IJPSR (2020), Volume 11, Issue 6

(Research Article)

E-ISSN: 0975-8232; P-ISSN: 2320-5148

PHARMACEUTICAL SCIENCES

Received on 23 July 2019; received in revised form, 11 December 2019; accepted, 18 December 2019; published 01 June 2020

PRELIMINARY PHYTOCHEMICAL SCREENING AND GC-MS ANALYSIS FOR IDENTIFICATION OF BIOACTIVE COMPOUNDS FROM *ABUTILON FRUTICOSUM* GUILL AND PERR. A RARE AND ENDEMIC PLANT OF INDIAN THAR DESERT

Ilham Bano ¹ and G. S. Deora *2

Taxonomy and Plant Diversity Laboratory ¹, Center of Advanced Study, Department of Botany, Jai Narain Vyas University, Jodhpur - 342005, Rajasthan, India.

Department of Botany², Mohanlal Sukhadia University, Udaipur - 313001, Rajasthan, India.

Keywords:

Abutilon fruticosum,
Beta-sitosterol, Endemic, GC-MS,
Phytosterols, Terpenes

Correspondence to Author: G. S. Deora

Associate Professor, Department of Botany, Mohanlal Sukhadia University, Udaipur -313001, Rajasthan, India.

E-mail: gsdeora0802@gmail.com

ABSTRACT: Present work was aimed to determine, identify, and characterize the bioactive chemical compounds from methanolic leaves extract of Abutilon fruticosum by GC-MS analysis. Fresh disease-free leaves were collected shade dried and powdered for extraction with HPLC grade methanol. Preliminary phytochemical screening of methanolic leaves extract was performed using standard methods to determine the presence of different chemical compounds; the crude extract was subjected to GC- MS analysis for the identification of bioactive compounds. Phytochemical screening of methanolic leaves extracts revealed the presence of carbohydrates, proteins, alkaloids, phenols, flavonoids, terpenes, phytosterols, etc. Furthermore, GC MS analysis of the extract revealed the presence of 65 bioactive compounds. Some major biologically active compounds identified were Azulene (24.91%), Hexadecanoic acid (13.27%), Phytol (9.51%), Beta-sitosterol (3.19%), Lupeol (1.21%), Campesterol (0.33%) etc. These chemical compounds are biologically active and pharmacologically important. The study provides detailed information about the identification and chemical characterization of various medicinally important phytocompounds from methanolic leaves extract of this plant. Although the plant is rare and endemic to Indian Thar Desert and previously not explored very much, such kind of study about this plant could provide valuable information to be used in pharmacological research.

INTRODUCTION: The ancient medicinal system played an important role in meeting the demand at the global level. Approximately 80-90 percent of the world's population mainly depends on traditional medicine for primary healthcare; most of them involve the use of plant extracts ¹. Medicinal plants are rich in various bioactive compounds such as alkaloids, steroids, flavonoids, glycosides, terpenoids, phenols, gum, and mucilage, *etc*.

DOI: 10.13040/IJPSR.0975-8232.11(6).2671-79

This article can be accessed online on www.ijpsr.com

DOI link: http://dx.doi.org/10.13040/IJPSR.0975-8232.11(6).2671-79

These components are mainly responsible for the therapeutic activity of plants. To understand the bioactivity of plants, whether it is medicinal, or nutritive knowledge poisonous, phytoconstituents, is necessary. Thus, phytochemical research is very important in the development and discovery of the drug. With the increasing advancement of technology, GC-MS analysis emerged as a powerful technique for the identification and quantification of bioactive compounds from medicinal plant extract even in very minute quantity. One such an important medicinal plant is Abutilon fruticosum Guill. and Perr. They are commonly known as 'Imarti'. The plant is a rare and endemic medicinal plant of Indian Thar Desert region ².

It is branched perennial undershrub with a dense slender and thin stem, acute to sub obtuse ovate to chordate leaf, velvety on both the surfaces, light yellow colored solitary flowers, and schizocarpic cylindrical fruit with 8-10 awnless mericarp ³. It is xeriscaping plant, commonly found at small hillocks and rocky plains of the arid region of Rajasthan **Fig. 1**.

FIG. 1: ABUTILON FRUTICOSUM FIELD VIEW

Systemic Position: ⁴

Kingdom : Plantae Clade : Angiosperm : Eudicots Clade : Rosids Clade Clade : Malvids Order : Malvales Family : Malvaceae Genus : Abutilon Mill.

Species : fruticosum Guill. and Perr.

The plant belongs to genus Abutilon and its sister

species such as *Abutilon indicum* reported having great medicinal utility. All parts of this plant are useful in the treatment of various diseases and ailments such as leprosy, rheumatism, piles, ulcer, jaundice, bronchitis, inflammation of bladder *etc*. ^{5, 6, 7}. From the critical literature survey, it was revealed that there is no previous report on phytochemical characterization of this plant. The identification of phytoconstituents through GC-MS analysis from crude methanolic leaf extract is also missing from this plant. As it is an endemic plant of the Indian Thar Desert region and due to lacking

knowledge about its phytoconstituents, chemical characterization is necessary to explore the potential of the plant to be used for medicinal purposes. Increasing urbanization and overgrazing lead to habitat destruction of this endemic plant, and it has become rare in occurrence. So new cultivation techniques should be practiced to save the medicinal plant species of this region.

The present study was conducted for the identification of bioactive compounds in the leaves of *A. fruticosum* by preliminary phytochemical screening and GC-MS analysis, which could provide useful information about this plant for further studies.

MATERIALS AND METHODS:

Plant Material Collection: Fresh and disease-free leaves of the plant *A. fruticosum* were collected from rocky areas of Kailana and Mandore of Jodhpur, Rajasthan, India, during August 2018. The plant sample was identified and authenticated by BSI, Arid Zone Regional Centre (Plant authentication number- BSI/AZRC/1.12012), and the voucher specimen was deposited in the Herbarium of Department of Botany, Jai Narain Vyas University, Jodhpur (Rajasthan).

Preparation of Plant Extract: Thoroughly washed and shade dried leaves of plant material were coarsely powdered and kept in an airtight container till further use.

10 g of leaf powder was extracted with 100 ml of HPLC grade Methanol and kept in the dark for 48 h with occasional stirring. The extract was then filtered with Whatman filter paper no.1 solvent was evaporated from the filtrate till a semi-solid mass is obtained.

Phytochemical Screening: Preliminary phytochemical screening of leaf methanolic extract was performed to test the presence or absence of various primary and secondary metabolites such as carbohydrates, proteins, alkaloids, steroids, terpenoids, phenols, flavonoids, glycosides, *etc.* using standard methods ^{8, 9}.

GC-MS Analysis: GC-MS analysis of crude extract was performed with GC-MS equipment QP 2010 Shimadzu, Japan. Experimental conditions for GC-MS were as follow: Helium gas as the carrier

gas at a constant flow rate of 16.3 ml/min and column flow rate 1.21ml/min. Injector and mass transfer line temp were 200 and 280 °C for 10 min. The total running time of GC-MS was 50 min. The injection volume was 1µl.

As individual compounds eluted from the GC column where these compounds were bombarded with a stream of electrons, causing them to break into fragments. Samples were run fully at a range of 50/650 m/z and mass spectrum graphs obtained, which was a fingerprint of a molecule. The identified compounds were compared with the NIST library and Willey spectral library search programme.

RESULTS: Preliminary phytochemical screening of methanolic extract of *Abutilon fruticosum* showed the presence of bioactive compounds such as carbohydrate, amino acids, phenols, terpenoids, phytosterol, tannins, glycosides, saponins, Gums and mucilage **Table 1**.

GC-MS chromatogram of methanolic extract of *Abutilon fruticosum* shows 68 peaks pertaining to presence of 65 bioactive compounds, as shown in **Fig. 2**. Major compounds were identified through mass spectrometry attached with GC as listed in **Table 2** along with their retention time, molecular formula, molecular weight, and chemical nature. Some major compounds identified with high peak area were Azulene (24.91%), n-Hexadecanoic acid (13.27%), Phytol (9.51%), Neophytadiene (2.17%),9,12-Octadecadienoic Acid, Methyl Ester

(3.54%), Hexadecanoic acid methyl ester (5.05%), 9,12,15-Octadecatrienoic Acid, (Z,Z,Z) —or alpha linolenic acid (3.54%), Squalene (3.46%), Beta-Sitosterol (3.19%), Stigmasta-5, 22- Dien- 3-Ol (1.71%), 8,11,14-Docosatrienoic acid, Methyl Ester (1.65%), Lupeol (1.21%) and other important chemical constituents with less than 1% peak area were 2-Methoxy-4vinylphenol(0.99%), Linoelaidic acid (0.85%), Alpha.-Tocospiro A (0.8%), Lup-20 (29)-En-3-One (0.64%), 1Eicosanol (0.38%), Campesterol (0.33%), Gamma. Tocopherol (0.3%).

TABLE 1: PHYTOCHEMICAL SCREENING IN METHANOLIC EXTRACT OF ABUTILON FRUTICOSUM

S. no.	Phytochemical	Phytochemical Test		
	Constituents			
1	Carbohydrates	Molisch's test	+	
		Fehling's test	+	
2	Proteins and Amino	Ninhydrin test	+	
	Acids	Xanthoproteic test	+	
3	Alkaloids	Dragendrof's test	+	
		Wagner's test	+	
4	Phenols	Ferric chloride test	+	
		Lead acetate test	+	
5	Flavonoids	Shinoda test	+	
		Alkaline reagent test	+	
6	Phytosterol	Salkowski test	+	
		Liebermann	+	
		Burchard's test		
7	Glycosides	Keller-kilani test	+	
		NaOH test	+	
8	Saponin	Froth test	+	
		Olive oil test	+	
9	Gums and	Alcohol test	-	
	Mucilages	Ruthenium red test	+	
10	Oils and Fats	Spot test	+	

+ present; - absent

FIG. 2: GC-MS CHROMATOGRAM OF METHANOLIC EXTRACT OF ABUTILON FRUTICOSUM

All the major biologically active compounds identified through GC-MS analysis were listed in

Table 3 along with their peak area, molecular structure, chemical nature, and bioactivities.

TABLE 2: PHYTOCHEMICAL COMPOUNDS IDENTIFIED IN THE METHANOLIC LEAVES EXTRACT OF ABUTILON FRUTICOSUM BY GC-MS ANALYSIS

1 9.027 Unidentified C ₃ H ₃ O ₂ 136 0.27 Carbohydrate ester			RUTICOSUM BY GC-MS ANALYSIS	M-11	M-11	D1	C
1 9,027 Unidentified C _A H _A O ₂ 156 0.27 Carbohydrate ester 3 11,062 Azulene C _A H _A O ₂ 150 0.99 Phenol Aromatic hydrocarbon 4 12,886 2-Methoxy-4-Vinylphenol C _A H _A O ₂ 154 0.20 Phenol Phenol 5 13,375 Phenol (2,6-Dimethoxy-Cropenyl)- C _A H _A O ₂ 154 0.20 Phenol 6 13,446 Phenol (2,6-Dimethoxy-Cropenyl)- C _A H _A O ₂ 154 0.23 Monoterpene 8 14,867 2-Cyclohexen-1-O ₁ 2-Methyl-5-C ₁ - C _B H _A O 152 0.14 Monoterpene 9 14,930 Unidentified 4-(2,6-6-Trimethyl-1,3-Cyclohe xadien-1-Yl)-3-Buteney-1-When C ₁ - C ₁ H _A O 180 0.40 terpene 11 15,843 2- (2)- Cyclohexene-1-Col. 2- C ₁ H _A O 180 0.40 terpene 12 16.067 2- (4)- Reparatrimento-S, 6, 7, 7a - Terianydro-4, 47a-Trimethyl-1, (4)- C ₁ H _A O 180 0.24 Fatty scid 15 16.866 Cyclopropanemethanol, 2-Methyl-2-(4- C ₁ H _A O) 180 0.28	S.	RT	Name of compound	Molecular	Molecular	Peak area	Compound nature
2 9.582 Benzoic Acid, Methyl Ester C ₀ H ₁₀ O ₁ 156 0.27 Carbohydrate ester Azulene C ₁₀ H ₁₀ O ₂ 150 0.99 Aromatic hydrocarbon 4 12.886 2-Methoxy-4-Vinylphenol C ₂ H ₂₀ O ₂ 150 0.99 Phenol C ₁₀ H ₂₀ O ₂ 151 0.20 Phenol C ₁₀ H ₂₀ O ₂ 152 0.14 Phenol C ₁₀ H ₂₀ O ₂ 152 0.14 Monoterpene C ₁₀ H ₂₀ O ₂ 152 0.14 Monoterpene C ₁₀ H ₂₀ O ₂ 150 0.99 Phenol C ₁₀ H ₂₀ O ₂ 152 0.14 Monoterpene C ₁₀ H ₂₀ O ₂ 0.18 0.20 0.20 Monoterpene C ₁₀ H ₂₀ O ₂ 0.18 0.20 0.20 Monoterpene C ₁₀ H ₂₀ O ₂ 0.18 0.20 0.20 Monoterpene C ₁₀ H ₂₀ O ₂ 0.20 0.20 Monoterpene C ₁₀ H ₂₀ O ₂ 0.23 0.25 0.26 C ₁₀ H ₂₀ O ₂ 0.26		0.027	TT '1 ('C' 1	iormula	weight	% 0	
11.062							
12.886 2-Methoxy.4-Vinylphenol C ₃ H ₃ O ₃ 150 0.99 Phenol							
13.375							•
13.446	4			$C_9H_{10}O_2$	150		Phenol
13.885	5	13.375	Phenol, 2,6-Dimethoxy-	$C_8H_{10}O_3$			
Methylethenyl)-, Cis-	6	13.446	Phenol, 2-Methoxy-4-(2-Propenyl)-	$C_{12}H_{14}O_3$	206	0.44	Phenol
Methylethenyl)-, Cis-	7	13.885	2-Cyclohexen-1-Ol, 3-Methyl-6-(1-	$C_{10}H_{18}O$	154	0.23	Monoterpene
14.867							•
Methylethenyl)-, Trans- Unidentified 15.075	8	14.867		$C_{10}H_{16}O$	152	0.14	Monoterpene
14.930				10 10			1
15.075	9	14.930					
1-Y1)-3-Buten-2-One				$C_{10}H_{10}O$	190	0.21	Monoternene
11 15.843 2(4h)-Benzofuranone,5,6,7,7a C ₁₁ H ₁₀ O 180 0.40 terpene	10	10.070		01322180		V. - 1	Monoterpene
Tetrahydro-4,4,7a-Trimethyl-, (R)- 12 16.067 9-Octadecenoic Acid (Z)- C ₁₈ H ₃₁ O ₂ 282 0.47 Fatty acid 13 16.866 Cyclopropanemethanol, 2-Methyl-2-(4- C ₁₁ H ₃₀ O 168 0.28 Alcohol 14 16.993 Cyclopropanemethanol, 2-Methyl-2-(4- C ₁₁ H ₃₀ O 168 0.52 Alcohol 15 17.192 Piperidine, 1-(1-Cyclopenten-1-Y) - C ₁₀ H ₁₇ N 151 0.07 Alkaloid 16 17.370 9-(3,3-Dimethyl-2-Oxtrianyl)-2-7- C ₁₅ H ₃₀ O 238 1.25 Alcohol 17 17.592 Cyclopexene, 1,5,5-Trimethyl-6- C ₁₂ H ₂₀ O 180 0.20 Monoterpene 18 17.716 4h-1,4-Epoxy-4n-Methanonaphthalene, C ₁₅ H ₃₆ O ₂ 284 0.14 Fatty acid methyl ester 18 17.916 Heptadecanoic acid, Methyl Ester C ₁₈ H ₃₆ O ₂ 284 0.14 Fatty acid methyl ester 18 18.150 9-(3,3-Dimethyl-2-17-) C ₁₄ H ₂₆ O ₂ 238 0.16 Alcohol 18 18.39 Tetradecanoic acid, Methyl Ester C ₁₈ H ₃₆ O ₂ 228 1.01 Fatty acid 19 19 19 19 19 19 19	11	15 8/13		$C \cdot H \cdot O$	180	0.40	ternene
12 16.067 9-Octadecenoic Acid (Z)- C18Ha ₃ O ₂ 282 0.47 Fatty acid 13 16.866 Cyclopropanemethanol, 2-Methyl-2-(4- Methyl-3-Pentenyl)- Methyl-3-Pentenyl)- 14 16.993 Cyclopropanemethanol, 2-Methyl-2-(4- Methyl-3-Pentenyl)- 15 17.192 Piperidine, 1-(1-Cyclopenten-1-VI)- C10H ₁₇ N 151 0.07 Alkaloid 16 17.370 9-(3.3-Dimethyl-2-Oxiranyl)-2.7- C15H ₂₀ O ₂ 238 1.25 Alcohol 17 17.592 Cyclohexene, 1.5.5-Trimethyl-6- Acetylmethyl- 18 17.716 4h-1.4-Epoxy-4a,7-Methanonaphthalene, 1.5.6.7,8.8a-Hexahydro-, (1.4)p 19 17.916 Heptadecanoic acid, Methyl Ester C18Ha ₃ O ₂ 284 0.14 Fatty acid methyl ester Dimethyloxican-2-Y1)-2.7- C15Ha ₃ O ₂ 228 0.16 Alcohol 18 18.399 Tetradecanoic acid C14Ha ₃ O ₂ 228 1.01 Fatty acid Alcohol 18 18.399 Tetradecanoic acid C14Ha ₃ O ₂ 228 1.01 Fatty acid Benzofuran 19 19.000 Palmitic acid C16Ha ₃ O ₂ 256 0.17 Fatty acid Benzofuran 19 19.133 Neophytadiene C36Ha ₃ B ₃ O ₂ 268 0.23 Sesquiterpenoid 24 19.133 Neophytadiene C36Ha ₃ B ₃ O ₂ 268 0.23 Sesquiterpenoid 25 19.193 2-Pentadecanone, 6.10,14-Trimethyl- C18Ha ₃ O ₂ 268 0.23 Sesquiterpenoid 26 19.387 Unidentified C16Ha ₃ O ₂ 250 0.26 Fatty acid ester 29 19.920 7.9-Di-Tet-Buyl-1-Oxaspiro C17Ha ₃ O ₂ 250 0.26 Fatty acid ester 29 19.920 7.9-Di-Tet-Buyl-1-Di-Asspiro C18Ha ₃ O ₂ 250 0.26 Fatty acid ester 20 19.920 7.9-Di-Tet-Buyl-1-Oxaspiro C18Ha ₃ O ₂ 250 0.17 Fatty acid 20 20.406 N-Hexadecanoic Acid C18Ha ₃ O ₂ 256 0.17 Fatty acid 31 20.221 9-Octadecadienoic Acid C18Ha ₃ O ₂ 256 0.17 Fatty acid 32 20.466 N-Hexadecanoic Acid C18Ha ₃ O ₂ 250 0.26 Fatty acid 33 21.024 Palmitic Acid C18Ha ₃ O ₂ 250 0.11 Diterpene Tetramethyl-, 1R. R.*R.*(E1) - C19Ha ₃ O ₂ 250 0.11 Diterpene Tetramethyl-,	11	13.043		C111116O	100	0.40	terpene
13	12	16.067		СЦО	282	0.47	Fatty agid
Methyl-3-Pentenyl)- 14 16.993 Cyclopropamenthanol, 2-Methyl-2-(4- Methyl-2-(4- Methyl-3-Pentenyl)- 17.192 Piperidine, 1-(1-Cyclopenten-1-VI)- C ₁₀ H ₁₇ N 151 0.07 Alkaloid 17.370 9-(3.3-Dimethyl-2-Oxiranyl)-2.7- C ₁₅ H ₂₆ O2 238 1.25 Alcohol Dimethyl-2-Oxiranyl)-2.7- C ₁₅ H ₂₆ O2 238 1.25 Alcohol 17.370 Dimethyl-2-Oxiranyl)-2.7- C ₁₅ H ₂₆ O2 238 1.25 Alcohol Cyclohexene, 1.5.5-Trimethyl-6- Acetylmethyl- Acetylmethyl- Acetylmethyl- Acetylmethyl- 18. 17.716 4h-1,4-Epoxy-4a,7-Methanonaphthalene, 1.5.6,7.8.8a-Hexahydro-, (1.Alp 17.916 Heptadecanoic acid, Methyl Ester C ₁₈ H ₂₆ O2 238 0.16 Alcohol Dimethylnona-2,6-Dien-1-Ol Dimethylnona-2,6-Dien-1-Ol Dimethylnona-2,6-Dien-1-Ol Dimethylnona-2,6-Dien-1-Ol Tetradecanoic acid C ₁₄ H ₂₈ O2 228 1.01 Fatty acid Alcohol Fatty acid Alcohol Palmitic acid C ₁₆ H ₂₆ O2 256 0.17 Fatty acid Palmitic acid C ₁₆ H ₂₆ O2 256 0.17 Fatty acid Palmitic acid C ₁₆ H ₂₆ O2 256 0.17 Fatty acid Palmitic acid C ₁₆ H ₂₆ O2 256 0.23 Sesquiterpenoid C ₁₉ H ₃₈ O2 C ₁₉ H ₃₈ O2 C ₁₉ H ₃₈ O2 C ₁₉ O3 C ₁₉ H ₃₈ O2 C ₁₉ O3 C ₁₉ O3							•
14	13	10.800		$C_{11}H_{20}O$	108	0.28	Alcohol
Methyl-3-Pentenyl)	1.4	16.002		G II 0	1.00	0.50	41 1 1
17,192	14	16.993		$C_{11}H_{20}O$	168	0.52	Alcohol
17.370							
Dimethyl-2,6-Nonadien-1-Ol							
17.592	16	17.370		$C_{15}H_{26}O2$	238	1.25	Alcohol
Acetylmethyl- Acetylmethyl- Acetylmethyl- Acetylmethyl- Al-1,4-Epoxy-4a,7-Methanonaphthalene, 1,5,6,7,8,8a-Hexahydro-, (1,Alp 19 17.916 Heptadecanoic acid, Methyl Ester C ₁₈ H ₈₆ O ₂ 284 0.14 Fatty acid methyl ester Dimethylnona-2,6-Dien-1-Ol							
18	17	17.592	Cyclohexene, 1,5,5-Trimethyl-6-	$C_{12}H_{20}O$	180	0.20	Monoterpene
1,5,6,7,8,8a-Hexahydro-, (1,Alp 1,5,6,7,8,8a-Hexahydro-, (1,Alp 1,5,6,7,8,8a-Hexahydro-, (1,Alp 1,5,6,7,8,8a-Hexahydro-, (1,Alp 1,5,6,7,8,8a-Hexahydro-, (1,Alp 1,5,6,7,8a-1,5,6,7,3a-1,5,			Acetylmethyl-				
1,5,6,7,8,8a-Hexahydro-, (1,Alp Heptadecanoic acid, Methyl Ester C18H36O2 284 0.14 Fatty acid methyl ester 20 18.150 9-(3,3-Dimethyloxiran2-YH)-2,7- C15H26O2 238 0.16 Alcohol Alcohol	18	17.716	4h-1,4-Epoxy-4a,7-Methanonaphthalene,	$C_{11}H_{14}O$	162	0.78	Ketone
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1,5,6,7,8,8a-Hexahydro-, (1.Alp				
20	19	17.916		$C_{18}H_{36}O_2$	284	0.14	Fatty acid methyl ester
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	18.150			238	0.16	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				10 20 2			
22	21	18.339		C14H28O2	228	1.01	Fatty acid
Tetrahydro-6-Hydroxy-4,4,7a-Trimethyl Palmitic acid Palmitic acid C ₁₆ H ₃₂ O ₂ 256 0.17 Fatty acid Sesquiterpenoid Sesquiterpenoid Sesquiterpenoid Sesquiterpenoid Palmitic acid C ₂₀ H ₃₈ 278 2.17 Sesquiterpenoid							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		10.000		011221003	1,0	0.02	Dom Eor urum
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23	19 000		C. H. O.	256	0.17	Fatty acid
25							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				$C_{18} T_{36} O$	200	0.23	Sesquiterpenoid
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				CILO	206	0.62	Ditamana
28	21	19.579		$C_{20}H_{40}O$	296	0.62	Diterpene
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	10.767		G II 0	250	0.26	T
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	19.767		$C_{16}H_{26}O_2$	250	0.26	Fatty acid ester
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	19.920		$C_{17}H_{24}O_3$	276	0.30	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				$C_{17}H_{34}O_2$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	20.221	9-Octadecenoic Acid (Z)-	$C_{18}H_{34}O_2$	282	0.48	Fatty acid
34 21.108 9-Octadecenoic Acid (Z)- C ₁₈ H ₃₄ O ₂ 282 0.14 Fatty acid 35 21.608 2-Hexadecen-1-Ol, 3,7,11,15- C ₂₀ H ₄₀ O 296 0.11 Diterpene Tetramethyl-, [R-[R*,R*-(E)]]- (T-Phytol) 36 21.676 9,12-Octadecadienoic Acid, Methyl C ₁₉ H ₃₄ O ₂ 294 0.56 Fatty acid ester Ester 37 21.735 8,11,14-Docosatrienoic Acid, Methyl C ₂₃ H ₄₀ O2 348 1.65 Omega 3 fatty acid Ester	32	20.466	N-Hexadecanoic Acid	$C_{16}H_{32}O_2$	256	13.27	Fatty acid
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33	21.024	Palmitic Acid		256	0.17	
35 21.608 2-Hexadecen-1-Ol, 3,7,11,15- C ₂₀ H ₄₀ O 296 0.11 Diterpene Tetramethyl-, [R-[R*,R*-(E)]]- (T- Phytol) 36 21.676 9,12-Octadecadienoic Acid, Methyl C ₁₉ H ₃₄ O ₂ 294 0.56 Fatty acid ester Ester 37 21.735 8,11,14-Docosatrienoic Acid, Methyl C ₂₃ H ₄₀ O2 348 1.65 Omega 3 fatty acid Ester			9-Octadecenoic Acid (Z)-				
Tetramethyl-, [R-[R*,R*-(E)]]- (T-Phytol) 36 21.676 9,12-Octadecadienoic Acid, Methyl $C_{19}H_{34}O_2$ 294 0.56 Fatty acid ester Ester 37 21.735 8,11,14-Docosatrienoic Acid, Methyl $C_{23}H_{40}O_2$ 348 1.65 Omega 3 fatty acid Ester			` '				
Phytol) 36 21.676 9,12-Octadecadienoic Acid, Methyl $C_{19}H_{34}O_2$ 294 0.56 Fatty acid ester Ester 37 21.735 8,11,14-Docosatrienoic Acid, Methyl $C_{23}H_{40}O_2$ 348 1.65 Omega 3 fatty acid Ester				- 20 -40 -			F
36 21.676 9,12-Octadecadienoic Acid, Methyl $C_{19}H_{34}O_2$ 294 0.56 Fatty acid ester Ester 37 21.735 8,11,14-Docosatrienoic Acid, Methyl $C_{23}H_{40}O_2$ 348 1.65 Omega 3 fatty acid Ester							
Ester 37 21.735 8,11,14-Docosatrienoic Acid, Methyl C ₂₃ H ₄₀ O2 348 1.65 Omega 3 fatty acid Ester	36	21 676		$C_{10}H_{21}O_{2}$	294	0.56	Fatty acid ester
37 21.735 8,11,14-Docosatrienoic Acid, Methyl C ₂₃ H ₄₀ O2 348 1.65 Omega 3 fatty acid Ester	30	21.070		C191134O2	274	0.50	Tany acid ester
Ester	37	21 725		СНО	319	1.65	Omega 3 fetty soid
	31	21./33	•	$C_{23}\Pi_{40}UZ$	348	1.03	Offiega 5 fatty actu
$C_{20}H_{40}U$ 296 9.51 Diterpene	20	21.044		CHO	207	0.51	Dita
	38	21.844	Phytol	$C_{20}H_{40}O$	296	9.51	Diterpene

39	21.970	Methyl Stearate	$C_{19}H_{38}O_2$	298	1.38	Fatty acid ester
40	22.069	Linoelaidic acid	$C_{18}H_{32}O_2$	280	0.85	Omega 6 fatty acid
41	22.137	9,12,15-Octadecatrienoic Acid, (Z,Z,Z)-	$C_{18}H_{30}O_2$	278	3.54	Omega 3 fatty acid
42	22.319	Octadecanoic Acid	$C_{18}H_{36}O_2$	284	1.04	Fatty acid
	22.535	7,10-Hexadecadienoic Acid, Methyl				Fatty acid ester
43		Ester	$C_{17}H_{30}O_2$	266	0.30	
44	22.637	Eicosane	$C_{20}H_{42}$	282	0.30	Hydrocarbon
45	23.372	3-Cyclopentylpropionic Acid, 2-	$C_{12}H_{23}NO_2$	213	0.25	Aliphatic carboxylic
		Dimethylaminoethyl Ester				acid
46	23.700	4,7,7-Trimethyl-3,9-Dioxa-	$C_{10}H_{14}O_3$	182	0.05	Ketone
		Tricyclo[6.1.0.0 2,4]Nonan-5-				
		One				
47	23.756	Cyclopropanebutanoic Acid, 2-[[2-[[2-	$C_{25}H_{42}O_2$	374	0.20	Cyclopropane
		[(2-Pentylcyclopropyl)				carboxylic acid
		Methyl]Cyclopropyl]Methyl]Cycl				
48	23.887	Cyclohexanebutanal, 2-Methyl-3-Oxo-,	$C_{11}H_{18}O_2$	182	0.26	Aldehyde
		Cis-				
49	24.343	8-Heptylpentadecane	$C_{22}H_{46}$	310	0.15	Hydrocarbon
50	24.856	3-Cyclopentylpropionic Acid, 2-	$C_{12}H_{23}NO_2$	213	0.11	Aliphatic carboxylic
		Dimethylaminoethyl Ester				acid
51	25.110	Trichloroacetic Acid, Tetradecyl Ester	$C_{17}H_{31}Cl_3O_2$	372	0.22	Carboxylic acid
						derivative
52	25.290	Hexadecanoic Acid, 2-Hydroxy-1-	$C_{19}H_{38}O_4$	330	5.55	Fatty acid ester
		(Hydroxymethyl)Ethyl Ester				
53	25.431	Di-N-Octyl Phthalate	$C_{24}H_{38}O_4$	390	0.57	Aromatic dicarboxylic
						acid derivative
54	26.944	Octadecanoic Acid, 2,3-	$C_{21}H_{42}O_4$	358	1.45	Fatty acid derivative
		Dihydroxypropyl Ester				
55	27.798	Squalene	$C_{30}H_{50}$	410	3.46	Triterpene
56	28.137	AlphaTocospiro A	$C_{29}H_{50}O_4$	462	0.39	Tocopherol
57	28.367	AlphaTocospiro A	$C_{29}H_{50}O_4$	462	0.47	Tocopherol
58	28.975	1,3-Cyclohexadecanedione,6-Nitro-	$C_{16}H_{27}NO_4$	297	0.68	Ketone
59	30.803	GammaTocopherol	$C_{28}H_{48}O_2$	416	0.36	Tocopherol
60	31.666	1-Eicosanol	$C_{20}H_{42}O$	298	0.38	Hydrocarbon
61	34.106	Campesterol	$C_{28}H_{48}O$	400	0.33	Phytosterol
62	34.697	Stigmasta-5,22-Dien-3-Ol	$C_{29}H_{48}O$	412	1.71	Phytosterol
63	36.172	BetaSitosterol	$C_{29}H_{50}O$	414	3.19	Phytosterol
64	37.211	Unidentified				
65	37.682	Lup-20(29)-En-3-One	$C_{30}H_{48}O$	424	0.64	Triterpenoid
66	38.525	Lupeol	$C_{30}H_{50}O$	426	1.21	Triterpenoid
67	41.608	1,1,4,7-Tetramethyldecahydro-1h-	$C_{15}H_{26}O$	222	0.36	Sesquiterpene
		Cyclopropa[E]Azulen-4-Ol				
68	44.570	Oxirane, Hexadecyl-	$C_{18}H_{36}O$	268	0.33	Epoxide
					100.0	

TABLE 3: MAJOR COMPOUNDS IDENTIFIED IN $ABUTILON\ FRUTICOSUM$ METHANOLIC LEAVES EXTRACT WITH THEIR BIOACTIVITIES

S. no.	Name of compound	Peak area %	Compound nature	Molecular structure	Biological activity of compound
1	Azulene	24.91	Aromatic hydrocarbo n		Anti-microbial and anti- inflammatory, antipyretic activity ¹⁰
2	n-Hexadecanoic acid /Palmitic acid	13.27	Fatty acid	H0 H0	Antibacterial ¹¹ , anti-inflammatory, anti-oxidant, hypocholestrolemic, nematicide, pesticide, anti-androgenic, hemolytic, mosquito larvicidal activity ¹²
3	Phytol	9.51	Diterpene	L. L. J. OH	Antimicrobial, anti-cancerous, anti- inflammatory and diuretic properties ¹³

4	Hexadecanoic Acid,2-Hydroxy- 1(Hydroxymethyl) Ethyl Ester	5.55	Fatty acid ester	OH HO	Pesticide, hemolytic, flavoring agent, Antioxidant ^{20, 21}
5	Hexadecanoic Acid, Methyl Ester	5.05	Fatty acid ester	·\	Antioxidant, antimicrobial hypocholestrolemic, nematicide hemolytic ^{20, 21}
6	9,12,15- Octadecatrienoic Acid, Z,Z,Z)- /alpha linolenic acid	3.54	Omega 3- Fatty acid	HO	Anti-inflammatory, antibacterial, anticancerous, Vasodilator ²²
7	Squalene	3.46	Triterpene		Anti-bacterial, antitumour, anti- inflammatory, antioxidant, anti- atherosclerotic ²³
8	BetaSitosterol	3.19	Phytosterol	H H H	Anticancerous, androgenic, angiogenic, antibacterial, antifertility, anti-inflammatory ^{24, 25,}
9	Neophytadiene	2.17	Sesquiterpe noid		Antibacterial, analgesic, anti- inflammatory, antipyretic, antioxidant ²⁷
10	Stigmasta-5,22- Dien-3-ol	1.71	Phytosterol		Anti-inflammatory, antihepatoxic, antiviral, estrogenic, hypocholestrolemic, sedative ²⁸
11	8,11,14- Docosatrienoic Acid, Methyl Ester	1.65	Omega 3 fatty acid		Nutrient, energy source, emulsifier, surfactant, cardioprotective ²²
12	Methyl Stearate	1.38	Fatty acid ester		Antifoaming agent, fermentation nutrient, flavoring agent ^{20, 29, 30}
13	Lupeol	1.21	Diterpene	HO	Antimicrobial, anti-inflammatory, anticancerous properties ³¹
14	Octadecanoic acid	1.04	Fatty acid	но ж	Octadecanoic acid; Antimicrobial activity 20
15	Tetradecanoic acid/Myristic acid	1.01	Fatty acid	H ₂ C OH	Antioxidant, antimicrobial, Lubricant, anticancerous, cosmetics
16	2-Methoxy-4- Vinylphenol	0.99	Phenol	HO	Anti-tumour, antimicrobial, anti- inflammatory properties ³³

17	Linoelaidic acid	0.85	Omega 6 fatty acid	ОН	Reduces obesity, melasma treatment, immune function modulation ³⁴
18	Lup-20(29)-En-3-	0.64	Triterpenoid		Anti-cancerous, antidiabetic,
10	One	0.04	Therpenoid		antiviral activity ³⁵
19	alpha tocospiro A	0.47	Tocopherols		Anti-tumour, anti- Inflammatory ³⁶
20	1-Eicosanol	0.38	Fatty alcohol	ОН	Emollients, cosmetic Antimalarial, antifungal, antioxidant ³⁴
21	gamma Tocopherol	0.36	Tocopherols	100 XX	Anti-tumour, anti-inflammatory ³⁷ , anti-aging, analgesic, vasodilator ³⁸
22	Campesterol	0.33	Phytosterol		Anti-cancerous, anti-tumour properties ¹⁹
23	2-Cyclohexen - 1-Ol, 3-Methyl-6- (1-Methylethyl)-, Cis-2/Piperitol	0.23	Monoterpen oid	ОН	Surfactant, emulsifier, Flavoring agent ³⁴
24	Cyclohexen-1-Ol, 2-Methyl-5-(1- Methylethenyl)-, Trans-/Carveol	0.14	unsaturated, monocyclic monoterpen oid alcohol	OH	Prevent breast cancer ³⁹

DISCUSSION: Abutilon fruticosum is a rare and endemic plant of the Indian Thar desert. As the plant belongs to the genus Abutilon which has been used since ancient times to treat various diseases and ailments. Most of the compounds identified from the plant mainly belong to phenols, phytosterols, terpenes, fatty acids, and esters. These compounds were reported to contain various medicinal properties such as anti-inflammatory, antimicrobial, anticancerous, mosquito larvicidal, hepatoprotective activity, etc. Azulene is an aromatic hydrocarbon identified with highest peak

area reported to have anti-microbial and anti-inflammatory, antipyretic, and soothing properties ¹⁰. Polyunsaturated fatty acids and their esters such as 8,11,14 Docosatrienoic acid, methyl ester, alpha linolenic acid, *etc*. were identified from the plant extract known to contain anti-inflammatory, anticancerous, vasodilator and antimicrobial properties ¹¹. These are important components for the production and movement of energy throughout the body, for the regulation of transportation of oxygen and for maintaining the integrity of cell structure and to control the cholesterol level of

E-ISSN: 0975-8232; P-ISSN: 2320-5148

blood. Various fatty acids and their esters were identified from the extract that is known to possess anti-microbial. antifungal. anti-inflammatory properties ¹². Phytol is acyclic diterpene alcohol with known antimicrobial, anticancer, inflammatory, and diuretic properties ¹³. It is used as a precursor of vitamin E ¹⁴ and vitamin K1 ¹⁵. It is used in cosmetics, shampoos, detergents ¹⁶. Phytosterols are plant-based sterols with potential to inhibit lung, stomach, ovarian, breast, colon as well as prostate cancer 17, 18, 19. Some medicinally important phytosterols identified in the plant with less than 1 percent area were Beta-sitosterol, stigmasterol, and gamma sitosterol, respectively.

CONCLUSION: Preliminary phytochemical screening and GC-MS analysis of a methanolic extract of leaves of Abutilon fruticosum reveal the various medicinally presence of phytoconstituents such as alkaloids, terpenoids, phenols, phytosterols etc. This is the first report of the identification of active constituents from the leaf of this plant. The biological properties of compounds present in leaf extract of Abutilon fruticosum supports its medicinal utility. Although, other species of this genera have been explored very well and of great medicinal value. The present study could provide a valuable knowledge about this plant to be used in pharmacological research for human welfare after its toxicology test.

ACKNOWLEDGEMENT: Authors are thankful to the Centre of Advanced Study, Department of Botany, Jai Narain Vyas University, for providing infrastructure and technical support. Authors thank to Arid Zone Regional Centre BSI, Jodhpur for plant identification and authentication and AIRF, New Delhi for GC-MS analysis.

FINANCIAL SUPPORT: The research was carried out using fellowship under the scheme of UGC funded NF-OBC provided to one of the authors.

CONFLICTS OF INTEREST: Authors declares no conflict of interest

REFERENCES:

 Sandhya B, Thomas S, Isabel W and Shenbagarathai R: Ethnomedicinal plants used by the valaiyan community of Piranmalai Hills (Reserved Forest), Tamil Nadu, India.-A Pilot Study. African Journal of Traditional, Complementary and Alternative Medicines 2006; 3(1):

E-ISSN: 0975-8232; P-ISSN: 2320-5148

2. Pandey RP, Shetty BV and Malhotra SK: A preliminary census of rare and threatened plants of India. In: Jain SK, Rao RR, (eds) An assessment of threatened plants of India: BSI Howarh 1983; 55-62.

101-14.

- Bhandari MM: Flora of Indian Desert. MPS Repros, Jodhpur, India 1990.
- Chase MW, Christenhusz MJ, Fay MF, Byng JW, Judd WS, Soltis DE, Mabberley DJ, Sennikov AN, Soltis PS and Stevens PF: An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 2016; 181(1): 1-20.
- Baquar SR: Medicinal and poisonous plants of Pakistan, Printas, Karachi, Pakistan 1989.
- Khadabadi SS and Bhajipale NS: A review on some important medicinal plants of Abutilon spp. Research Journal of Pharmaceutical, Biological and Chemical Sciences 2010; 1(4): 718-29.
- Ramar K and Ayyadurai V: The present investigation deals with in-vitro Callus induction and plant regeneration of *Abutilon indicum* (L.). Journal of Pharmacognosy and Phytochemistry 2015; 3(6): 248-51.
- 8. Harbourne JB: Phytochemical methods of analysis. Jackmann and Hall, London 1973; 64-90.
- Evans WC: Trease and Evans: Pharmacognosy.14th ed. London. W.B. Saunders Company Ltd 2000; 19-20.
- Kulkarni MG and Sathe PS: Phytochemical and GC-MS analysis of *Hamiltonia suaveolens* (ROXB). International Journal of Chem Tech Research CODEN 2013; 5(1): 212-9
- 11. Johannes, Eva, and Litaay M: The Bioactivity of Hexadecanoic acid compound isolated from hydroid *Aglaophenia cupressina* Lamoureoux as antibacterial agent against *Salmonella typhi*. International Journal of Biological and Medical Research 2016; 7(2): 5469-72.
- 12. Ravi L and Krishnan K: Cytotoxic potential of n-Hexadecanoic acid extracted from *Kigelia pinnata* Leaves. Asian Journal of Cell Biology 2017; 12(1): 20-27.
- Islam MT, Ali, ES, Uddin SJ, Shaw S, Islam, MA, Ahmed MI and Billah MM: Phytol: A review of biomedical activities. Food and Chemical Toxicology 2018; 121: 82-94.
- Netscher T: Synthesis of vitamin E. Vitamins and Hormones 2007; 76: 155-202.
- Daines AM, Payne RJ, Humphries ME and Abell AD: The synthesis of naturally occurring vitamin K and vitamin K analogues. Current Organic Chemistry 2003; 7(16): 1625-34.
- Ko GA and Cho SK: Phytol suppresses melanogenesis through proteasomal degradation of MITF via the ROS-ERK signaling pathway. Chemico-Biological Interactions 2018; 286: 132-40.
- 17. Ramprakash VR and Awad AB: Role of Phytosterols in cancer prevention and treatment. Journal of AOAC International 2015; 98(3): 735-38.
- Shahzad N, Khan W, Shadab MD, Ali A, Saluja SS, Sharma S and Afify MA: Phytosterols as a natural anticancer agent: Current status and future perspective. Biomedicine and Pharmacotherapy 2017; 88: 786-94.
- López-García G, Alegría A, Barberá R and Cilla A: Antiproliferative effects and mechanism of action of phytosterols derived from bioactive plant extracts. Nutraceuticals and Natural Product Derivatives: Disease Prevention & Drug Discovery 2019; 145-65.

- Anonymous: Dr. Duke's phytochemical and ethanobotanical databases. USDA, Agricultural Research Service 1992-2016.
- Aleryani SL, Cluette-Brown JE, Khan ZA, Hasaba H, de Heredia LL and Laposata M: Fatty acid methyl esters are detectable in the plasma and their presence correlates with liver dysfunction. Clinica Chimica Acta 2005; 359(1-2): 141-9.
- Huang CB and Ebersole JL: A novel bioactivity of omega-3 polyunsaturated fatty acids and their ester derivatives. Molecular Oral Microbiology 2010; 25(1): 75-80
- 23. Lozano-Grande MA, Gorinstein S, Espitia-Rangel E, Dávila-Ortiz G and Martínez-Ayala AL: Plant sources, extraction methods, and uses of Squalene. International Journal of Agronomy 2018; 1-13.
- Prieto JM, Recio MC and Giner RM: Anti-inflammatory activity of β-sitosterol in a model of oxazolone induced contact-delayed-type hypersensitivity. Boletín Latin-American y del Caribe de Plantas Medicinales y Aromáticas 2006; 5(3).
- 25. Kangsamaksin T, Chaithongyot S, Wootthichairangsan, C and Hanchaina R, Tangshewinsirikul C and Svasti J: Lupeol and stigmasterol suppress tumor angiogenesis and inhibit cholangio carcinoma growth in mice *via* downregulation of tumor necrosis factor-α. PloS one 2017; 12(12): e0189628.
- 26. Sharmila R and Sindhu G: Modulation of angiogenesis, proliferative response and apoptosis by β-sitosterol in rat model of renal carcinogenesis. Indian Journal of Clinical Biochemistry 2017; 32(2): 142-52.
- 27. Swamy MK, Arumugam G, Kaur R, Ghasemzadeh A, Yusoff MM and Sinniah UR: GC-MS based metabolite profiling, antioxidant and antimicrobial properties of different solvent extracts of Malaysian *Plectranthus amboinicus* leaves. Evidence-Based Complementary and Alternative Medicine 2017: 1-10.
- Achika J, Ndukwe G and Ayo R: Isolation, Characterization and Antimicrobial Activity of 3 [beta], 22E-Stigmasta-5, 22-dien-3-ol from the Aerial Part of Aeschynomene uniflora E. Mey. British Journal of Pharmaceutical Research 2016; 11(5).

29. Mulyono N, Lay BW, Ocktreya L and Rahayu S: Antidiarrheal activity of Apus bamboo (*Gigantochloa apus*) leaf extract and its bioactive compounds. American Journal of Microbiology 2013; 4(1): 1.

E-ISSN: 0975-8232; P-ISSN: 2320-5148

- Nascimento AM, Conti R, Turatti IC, Cavalcanti BC, Costa-Lotufo LV, Pessoa C, Moraes MO, Manfrim V, Toledo JS, Cruz AK and Pupo MT: Bioactive extracts and chemical constituents of two endophytic strains of Fusarium oxysporum. Revista Brasileira de Farmacognosia 2012; 22(6): 1276-81.
- 31. Saleem M: Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpenes. Cancer Letters 2009; 285(2): 109-15.
- 32. McGaw LJ, Jäger AK and Van Staden J: Isolation of antibacterial fatty acids from *Schotia brachypetala*. Fitoterapia 2002; 73(5): 431-3.
- 33. Jeong JB, Hong SC, Jeong HJ and Koo JS: Antiinflammatory effect of 2-methoxy-4-vinylphenol *via* the suppression of NF-κB and MAPK activation, and acetylation of histone H3. Archives of Pharma Research 2011; 34(12): 2109-16.
- 34. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, Sajed T, Johnson D, Li C, Karu N and Sayeeda Z: HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Research 2017; 46(D1): D608-17.
- 35. Xu F, Huang X, Wu H and Wang X: Beneficial health effects of lupenone triterpene: A review. Biomedicine and Pharmacotherapy 2018; 103: 198-203.
- Chen CR, Chao LH, Liao YW, Chang CI and Pan MH: Tocopherols and Triterpenoids from *Sida acuta*. Journal of the Chinese Chemical Society 2007; 54(1): 41-45.
- Shin J, Yang SJ and Lim Y: Gamma-tocopherol supplementation ameliorated hyper-inflammatory response during the early cutaneous wound healing in alloxaninduced diabetic mice. Experimental Biology and Medicine 2017; 242(5): 505-15.
- 38. Munné-Bosch S and Alegre L: The function of tocopherols and tocotrienols in plants. Critical Reviews in Plant Sciences 2002; 21(1): 31-57.
- Crowell PL: Prevention and therapy of cancer by dietary Monoterpene. The Journal of Nutrition1999; 129(3): 775S-8S.

How to cite this article:

Bano I and Deora G: Preliminary phytochemical screening and GC-MS analysis for identification of bioactive compounds from *Abutilon fruticosum* Guill and Perr. A rare and endemic plant of Indian Thar Desert. Int J Pharm Sci & Res 2020; 11(6): 2671-79. doi: 10.13040/IJPSR.0975-8232.11(6).2671-79.

All © 2013 are reserved by the International Journal of Pharmaceutical Sciences and Research. This Journal licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

This article can be downloaded to **Android OS** based mobile. Scan QR Code using Code/Bar Scanner from your mobile. (Scanners are available on Google Play store)