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ABSTRACT: This paper is to review the green catalytic synthesis of 

organic reactions and discussed its advantages over the conventional 

method of synthesis. Recent advanced technologies have key trend to 

reduce the negative impacts of chemical environment and helps to 

obtain sustainability in chemical production. This review tries to bring 

many catalytic techniques that are safer in nature and more 

economical. We have considered those synthetic schemes which have 

significant role in pharmaceuticals industry and the different green 

catalyst employed in those reactions. These organic reactions have 

special advantages with the use of catalyst; there is better utilization of 

starting materials and minimum waste product formation. The main 

objective of these synthetic schemes is that there is least pollution to 

the environment. 

INTRODUCTION: In recent years, the most 

important goal of synthetic chemists is the 

development of resource-efficient and sustainable 

chemical methodologies. Several attempts have 

been undertaken in green chemistry to design 

synthetic methods in such a way that the starting 

materials are consumed to the maximum extent and 

waste products are minimum 
1-20

. They have no 

adverse environmental impact during chemical 

synthesis. Designing and developing catalysts is 

identified as heart of greening of chemistry. The 

Catalysis contributes an alternative pathway of 

chemical transformation which enables the 

commercially viable creation of desired materials. 

In this article we have discussed some green 

catalyst and techniques which plays a major role in  

QUICK RESPONSE CODE 

 

DOI: 
10.13040/IJPSR.0975-8232.10(12).5311-17 

The article can be accessed online on 
www.ijpsr.com 

DOI link: http://dx.doi.org/10.13040/IJPSR.0975-8232.10(12).5311-17 

Establishing the economic strength and clean 

technology revolution in the industry which 

provides new opportunity for synthetic 

methodologies 
20-46

. They are categorized according 

to structure, composition, area of application or 

state of aggregations. Following are the different 

green catalysts: 

Benign Catalyst K10 Montmorillonite Clay: In 

recent decades variety of organic reactions 

extensively reported using either K10 clay or its 

modified catalyst. For example, in Fries 

rearrangement of phenylacetate as shown in 

Scheme 1, K10 clay has been used with the 

framework aluminum acting along as Lewis acid 

catalyst 
47

. The percentage conversions with K-10 

clay and Na
+
 exchanged K-10 resulted higher yield 

of p-isomer (~80%) and when the amount of the 

catalyst was increased two-fold, this leads to 

increase in the amount of o-isomer. The protocol 

for the synthesis of various benzimidazoles and 

quinoxalines from carbonyl compounds and o-

phenylenediamine was simplified with Zn-chloride-

exchanged K10 montmorillonite (calyzic) catalyst.  
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This synthesis requires milder conditions, as shown 

in Scheme 2, atom-economic in nature, and no 

wastes 
48-51

. 

 
SCHEME 1: FRIES REARRANGEMENT OF PHENYL 

CATALYSED BY K10 CLAY 

 
SCHEME 2: SYNTHESIS OF BENZIMIDAZOLE AND 

QUINOXALINE CATALYSED BY CALYZIC 

When K10 clay and cation exchanged 

montmorillonite clay was employed with 

hydrophobic CTAC-pillared clay leads to higher 

catalytic activity as well as higher selectivity. The 

addition reaction of butanethiol to styrene is 

mediated in the clay microenvironment, the 

formation of 1,2-dibutyldisulfide and butyl (4(2-

(butylthio)ethyl)phenyl)sulfane totally suppressed 

and butyl(phenethiol) sulfane (as shown in Scheme 

3) 
52

. 

 
SCHEME 3: RADICAL ADDITION OF BUTANETHIOL 

TO STYRENE CATALYZED BY K10 CLAY 

The nitration of oestrone Scheme 4 which is 

industrially significant, is catalyzed by clay, 

facilitated with metal nitrates such as ferric nitrate 

and copper nitrate and is known as ‘Clayfen’
53

. 

 
SCHEME 4: NITRATION OF PHENOL WITH 

‘CLAYFEN’ 

Polymer Supported Catalyst: The Suzuki-

Miyaura coupling reaction which tends to the direct 

formation of C-C bond. This direct bond formation 

between carbon atoms has practical significance in 

industries, as they are fundamental route in the 

synthesis of pharmaceuticals, polymers, fine 

chemicals as well as for the synthesis of materials. 

The traditional method of Suzuki-Miyaura cross-

coupling reaction mediated with transition metals 

occurs in mild condition but the used catalyst was 

difficult to remove from desired product. This ever-

increasing interest leads the synthetic chemist to 

design greener approach for the preparation. As in 

traditional method aryl halides are reacted with aryl 

boronic acids in the presence of palladium catalyst 

and a base to form biaryl system. Under green 

chemistry, polymer-supported palladium catalyst 

has been found to be quite effective, and at the 

same time it can be easily removed through 

filtration and reused 
54-57

. 

Traditional Reaction: Suzuki-Miyaura reaction:- 

 

Green reaction chemistry method of Suzuki-

Miyaura reaction, 

 
SCHEME 5: SUZUKI-MIYAURA REACTION 
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Solid Acid Catalysts: Solid acid catalysts are the 

most important heterogeneous catalyst that is found 

to be both economical as well as eco-friendly. The 

use of mineral acids in organic reactions like HCl, 

HF, etc. they have many difficulties like risk in 

handling, contamination, and disposal. There is 

eminent need to replace them and to carry out large 

number of acid-catalyzed industrialized processes. 

In the context of above adversity and need for an 

efficient methodology for acid-catalyzed synthesis, 

synthetic chemists developed a strong solid acid 

catalyst 
58

. These solid acid catalysts are stable, 

regenerable and active at moderate temperatures. A 

few of them had been discussed in below 

paragraph. 

Nitration of aromatic compounds by traditional 

methodology over decades remains to be 

uneconomical. As they were nonselective in nature 

and led to the formation of unwanted isomers that 

are hazardous in nature. Over time, many unique 

methodologies have developed which has been 

proven to be highly p-selective, can reuse the nitric 

acid and zero-emission of effluents. In earlier 

investigation clay was modified with different 

metals, among which Fe
2+

 montmorillonite catalyst 

was found to be more active in nature. Another 

approach was use of various zeolites derived from 

SiO2 and Al2O3. They have defined pores and tend 

to be more selective towards the nitration of 

substituted aromatic compounds 
59

. Zirconia based 

solid acids have superior activity for hydrocarbon 

conversion. The reaction between indole with 

various aldehyde in the presence of sulfated 

zirconia catalyst resulting the synthesis of bis-

indolyl methanes 
60

. 

 
SCHEME 6: SYNTHESIS OF BIS-INDOLYL 

METHANE DERIVATIVE CATALYSED BY 

SULFATED ZIRCONIA CATALYST 

Microwave-Assisted Reactions: The conventional 

methods of organic synthesis are generally slow 

and inefficient as it involves heating by external 

sources. And resulting product yield is very low 

and incorporated with any unreacted reagents as 

impurity. The energy transfer in conventional 

method of heating depends on thermal conductivity 

of materials. Nowadays several synthetic 

approaches adopted microwave irradiation for 

heating, which is an inefficient way of direct heat 

transmission with polar molecules. These 

irradiations are non-ionizing and have many 

advantages over the conventional method of 

organic synthesis. The short reaction time and 

increase of product yield in microwave-assisted 

reactions lead to the application of these techniques 

in pharmaceuticals industry. Microwave synthesis 

comes under green chemistry due to these features 
61

. Following are some of the microwave-assisted 

synthetic methodology,  

Gorobets et al., 
62

 developed a rapid microwave-

assisted protocol for the solution-phase synthesis of 

well-known biologically active heterocyclic 

scaffolds highly substituted 2-pyridone derivatives. 

They introduced general microwave-assisted three-

component one-pot synthesis of highly substituted 

2-pyridones utilizing CH–acidic substrates, 

dimethylformamide dimethyl acetal (DMFDMA) 

and diverse methylene active nitriles as building 

blocks as shown in Scheme 7. 

 

 
SCHEME 7: SYNTHESIS OF SUBSTITUTED 

PYRIDONE ASSISTED BY MICROWAVE ASSISTED 

REACTION 

Dave et al. reported on microwave-assisted 

synthesis of 4, 6-diaryl-3-cyano-2-pyridones 
63

. 

The reported yields ranged from 74 to 81% with 

high purity of compounds after only 1–2 min of 

irradiation, as shown in Scheme 8.  

Similarly, microwave irradiation is used for the 

synthesis of 2-quinolones from o-aminoarylketones 

and acetoacetic ester (4–6 min at 160 °C in the 



Dubey and Pandey, IJPSR, 2019; Vol. 10(12): 5311-5317.                            E-ISSN: 0975-8232; P-ISSN: 2320-5148 

International Journal of Pharmaceutical Sciences and Research                                                                              5314 

presence of a catalyst (CeCl3⋅7H2O) - yields 85–

95%) Scheme 9. 
64 

This methodology is 5 or more 

times faster than conventional synthesis. 

 
SCHEME 8: SYNTHESIS OF 4,6-DIARYL-3-CYANO-2-

PYRIDONES 

 
SCHEME 9: SYNTHESIS OF 2-QUINOLONE 

Ultrasound-Assisted Reactions: Ultrasound 

technique are another tool used in organic 

synthesis. Comparing it with traditional method it 

requires milder conditions and has short reaction 

time 
65

. In this technique, ultrasound is transmitted 

through medium, molecules will possess an 

induced vibrational motion, and at certain points of 

vibration intermolecular forces will not able to hold 

the molecular structure intact. This will lead to the 

breakdown of molecules and resulting physical and 

chemical effects.  

Thus it has great application in organic chemistry, 

materials, and biodiesel synthesis 
66

. Pacheco et al., 
67 

reported the synthesis of esters, by mixing fatty 

acids and p-TSA in ethanol or methanol and 

sonicate it for 20 min Scheme 10. This milder 

condition is enough to convert fatty acids into 

short-chain esters, and the yield of products was 

satisfactory as compared to the conventional 

method. 

 
SCHEME 10: SYNTHESIS OF ESTER 

Du et al., 
68

 reported syntheses of coumarin 

derivatives mediated by ultrasound techniques. 

Also, an ultrasound promoted synthesis of 3-

carboxycoumarin derivatives, avoids the use of any 

catalyst Scheme 11. 

 
SCHEME 11: SYNTHESIS OF COUMARIN 

DERIVATIVES 

UV-Irradiation Mediated Reactions: Reactions 

under Ultra-Violet is an important synthetic 

process. Such a step may also take place under 

solvent-free conditions without any by-product 

formation and considered as a green chemistry 

approach. Preparation of tetrahydropyrimidines 

under UV radiation has been reported by Khunt et 

al. 
69

 

 
SCHEME 12: SYNTHESIS OF TETRAHYDRO-

PYRIMIDINES 

Solid-State Reaction through Crushing: 

Grinding solids together, may reduce the melting 

point of the mixture changing it to liquid and the 

reaction may take place without any solvent. This 

concept has been used in multi-component 

Biginelli reaction for the synthesis of 

tetrahydropyrimidinones Scheme 13. 
70-72
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SCHEME 13: SYNTHESIS OF TETRAHYDRO-

PYRIMIDINONES 

CONCLUSION: Green chemistry methodology 

has improved various factors such as increased 

manufacturing efficiency, lowered production 

energy requirement, recycling of reagents, 

decreased solvent usage less waste generation, and 

lowered production cost. Besides medicine, 

research in many other areas, such as physics, 

chemistry, biotechnology, biology, microbiology, 

nanotechnology, etc., are being developed, partly 

based on information received from natural 

resources. 
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