 

(highest activity), 15 (least activity), 16 (highest 

activity), and 17 (least activity), respectively. In 

Fig. 15 (showing CoMSIA steric contour map of 

the least active compound, compound 18) steric 

bulk was found masking functional groups whereas 

in Fig. 14(showing CoMSIA steric contour map of 

modulator with highest activity, compound 20), 

decreased steric bulk close to the modified 

functional group is demonstrated to be the reason 

for increase in the activity.  

 

In Fig.15 (showing CoMSIA electrostatic contour 

map of least active compound, compound 18) 

electron density is high, indicating least activity. 

Electron density is low in Fig.16 (CoMSIA 

electrostatic contour map of modulator with highest 

activity, compound 20) demonstrating that the 

decreased electron density enhances the activity of 

the molecule. 

 

 
FIG. 14: COMSIA STERIC COUNTER MAPS OF 

TARIQUIDAR MDR MODULATORS HAVING HIGHEST 

ACTIVITY (COMPOUND 20).  

The green and yellow polyhedrons indicate regions 

where increased or decreased steric bulk, 

respectively, are predicted to enhance activity. 

 

 
FIG. 15: COMSIA STERIC COUNTER MAPS OF 

TARIQUIDAR MDR MODULATORS HAVING LOWEST 

ACTIVITY (COMPOUND 18). 

 

The green and yellow polyhedrons indicate regions 

where increased or decreased steric bulk, 

respectively, are predicted to enhance activity. 

 

 
FIG.16: COMSIA ELECTROSTATIC COUNTER MAPS OF 

TARIQUIDAR MDR MODULATORS HAVING HIGHEST 

ACTIVITY (COMPOUND 20). 

 

The red and blue polyhedrons indicate regions 

where higher electron density (negative charge) and 

lower electron density (partial positive charge), 

respectively, are predicted to enhance activity. 

 

 
FIG. 17: COMSIA ELECTROSTATIC COUNTER MAPS OF 

TARIQUIDAR MDR MODULATORS HAVING LOWEST 

ACTIVITY (COMPOUND 18). 
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The red and blue polyhedrons indicate regions 

where higher electron density (negative charge) and 

lower electron density (partial positive charge), 

respectively, are predicted to enhance activity. The 

CoMSIA hydrophobic counter maps of tariquidar 

MDR modulators having lowest (compound 18) 

and highest activity (compound 20) are shown in 

Fig.19 and 18. The favourable hydrophobic region 

is represented by white contours, and unfavourable 

regions are represented by yellow contours. In Fig. 

19, CoMSIA hydrophobic contour map of 

compound 18, yellow contours representing 

unfavourable regions are seen, indicating the least 

activity of molecule.  

 

In Fig.18, CoMSIA hydrophobic contour map of 

compound 20, hydrophobicity is found masking the 

functional groups thereby making the molecule 

more potent. This indicates that the hydrophobicity 

will favour the binding of modulator with MRP1 

thereby enhancing the activity of compound 20 and 

hindering the binding of compound 18 to MRP1. 

  

 
FIG. 18: COMSIA HYDROPHOBIC COUNTER MAPS OF 

TARIQUIDAR MDR MODULATORS HAVING HIGHEST 

ACTIVITY (COMPOUND 20). 

 

The favorable hydrophobic region is represented by 

white contours and unfavorable regions are 

represented by yellow contours. 
 

 
FIG. 19: COMSIA HYDROPHOBIC COUNTER MAPS OF 

TARIQUIDAR MDR MODULATORS HAVING LOWEST 

ACTIVITY (COMPOUND 18). 

The favourable hydrophobic region is represented 

by white contours and unfavourable regions are 

represented by yellow contours. The CoMSIA 

hydrogen bond donor counter maps of tariquidar 

MDR modulators having lowest (compound 18) 

and highest activity (compound 20) are shown in 

Fig. 21 and 20. Cyan polyhedron indicates a 

hydrogen bond donor group in the ligand that 

favors biological activity, and purple polyhedrons 

represent hydrogen bond acceptors in the ligand 

that are unfavorable for bio-activity (Fig. 20 and 

21). In the CoMSIA hydrogen bond donor counter 

map of compound 20, the hydrogen bond donor in 

cyan is present close to the functional group, and 

the hydrogen bond acceptor in blue that is not 

favorable for the activity is present away from the 

functional group (Fig. 20). This indicates that the 

activity of molecule 20 is enhanced by the presence 

of a hydrogen bond donor that favors binding of the 

modulator to MRP1.   

 

 
FIG. 20: COMSIA HYDROGEN DONOR OF (HYDROGEN BOND) 

COUNTER MAPS OF TARIQUIDAR MDR MODULATORS HAVING 

HIGHEST ACTIVITY (COMPOUND 20). 

 

Cyan polyhedron beyond the ligands where a 

hydrogen bond donor group in the ligand will be 

favorable for biological activity, and the purple 

polyhedron represents hydrogen bond acceptor in 

the ligands unfavorable for bioactivity. 

 

 
FIG.21: COMSIA HYDROGEN DONOR OF (HYDROGEN BOND) 

COUNTER MAPS OF TARIQUIDAR MDR MODULATORS HAVING 

LEAST ACTIVITY (COMPOUND 18). 
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Cyan polyhedron beyond the ligands where a 

hydrogen bond donor group in the ligand will be 

favorable for biological activity, and the purple 

polyhedron represents hydrogen bond acceptor in 

the ligands unfavorable for bioactivity. The 

CoMSIA active hydrogen bond acceptor counter 

maps of tariquidar MDR modulators showing 

lowest (compound 18) and highest activity 

(compound 20) are shown in Fig. 23 and 22. Red 

polyhedrons indicate a hydrogen bond donor group 

in the ligand that will be favorable for biological 

activity, and purple polyhedrons represent a 

hydrogen bond acceptor in the ligand that is 

unfavorable for bioactivity (Fig.22 and 23). In 

Fig.22, the purple polyhedron representing a 

hydrogen bond acceptor is found interacting with 

the functional group of compound 20 unlike that in 

Fig.23 for compound 18. This suggests that the 

hydrogen bond acceptor and donor presence close 

to the functional group will determine the activity 

of the compound. 

 

 
FIG. 22: COMSIA ACTIVE HYDROGEN ACCEPTOR OF 

(HYDROGEN BOND) COUNTER MAPS OF TARIQUIDAR 

MDR MODULATORS HAVING HIGHEST ACTIVITY 

(COMPOUND 20). 

 

Red polyhedron beyond the ligands where a 

hydrogen bond donor group in the ligand will be 

favorable for biological activity, and the purple 

polyhedron represents hydrogen bond acceptor in 

the ligands unfavorable for bioactivity. 

 

 
FIG.23: COMSIA ACTIVE HYDROGEN ACCEPTOR OF 

(HYDROGEN BOND) COUNTER MAPS OF TARIQUIDAR 

MDR MODULATORS HAVING LEAST ACTIVITY 

(COMPOUND 18). 

Red polyhedron beyond the ligands where a 

hydrogen bond donor group in the ligand will be 

favorable for biological activity, and the purple 

polyhedron represents hydrogen bond acceptor in 

the ligands unfavorable for bioactivity. 
 

DISCUSSION AND CONCLUSIONS: 

In silico analysis and 3D-QSAR studies on efflux 

blockers are important tools in the fight against 

drug resistance in anti-cancer treatment 
21

. Contour 

map analysis and docking studies on MRP1 

inhibitors are critical as the MRP1 efflux pump is a 

major factor behind the failure of anti-cancer drug 

therapies 
8
. The tariquidar analogues tested as 

MRP1 efflux inhibitors in the current study 

demonstrate the mechanism of inhibitor interacting 

with the active site of MRP1, binding it tightly; 

thus making the cell unable to pump anti-cancer 

drugs out using the blocked MRP1 efflux pumps. A 

receptor-independent 3D-QSAR has been 

established for tariquidar analogues employing the 

most widely used techniques CoMFA and 

CoMSIA. This work highlights the importance of 

ligand orientation and selection of the training set 

molecules in the development of statistically 

significant QSAR models.   

 

Interestingly, the CoMSIA models provided better 

statistical models than CoMFA, which points to the 

significance of hydrogen bond donor and 

hydrophobic fields in the selectivity and activity of 

these ligands in addition to steric and electrostatic 

fields. The statistical significance and robustness of 

the generated 3D-QSAR models were confirmed 

using an external set of molecules. The structural 

requirements identified in the present study can be 

utilized strategically in the design of novel, potent, 

and unique tariquidar analogue compounds with 

multidrug resistance modulation activities 
62

.  

 

Even though the dock score of compound 20 is not 

the highest (the highest dock score was compound 

9 with -31.4 KJ/mol) among all the 26 compounds 

tested in the study, from the FlexX docking 

interactions and contour map analysis it can be 

predicted that the amino acid interactions and force 

fields of compound 20 with MRP1 are critical for 

rendering this compound potent 
16

. Based on the 

interactions of compound 20 with the active site of 

MRP1 and force-field interactions we predict that 
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compound 20 can be effectively used in biological 

systems as a MRP1 inhibitor as it will be potent 

and stable. Compound 18, being the least active 

compound, has shown a FlexX dock score of -24.6 

KJ/mol with six interactions. Even though the dock 

score of compound 18 is considerably high, it can 

be predicted that this compound is not stable (based 

on contour map analysis) and that the interactions 

with the active site of MRP1 (six interactions) are 

not strong enough to block the pump.  

 

Therefore, from molecular simulated docking 

studies and from contour map analysis together, we 

predict that compound 20 can be demonstrated as 

an effective MRP1 efflux pump blocker because of 

its stability in the biological environment and its 

potency to interact with and block MRP1 pump. 

Quantitative structure activity relationship study 

(3D-QSAR) results indicate a better fit between 

MRP1 and the tariquidar efflux modulator 

analogues. The CoMFA and CoMSIA studies, PLS 

statistical analysis, and contour map analysis 

support the accuracy of predicted and docked 

models. From our docking simulation and contour 

map analysis, we predicted which tariquidar 

compounds out of 26 different analogues might be 

most effective as MRP1 efflux inhibitors. We 

believe that by using the methodology of this study 

and the predictive models therein as a base, other 

potential efflux pump inhibitors might be 

discovered. Additionally, we expect that future 

investigations into the tariquidar analogues 

identified in this study will yield innovate and 

effective MRP1 blockers, thereby enhancing the 

efficacy of anti-cancer therapy. 
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