IJPSR (2023), Volume 14, Issue 12

INTERNATIONAL JOURNAL

Received on 20 April 2023; received in revised form, 04 July 2023; accepted 28 July 2023; published 01 December 2023

IN-SILICO DESIGN OF FLUTAMIDE ANALOGUES AS ANDROGEN RECEPTOR ANTAGONIST AND MOLECULAR DOCKING STUDIES

Ajay Kumar Gupta¹, Achal Mishra² and Sanmati Kumar Jain^{*1}

Drug Discovery and Research Laboratory¹, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur - 495009, Chhattisgarh, India.

Shri Shankaracharya Institute of Pharmaceutical Sciences and Research², Shri Shankaracharya Technical Campus, Durg - 490020, Chhattisgarh, India.

Keywords:

Flutamide, Bioisosteres, ADMET, Prostate Cancer, Molecular docking

Correspondence to Author: Dr. Sanmati K. Jain

Professor, Drug Discovery and Research Laboratory, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur -495009, Chhattisgarh, India.

E-mail: sanmatijain72@yahoo.co.in

ABSTRACT: Androgenic hormones such as testosterone and dihydrotestosterone are essential for the progression of the prostate gland. Overexpression of androgenic receptors is responsible for the proliferation of prostate tumours and androgenic receptors are an essential target in prostate cancer therapy. Flutamide was the first Nonsteroidal androgen receptor antagonist used to treat prostate cancer, but it causes side effects such as hepatotoxicity. This study aims to develop less toxic compounds using a bioisosteric approach by replacing groups such as nitro, trifluoromethyl and aryl of Flutamide drug and to improve pharmacokinetic and toxicity prediction as well as docking studies of newly generated bioisosteres. The Lipinski rule of five was followed. In the docking study, docking scores were obtained in the range of -7.76 to -9.75 Kcal/mol. All ligands docked inside the binding pocket region share a shape that is complementary to the androgen receptor. Among the selected bioisosteres and flutamide, the common amino acid residue 746Val plays a key role in the activity and binding affinity. Based on their QED score, toxicity score, drug likeness, drug score, NR-AR score and binding scores with protein residue, compounds F3, F17, and F39 may be noble antiandrogen agents in the management of prostate cancer.

INTRODUCTION: Throughout the world, cancer is a major cause of mortality and a leading obstacle extending life expectancy. Worldwide, to approximately 10 million deaths from cancer were reported, compared to 19.3 million cases in 2020. According estimated data. to there are approximately 1.4 million new prostate cancer (PC) patients diagnosed each year and 0.38 million deaths¹.

In men, prostate is a gland which is located in Pelvic region. For normal growth and development of prostate gland, androgenic hormones such as testosterone and dihydrotestosterone (metabolite of testosterone) are required ²⁻³. Androgenic hormones bind with androgen receptors (AR) and mediate biological effects.

Before puberty, the secretion of androgens are less but in postpuberted male volume of androgens are increased up to ten times, result in continuous growth in prostate glands may lead to benign prostatic hyperplasia (BPH) ⁴⁻⁵. Increased levels of androgens lead to cause proliferation of prostate tumours ⁶. PC, precious puberty and hair loss are androgen dependent diseases in men, can be treated with antiandrogens. Antiandrogen agents can be classified into two categories, a) androgen synthetic inhibitors (such as Abiraterone, Seviterone etc.); b) AR antagonist such as steroidal (Cyproterone, Allylestrenol *etc.*) and non-steroidal (Flutamide, Bicalutamide and Enzalutamide *etc.*)⁷.

Flutamide is chemical propanamide derivative **Fig. 1A**, used in the treatment of PC and BPH ⁸. It is an inactive molecule that is activated after going under first pass metabolism (using Cytochrome P450 1A2), resulting in the formation of 2hydroxyflutamide **Fig. 1B**⁹. Flutamide shows some side effects like drug induced liver injury (DILI) which may lead to liver failure. FDA also reported a warning risk regarding liver nacrosis, jaundice and cholestasis¹⁰⁻¹².

Nitroreduction of Flutamide (formation of N-[4amino-3-(trifluoromethyl) phenyl] isobutyramide) may cause hepatotoxicity ¹³. At high doses, flutamide causes some difficulties such as prostatitis, hematuria, hematochezia, anaemia, low libido and elevated methemoglobin in the blood ¹⁴.

FIG. 1: STRUCTURE OF FLUTAMIDE, 2-HYDROXY FLUTAMIDE AND BIOISOSTERIC MODIFICATION OF GROUPS (NITRO, TRIFLUOROMETHYL AND ARYL) IN FLUTAMIDE

Bioisosters were compounds that have the same biological activities and are used for modification of potency, efficacy, bioactivitites, pharmacokinetics and toxicological properties ¹⁵⁻¹⁶. They can be classified as classical and nonclassical bioisosteres.

Classical bioisosters are atoms or molecules having the same valence electrons but share different numbers of atoms. Non-classical bioisosters differ in valance electron but similarity in some important parameters such as liophilicity, pKa, chemical reactivity *etc* ¹⁷⁻¹⁸. For the design of novel and potent molecules chemists or scientists can use rational drug design approaches, among them molecular docking which is used to predict the ligand-protein interaction in three-dimentional mode. Also, docking gives the information about the binding score of the ligand-protein complex may help in lead optimisation ¹⁹⁻²⁰.

The aim of the investigation is to develop a less toxic compound than flutamide through a bioisosteric approach, ADMET properties prediction, drug likeness (DL), drug score (DS) and moleculer docking studies. In Flutamide, three groups such as nitro, trifluromethyl and aryl are modified using the bioisosteric approach is shown in **Fig. 1C**.

MATERIALS AND METHODS:

Designing of Flutamide Bioisosteres: Flutamide is a pure androgen antagonist used to treat PC. However, in the course of medication, patients were suffering from hepatotoxicity, which led to liver damage. Therefore, it is necessary to modify the flutamide structure in order to reduce toxicity like hepatotoxicity. Various bioisosteres of groups such as nitro, trifluoromethyl, and aryl in Flutamide were generated using the MolOpt online tool. MolOpt, online software used for in-silico design of bioisosteres that uses deep generative models, data mining, and similarity comparisons as bioisosteric transformation rules. A useful feature of MolOpt is that it can navigate historical bioisosteric group space and identify new bioisosteric transformation ideas. The purpose of MolOpt is to assist the medicinal chemist in finding what to make next ²¹. Types of newly generated analogues of nitro, trifluoromethyl and aryl groups in flutamide are shown in Fig. 2A, 2B and 2C, respectively. The structures of newly generated analogues are shown in Table 1.

FIG. 2: TYPE OF BIOISOSTERES OF NITRO GROUP, TRIFLUOROMETHYL GROUP, ARYL GROUP IN FLUTAMIDE

Pharmacokinetic and Toxicity (ADMET) Properties Prediction: Absorption, distribution, metabolism and excretion and toxicological (ADMET) properties of newly generated analogues of flutamide were calculated using ADMET lab 2.0. It is an integrated online platform with eighty-four quantitative and four qualitative regression models with authentic and extensive predictions of ADMET properties for novel ligands that mimic mammalian ADMET properties tool ²²⁻²⁵.

Drug Likeness and Drug Score Prediction: OSIRIS property explorer (PEO) was employed for DS and DL calculations. PEO includes the processing of all information related to compound synthesis, biological testing, and preclinical development. PEO Online platform with six quantitative and four qualitative regression models with comprehensive prediction of toxicity risk, DL and DS ²⁶.

DL and DS properties determine whether a drug has the physicochemical and biological properties required to be successful and safe for use ²⁷.

Molecular Docking Study: Molecular docking is used in uderstanding molecular biology,

determining interactions between targets (macromolecules such as DNA, RNA and Proteins) and small molecules (ligands). Docking softwares is used to understand the recognition of binding affinity, binding score *etc* ²⁸⁻²⁹. A molecular docking study of analogues was done using the crystal structure of the androgen receptor (PDB ID: 2AM9) and this study involved a number of steps like preparation of the ligand structure preparation of the protein structures and protein-ligand docking using Argus Lab 4.0 software³⁰⁻³².

RESULTS AND DISCUSSION:

Bioisosteres of Trifluoromethyl, Nitro and Aryl Groups in Flutamide: As a drug discovery technique, bioisosteric replacement is widely used to improve potency and selectivity, address pharmacokinetic problems and remove unwanted side effects such as toxicity.

MolOpt was used to generate eighty-six, ninetytwo and seventy-seven bioisosteres of trifluoromethyl, nitro and aryl groups, in flutamide, respectively. Among these, fifty analogues **Table 1** were chosen for further evaluation based on their QED value, DILI score, NR-AR score, DL and DS.

S. no.	Entry no.	Structure	MW	nHA	nHD	TPSA	nRot	LogS	LogP
			Aryl G	roup Biois	sosteres				
1	F1		306.08	6	1	81.47	6	-4.499	3.114
2	F2		292.07	6	2	92.47	5	-3.76	3.104
3	F3		306.08	6	1	81.47	6	-3.656	3.121
4	F4		290.09	5	1	72.24	5	-3.598	2.866
5	F5		282.12	5	1	72.24	5	-2.563	2.019
6	F6	°.+ KK	290.09	5	1	72.24	6	-2.967	2.849
7	F7		290.09	5	1	72.24	6	-3.546	2.886
8	F8		304.1	5	1	72.24	6	-5.093	3.228
9	F9		290.09	5	1	72.24	6	-2.665	2.829
10	F10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	276.07	5	1	72.24	5	-3.879	2.941
11	F11	H3C-JNH	276.07	5	1	72.24	5	-3.882	3.23
		FF							

TABLE 1: STRUCTURE AND MOLECULAR PROPERTIES OF THE ANALOGUES

E-ISSN: 0975-8232; P-ISSN: 2320-5148

12	F12	F F	276.07	5	1	72.24	5	-4.661	3.323
		H,C-LUH							
13	F13		290.09	5	1	72.24	6	-3.417	3.044
14	F14		294.06	5	1	72.24	5	-4.243	3.041
15	F15	CHS FFF Hrc L y C	353.98	5	1	72.24	5	-5.264	3.529
		сн, '' о	Nitro G	roun Rioi	sosteres				
16	F16		246.1	3	3	55.12	4	-3.253	2.677
17	F17	,∧ SDH	259.08	3	1	46.17	5	-3.267	2.928
18	F18		272.09	5	1	77.86	5	-5.569	3.706
19	F19	× ×	260.11	3	3	55.12	5	-1.478	2.504
20	F20	·×. ·+	274.13	3	2	41.13	6	-4.084	3.479
21	F21		275.11	3	2	49.33	5	-2.254	2.818
22	F22		274.09	4	2	58.2	6	-3.165	2.558
23	F23		289.1	5	4	84.22	6	-3.147	2.207
24	F24		288.14	3	2	41.13	6	-4.904	3.852
25	F25	H,C H,C F H,C H,C H,C H,C H,C H,C H,C H,C H,C H,C	303.13	2	1	29.1	5	-5.98	4.56

Gupta et al., IJPSR, 2023; Vol. 14(12): 5785-5801.

E-ISSN: 0975-8232; P-ISSN: 2320-5148

26	F26	it is a second s	271.12	2	1	29.1	6	-4.889	4.105
		H,C LIL							
27	F27	H,C L, C L	261.1	3	1	38.33	5	-3.663	3.146
28	F28	HC IN CE	256.08	3	1	52.89	4	-4.125	3.044
29	F29		289.09	4	1	55.4	6	-3.144	2.819
30	F30	H ₂ C H ₁ C H ₂ C	300.14	3	1	32.34	5	-5.124	4.001
31	F31		314.16	3	1	32.34	5	-5.558	4.386
32	F32	, solution	275.08	4	2	66.4	5	-2.859	2.958
		HJC HB	Tuifluonomoti	hul Cuor	n Diaigagt				
33	F33	HJC	238.1	<u>iiyi Grou</u> 6	2 <u>2 DIOISUSI</u>	92.47	5	-2.53	1.804
34	F34		236.08	6	1	89.31	5	-3.098	2.058
35	F35		265.11	7	2	101.34	6	-2.944	1.456
36	F36	H,C-(CH, H,C-(CH,	262.13	5	1	72.24	5	-5.529	3.616
37	F37		266.13	6	2	92.47	5	-2.693	2.408
38	F38		323.98	5	1	72.24	5	-4.892	3.764
39	F39		252.11	6	2	92.47	5	-2.307	1.927

Gupta et al., IJPSR, 2023; Vol. 14(12): 5785-5801.

E-ISSN: 0975-8232; P-ISSN: 2320-5148

	710	H/G							
40	F40		278.13	6	1	81.47	5	-3.769	2.549
41	F41		290.02	5	1	72.24	5	-4.282	3.172
42	F42	هئم ب	342.19	5	1	72.24	5	-6.466	5.128
43	F43		248.12	5	1	72.24	6	-4.379	3.216
44	F44	hon the the	252.11	6	1	81.47	6	-2.901	2.159
45	F45		276.15	5	1	72.24	5	-5.973	4.056
46	F46		291.16	6	1	75.48	5	-5.14	3.366
47	F47		291.16	6	1	75.48	5	-5.509	3.8
48	F48	میں ایک	262.13	5	1	72.24	6	-5.314	3.626
49	F49	H,C L N C N	292.14	6	1	81.47	5	-4.48	2.905
50	F50	HIC LINE CON	292.14	6	1	81.47	6	-5.32	3.634
Std.	Flutamide	μų	276.07	5	1	72.24	5	-3.842	3.243

MW; molecular weight, nHA; number of hydrogen bond acceptor, nHD; number of hydrogen bond donor, nRot; number of rotatable bonds, TPSA; topological polar surface area, logP; the logarithm of partition coefficient value, logs; the logarithm of aqueous solubility value.

Screening of Molecular Properties: The molecular properties of the newer analogue were

calculated using the ADMETlab2.0 online tool and the results are shown in **Table 2**. Lipinski's rule of five promotes the bioavailability of the drug candidates. Lipinski's rule of five also predicts the absorption or permeation of the drug candidates ³³. The result indicates that all analogues met the acceptance criteria with flutamide as the standard.

 TABLE 2: MEDICINAL PROPERTIES OF THE ANALOGUES

Entry no.	QED	Synth	Fsp3	MCE-18	Lipinski	Pfizer	GSK	GT		
Aryl Group Bioisosteres										
F1	0.684	2.276	0.417	13	Accepted	Accepted	Accepted	Accepted		
F2	0.509	2.318	0.364	13	Accepted	Accepted	Accepted	Accepted		

International Journal of Pharmaceutical Sciences and Research

F3	0.684	2.324	0.417	13	Accepted	Accepted	Accepted	Accepted
F4	0.683	2.308	0.417	13	Accepted	Accepted	Accepted	Accepted
F5	0.636	3.858	0.909	31	Accepted	Accepted	Accepted	Accepted
F6	0.684	2.162	0.417	12	Accepted	Accepted	Accepted	Accepted
F7	0.684	2.191	0.417	12	Accepted	Accepted	Accepted	Accepted
F8	0.685	3.075	0.462	28	Accepted	Rejected	Accepted	Accepted
F9	0.684	2.407	0.417	12	Accepted	Accepted	Accepted	Accepted
F10	0.68	2.038	0.364	12	Accepted	Accepted	Accepted	Accepted
F11	0.68	2.127	0.364	12	Accepted	Rejected	Accepted	Accepted
F12	0.68	2.123	0.364	12	Accepted	Rejected	Accepted	Accepted
F13	0.684	2.438	0.417	12	Accepted	Rejected	Accepted	Accepted
F14	0.528	2.305	0.364	13	Accepted	Rejected	Accepted	Accepted
F15	0.659	2.4	0.364	13	Accepted	Rejected	Accepted	Accepted
				Nitro G	roup Bioisosteres	J		
F16	0.788	2.001	0.364	11	Accepted	Accepted	Accepted	Accepted
F17	0.848	2.179	0.333	11	Accepted	Accepted	Accepted	Accepted
F18	0.498	2.587	0.364	11	Accepted	Accepted	Accepted	Accepted
F19	0.878	2.066	0.417	11	Accepted	Accepted	Accepted	Accepted
F20	0.878	2.029	0.462	11	Accepted	Rejected	Accepted	Accepted
F21	0.888	2.581	0.462	24	Accepted	Accepted	Accepted	Accepted
F22	0.829	2.231	0.333	11	Accepted	Accepted	Accepted	Accepted
F23	0.799	2.042	0.333	12	Accepted	Accepted	Accepted	Accepted
F24	0.875	2.094	0.5	12	Accepted	Rejected	Accepted	Accepted
F25	0.844	2.511	0.5	14	Accepted	Rejected	Rejected	Accepted
F26	0.823	2.219	0.357	11	Accepted	Rejected	Rejected	Accepted
F27	0.906	1.851	0.417	11	Accepted	Rejected	Accepted	Accepted
F28	0.883	2.064	0.333	11	Accepted	Rejected	Accepted	Accepted
F29	0.686	2.031	0.385	12	Accepted	Accepted	Accepted	Accepted
F30	0.918	2.01	0.533	35	Accepted	Rejected	Rejected	Accepted
F31	0.902	2.021	0.562	12	Accepted	Rejected	Rejected	Accepted
F32	0.891	1.958	0.333	36	Accepted	Accepted	Accepted	Accepted
102	01071	1000	Tr	ifluoromet	hvl Group Bioiso	steres	11000p100	11000p.000
F33	0.616	2.039	0 364	9	Accepted	Accepted	Accepted	Accepted
F34	0.492	2.133	0.273	9	Accepted	Accepted	Accepted	Accepted
F35	0.637	1 958	0.333	10	Accepted	Accepted	Accepted	Accepted
F36	0.667	2.091	0.5	31	Accepted	Rejected	Accepted	Accepted
F37	0.646	2.234	0.462	12	Accepted	Accepted	Accepted	Accepted
F38	0.518	2.394	0.364	12	Accepted	Rejected	Accepted	Accepted
F39	0.634	2.587	0.417	20	Accepted	Accepted	Accepted	Accepted
F40	0.678	2.77	0.5	44	Accepted	Accepted	Accepted	Accepted
F41	0.522	2.405	0.364	10	Accepted	Rejected	Accepted	Accepted
F42	0.639	3.626	0.65	62	Accepted	Rejected	Rejected	Accepted
F43	0.494	2.212	0.308	9	Accepted	Rejected	Accepted	Accepted
F44	0.644	2.033	0.417	9	Accepted	Accepted	Accepted	Accepted
F45	0.67	2.103	0 533	32	Accepted	Rejected	Rejected	Accepted
F46	0.678	1.991	0.5	31	Accepted	Accepted	Accepted	Accepted
F47	0.683	2	0.533	32	Accepted	Accepted	Accepted	Accepted
F48	0.654	2.133	0.5	30	Accepted	Rejected	Accepted	Accepted
F49	0.683	2.281	0.533	32	Accepted	Accepted	Accepted	Accepted
F50	0.665	2,103	0.533	32	Accepted	Accepted	Accepted	Accepted
Flutamide	0.68	2.07	0.364	12	Accepted	Rejected	Accepted	Accepted
				-	· · · · ·		· · · · · · ·	· · · · · · · ·

QED; a measure of drug-likeness based on the concept of desirability, Synth; synthetic accessibility score, Fsp3; The number of sp3 hybridized carbons/total carbon count, MCE-18; medicinal chemistry evolution in 2018, GT; golden triangle.

Screening of Medicinal Properties: The medicinal property of analogues are shown in **Table 2**. QED indicates drug-like properties. The QED value of all analogues has shown > 0.67 with some exceptions such as F2, F5, F14, F15, F18,

F33-39, F41-F44, F48 and F50, whereas flutamide has 0.68 which indicates analogues may have drug like properties. All analogues will be easy to synthesise as per synthetic accessibility prediction criteria (< 6). Newer analogues of flutamide were found to be acceptable to Lipinski and the Golden Triangle (GT), indicating good bioavailability. Analogues F3, F17, and F39 have been found to meet Lipinski, Pfizer, GSK, and GT rules, whereas the Pfizer rule for flutamide is rejected.

Screening of **Pharmacokinetic** (ADME) Properties: Pharmacokinetic properties such as absorption (caco-2, MDCK, HIA), distribution (BBB, PPB, VDss), metabolism (CYP1A2, CYP2C19, CYP2C9, CYP2D6, CYP3A4), excretion (CL and $T_{1/2}$) have been calculated using the ADMET lab2.0 online tool and results are tabulated in Table 3 and 4. Intestinal absorption of analogues was found to be good (absorption score based on the caco-2 score and HIA score). The caco-2 score of analogues was found to be greater than -5.15 which indicates the proper in-vivo drug permeability of analogues.

HIA scores were also found in the range between 0 to 0.3 which indicates oral bioavailability of molecules. The MDCK score of analogues was found to be excellent, indicating high passive permeability. These analogues have moderate to poor BBB permeability, ranging from 0.353 to 0.919. Most of the newer analogues have a predicted plasma protein binding (PPB) score under 90%, which indicates that the high plasma protein binding causes a decrease in the free plasma fraction, which decreases distribution volume and lengthens the half-life of elimination. The volume of distribution (VDs) of all analogues has a good predicted score that is between 0.04-20. From the predicted scores of absorptions and distribution, analogues F3, F6, F17, F19, F37 and F39 and others also have good to moderate permeability effects.

TARLE 3.	ABSORPTION A	ND DISTRIF	NUTION PROFILI	OF THE	ANALOGUES
IADLE J.	ADSONI HON F				ANALUGULO

Entry no.	Caco-2	MDCK	HIA	BBB	PPB (%)	VDss	Fu (%)			
Aryl Group Bioisosteres										
F1	-4.414	Ex	0.007	0.499	96.99	1.033	3.06			
F2	-4.437	Ex	0.004	0.574	98.06	1.004	2.48			
F3	-4.448	Ex	0.007	0.485	96.93	1.074	3.22			
F4	-4.348	Ex	0.005	0.353	97.17	1.089	3.90			
F5	-4.582	Ex	0.005	0.525	77.83	0.833	23.89			
F6	-4.458	Ex	0.004	0.723	93.18	0.699	7.30			
F7	-4.444	Ex	0.004	0.515	95.16	0.773	6.14			
F8	-4.362	Ex	0.005	0.494	95.52	0.984	8.00			
F9	-4.383	Ex	0.004	0.794	93.84	0.666	5.75			
F10	-4.333	Ex	0.004	0.474	94.61	0.87	5.52			
F11	-4.344	Ex	0.004	0.533	95.92	0.835	4.49			
F12	-4.435	Ex	0.004	0.316	97.15	1.062	4.37			
F13	-4.479	Ex	0.004	0.896	94.02	0.835	7.44			
F14	-4.336	Ex	0.005	0.261	96.80	1.042	3.67			
F15	-4.332	Ex	0.023	0.582	97.88	0.982	2.39			
		Ν	itro Group Biois	sosteres						
F16	-4.526	Ex	0.004	0.687	85.00	1.196	15.61			
F17	-4.507	Ex	0.004	0.966	90.11	1.527	10.32			
F18	-5.062	Ex	0.007	0.518	97.60	5.137	3.32			
F19	-4.787	Ex	0.004	0.481	62.00	2.318	35.81			
F20	-4.58	Ex	0.005	0.446	95.62	3.014	4.20			
F21	-4.408	Ex	0.004	0.86	87.90	0.89	14.97			
F22	-4.435	Ex	0.004	0.896	88.02	1.574	10.29			
F23	-5.088	Ex	0.004	0.93	88.87	1.129	11.70			
F24	-4.561	Ex	0.006	0.419	96.68	3.462	3.52			
F25	-4.391	Ex	0.007	0.791	93.80	3.936	6.30			
F26	-4.372	Ex	0.003	0.826	97.11	1.34	2.27			
F27	-4.495	Ex	0.004	0.746	94.55	3.195	5.36			
F28	-4.464	Ex	0.005	0.966	92.18	0.911	6.07			
F29	-4.61	Ex	0.008	0.99	89.13	0.969	24.02			
F30	-4.566	Ex	0.003	0.775	95.74	2.16	2.77			
F31	-4.576	Ex	0.003	0.747	96.38	2.233	2.18			
F32	-4.566	Ex	0.004	0.425	91.98	1.165	10.09			
		Trifluo	romethyl Group	Bioisosteres						

F33	-4.406	Ex	0.005	0.88	73.78	0.843	28.74
F34	-4.399	Ex	0.006	0.919	84.50	1.057	14.68
F35	-4.909	Ex	0.005	0.875	80.52	0.936	23.62
F36	-4.472	Ex	0.003	0.739	96.58	0.806	2.94
F37	-4.326	Ex	0.01	0.731	80.12	0.909	23.43
F38	-5.52	Ex	0.004	0.872	98.18	1.28	1.59
F39	-4.404	Ex	0.005	0.781	76.36	0.83	26.13
F40	-4.485	Ex	0.003	0.642	92.80	0.851	7.98
F41	-4.79	Ex	0.004	0.811	96.53	1.263	3.62
F42	-4.683	Ex	0.004	0.69	96.28	1.015	1.15
F43	-4.249	Ex	0.004	0.557	96.00	0.986	2.68
F44	-4.333	Ex	0.004	0.881	74.80	0.927	23.54
F45	-4.489	Ex	0.003	0.699	97.30	0.842	2.09
F46	-4.42	Ex	0.004	0.824	94.79	0.924	4.86
F47	-4.441	Ex	0.004	0.806	95.96	0.915	3.98
F48	-4.466	Ex	0.003	0.735	95.56	0.664	2.70
F49	-4.471	Ex	0.002	0.598	93.96	0.756	6.25
F50	-4.375	Ex	0.003	0.779	96.90	0.728	2.63
Flutamide	-4.346	Ex	0.004	0.58	95.62	0.832	4.59

Caco-2; the human colon adenocarcinoma cell lines, MDCK; Madin–Darby canine kidney cells, HIA; human intestinal absorption, PPB; plasma protein binding, BBB; blood–brain barrier, VD; volume distribution, Fu; the fraction unbound in plasms, Ex; Excellent.

Cytochrome P450 (CYT P450) is involved in the digestion of drugs, lipids, steroidal components, and carcinogens. Analogues may be substrate or inhibitors. If they are substrates for the enzyme CYT P450 result in the metabolism takes place with molecules, on the other hand, if they inhibit the enzyme, it will be inactive in metabolism. Analogue F3 was an inhibitor while analogues F17

and F34 were substrates for all five isozymes. Approximately 50% of analogues have an excellent clearance score, indicating a low risk of toxicity. Among them analogue F3 and F29 have excellent clearance scores (\geq 5) and analogue F17 has a moderate clearance score (\leq 5). T_{1/2} of analogues F3 and F39 were found under the range (0 to 0.3) which indicates excellent clearance from the body.

TABLE 4: METABOLISM AND	EXCRETION PROFILE OF	THE ANALOGUES
-------------------------	-----------------------------	---------------

Entry no.	CYP1A2	CYP2C19	CYP2C9	CYP2D6	CYP3A4	CL	T _{1/2}				
Aryl Group Bioisosteres											
F1	-	-	-	+	-	4.349	0.3				
F2	-	-	+	-	+	4.579	0.495				
F3	-	-	-	-	-	6.774	0.283				
F4	+	+	-	+	+	3.408	0.419				
F5	+	+	-	+	+	6.446	0.4				
F6	-	-	+	+	-	5.882	0.297				
F7	-	+	-	+	-	5.217	0.454				
F8	+	+	+	+	+	4.821	0.345				
F9	-	-	+	+	-	6.586	0.642				
F10	+	+	+	+	+	3.795	0.308				
F11	+	+	+	+	+	4.608	0.224				
F12	+	+	-	-	-	4.096	0.259				
F13	-	-	-	+	+	6.624	0.246				
F14	+	-	+	+	+	3.016	0.232				
F15	+	-	+	+	+	1.226	0.207				
			Nitro Group B	ioisosteres							
F16	+	+	-	+	+	7.88	0.192				
F17	-	+	+	+	+	2.634	0.252				
F18	+	+	+	+	+	0.783	0.321				
F19	-	+	+	+	+	8.645	0.547				
F20	+	+	+	+	+	7.332	0.295				
F21	+	+	+	+	+	4.611	0.37				
F22	+	+	+	+	+	4.077	0.366				
F23	+	+	+	+	+	5.808	0.216				

F24	+	+	-	+	+	5.312	0.17
F25	+	+	-	+	+	2.284	0.198
F26	+	-	+	+	-	7.543	0.169
F27	+	+	+	+	+	9.662	0.322
F28	+	+	-	+	+	8.524	0.297
F29	-	+	+	-	-	2.998	0.411
F30	+	+	-	+	+	5.648	0.095
F31	+	+	-	+	-	5.31	0.076
F32	+	+	-	+	+	1.355	0.691
		Tri	fluoromethyl Gr	oup Bioisosteres			
F33	+	+	+	+	+	6.474	0.882
F34	-	+	+	+	+	2.213	0.58
F35	-	-	+	+	+	8.056	0.696
F36	+	-	+	+	+	1.385	0.234
F37	+	+	+	+	+	4.194	0.689
F38	+	+	+	+	+	3.464	0.316
F39	+	+	+	+	+	4.76	0.762
F40	+	+	+	+	+	4.775	0.429
F41	+	+	+	+	+	3.047	0.485
F42	+	-	+	+	-	1.74	0.07
F43	+	-	+	+	-	5.556	0.604
F44	+	+	+	+	+	5.252	0.615
F45	+	-	+	+	-	1.436	0.2
F46	+	-	-	+	-	4.765	0.364
F47	+	-	-	-	-	4.396	0.299
F48	+	-	+	+	-	3.098	0.272
F49	+	+	+	-	+	5.391	0.341
F50	+	-	+	-	-	3.617	0.24
Flutamide	+	-	+	+	+	4.681	0.237

(-); indicates inhibitor, (+); indicates substrate of human cytochrome P450 (five isozymes-1A2, 3A4, 2C9, 2C19 and 2D6), CL; the clearance of a drug, $T_{1/2}$; the half-life of a drug.

Screening of **Profile:** Toxicity Toxicity parameters of newer analogues such as Drug Induced Liver Injury (DILI), mutagenicity (Ames), androgen receptor-a nuclear hormone receptor (NR-AR) were calculated using ADMET lab 2.0 online tool and their results are shown in Table 5. The DILI scores for analogues F6, F17, F19, F25, F34, F35, F37 and F42 are moderate (0.3 to 0.7). However, analogues F7, F37 and F41 are safe, while flutamide has high liver toxicity (0.858). Studies have shown that analogues such as F17, F34, F38, F41 do not cause human hepatotoxicity (H-HT) as compared to Flutamide (0.578). The mutagenicity of analogues such as F1, F2, F3, F5, F7, F8, F17, F19, F20, F21, F23, F24, F25, F26 and F42 was predicted to be safer than flutamide (0.498), indicating that the analogues could not cause mutagenesis. The rat oral acute toxicity

(ROA) method is used to determine acute toxicity in rats and mice, which is an important safety profile for drug candidates. Based on the outcome of ROA, analogues are as safe as flutamide, except for F19. The carcinogenicity of chemicals is a serious issue because of their powerful effects on wellness and because they can damage the genome or disrupt cellular metabolism. According to the results of carcinogenicity scores, analogues such as F17, F19, F20, F21, F22, F23, F24, F25, F33, F34, F35, F38, F39, F41 and F42 were found to have a safe predictive value. NR-AR plays a vital role in AR-dependent PC, as well as other androgenrelated diseases. In more than 75% of cases, analogues bind to the NR-AR, inhibiting the activity of the Androgen receptor. In general, analogues F1-F4, F6, F7, F9, F23, F36, F38 and F39 were found to have more than 0.8 scores.

Entry no.	H-HT	DILI	Ames	ROA	Carc.	NR-AR	NR-AR-LBD
Aryl Group Bioisosteres							
F1	0.724	0.572	0.196	0.159	0.74	0.847	0.095
F2	0.552	0.671	0.177	0.271	0.737	0.807	0.178
F3	0.708	0.58	0.205	0.199	0.741	0.85	0.103

International Journal of Pharmaceutical Sciences and Research

Gupta et al., IJPSR, 2023; Vol. 14(12): 5785-5801.

E-ISSN: 0975-8232; P-ISSN: 2320-5148

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F4	0.736	0.654	0.488	0.238	0.844	0.849	0.017
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F5	0.919	0.622	0.008	0.041	0.882	0.089	0.002
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F6	0.485	0.43	0.458	0.115	0.725	0.845	0.009
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F7	0.485	0.185	0.29	0.108	0.588	0.826	0.011
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F8	0.338	0.675	0.013	0.06	0.751	0.011	0.003
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F9	0.379	0.609	0.457	0.128	0.52	0.816	0.007
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F10	0.662	0.87	0.624	0.123	0.793	0.861	0.032
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F11	0.626	0.874	0.616	0.063	0.788	0.862	0.027
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F12	0.62	0.729	0.498	0.058	0.753	0.844	0.048
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	F13	0.527	0.714	0.216	0.069	0.682	0.803	0.007
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	F14	0.749	0.889	0.5	0.158	0.731	0.874	0.075
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	F15	0.405	0.934	0.305	0.118	0.683	0.878	0.12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Nitro Grou	p Bioisostere	es		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F16	0.596	0.696	0.524	0.234	0.357	0.749	0.006
$ \begin{array}{c ccccc} F18 & 0.454 & 0.691 & 0.993 & 0.079 & 0.965 & 0.001 & 0.013 \\ F19 & 0.481 & 0.384 & 0.039 & 0.868 & 0.231 & 0.795 & 0.004 \\ F20 & 0.82 & 0.456 & 0.129 & 0.243 & 0.123 & 0.619 & 0.003 \\ F21 & 0.654 & 0.533 & 0.116 & 0.156 & 0.117 & 0.762 & 0.003 \\ F22 & 0.416 & 0.688 & 0.391 & 0.127 & 0.111 & 0.742 & 0.006 \\ F23 & 0.352 & 0.95 & 0.284 & 0.105 & 0.147 & 0.847 & 0.003 \\ F24 & 0.65 & 0.488 & 0.04 & 0.153 & 0.153 & 0.191 & 0.002 \\ F25 & 0.426 & 0.522 & 0.063 & 0.113 & 0.553 & 0.572 & 0.004 \\ F27 & 0.263 & 0.839 & 0.023 & 0.139 & 0.285 & 0.786 & 0.004 \\ F28 & 0.913 & 0.896 & 0.105 & 0.17 & 0.391 & 0.836 & 0.037 \\ F29 & 0.049 & 0.733 & 0.042 & 0.138 & 0.304 & 0.789 & 0.007 \\ F30 & 0.848 & 0.78 & 0.121 & 0.535 & 0.329 & 0.745 & 0.005 \\ F31 & 0.84 & 0.815 & 0.114 & 0.512 & 0.293 & 0.722 & 0.005 \\ F33 & 0.575 & 0.419 & 0.832 & 0.046 & 0.262 & 0.635 & 0.021 \\ F34 & 0.156 & 0.39 & 0.964 & 0.024 & 0.109 & 0.36 & 0.205 \\ F35 & 0.58 & 0.4 & 0.918 & 0.054 & 0.079 & 0.035 & 0.005 \\ F36 & 0.48 & 0.839 & 0.884 & 0.329 & 0.534 & 0.828 & 0.008 \\ F37 & 0.598 & 0.395 & 0.629 & 0.037 & 0.378 & 0.709 & 0.005 \\ F38 & 0.109 & 0.5 & 0.978 & 0.018 & 0.147 & 0.815 & 0.016 \\ F39 & 0.589 & 0.225 & 0.698 & 0.045 & 0.136 & 0.8 & 0.013 \\ F40 & 0.585 & 0.535 & 0.944 & 0.17 & 0.428 & 0.756 & 0.016 \\ F41 & 0.066 & 0.247 & 0.96 & 0.029 & 0.112 & 0.659 & 0.013 \\ F44 & 0.659 & 0.778 & 0.018 & 0.147 & 0.815 & 0.016 \\ F44 & 0.659 & 0.778 & 0.913 & 0.045 & 0.756 & 0.016 \\ F44 & 0.659 & 0.778 & 0.913 & 0.045 & 0.756 & 0.016 \\ F44 & 0.659 & 0.778 & 0.913 & 0.045 & 0.268 & 0.744 & 0.035 \\ F46 & 0.461 & 0.921 & 0.97 & 0.168 & 0.369 & 0.825 & 0.007 \\ F45 & 0.441 & 0.853 & 0.385 & 0.392 & 0.599 & 0.838 & 0.0066 \\ F46 & 0.461 & 0.921 & 0.97 & 0.168 & 0.369 & 0.825 & 0.017 \\ F47 & 0.41 & 0.925 & 0.969 & 0.166 & 0.389 & 0.842 & 0.013 \\ F49 & 0.489 & 0.694 & 0.912 & 0.669 & 0.531 & 0.733 & 0.008 \\ F40 & 0.578 & 0.858 & 0.498 & 0.067 & 0.786 & 0.862 & 0.018 \\ \end{array}$	F17	0.258	0.347	0.204	0.084	0.183	0.732	0.006
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F18	0.454	0.691	0.993	0.079	0.965	0.001	0.013
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F19	0.481	0.384	0.039	0.868	0.231	0.795	0.004
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F20	0.82	0.456	0.129	0.243	0.123	0.619	0.003
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F21	0.654	0.533	0.116	0.156	0.117	0.762	0.003
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F22	0.416	0.688	0.391	0.127	0.111	0.742	0.006
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F23	0.352	0.95	0.284	0.105	0.147	0.847	0.003
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F24	0.65	0.488	0.04	0.153	0.153	0.191	0.002
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F25	0.33	0 399	0.012	0.01	0.111	0.61	0.002
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F26	0.426	0.522	0.063	0.113	0.553	0.572	0.002
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F27	0.263	0.839	0.023	0.139	0.285	0.786	0.004
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F28	0.913	0.896	0.025	0.132	0.391	0.836	0.001
F30 0.848 0.75 0.121 0.535 0.329 0.745 0.005 F31 0.844 0.815 0.114 0.512 0.293 0.722 0.005 F32 0.218 0.973 0.017 0.339 0.082 0.852 0.004 Trifluoromethyl Group Biolsosteres F33 0.575 0.419 0.832 0.046 0.262 0.635 0.021 F34 0.156 0.39 0.964 0.024 0.109 0.36 0.205 F35 0.58 0.4 0.918 0.054 0.079 0.035 0.005 F36 0.48 0.839 0.884 0.329 0.534 0.828 0.008 F37 0.598 0.395 0.629 0.037 0.378 0.709 0.005 F38 0.109 0.5 0.978 0.018 0.147 0.815 0.016 F41 0.066 0.247 0.96 0.029 0.112 0.659	F29	0.049	0.733	0.042	0.138	0 304	0.789	0.007
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F30	0.848	0.78	0.121	0.535	0.329	0.745	0.007
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F31	0.84	0.815	0.114	0.535	0.293	0.722	0.005
Trifluoromethyl Group Bioisosteres 0.001 0.001 Trifluoromethyl Group Bioisosteres F33 0.575 0.419 0.832 0.046 0.262 0.635 0.021 F34 0.156 0.39 0.964 0.024 0.109 0.36 0.205 F35 0.58 0.4 0.918 0.054 0.079 0.035 0.005 F36 0.48 0.839 0.884 0.329 0.534 0.828 0.008 F37 0.598 0.395 0.629 0.037 0.378 0.709 0.005 F38 0.109 0.5 0.978 0.018 0.147 0.815 0.016 F39 0.589 0.225 0.698 0.045 0.136 0.8 0.013 F40 0.585 0.535 0.944 0.17 0.428 0.756 0.016 F41 0.066 0.247 0.96 0.029 0.112 0.659 0.017	F32	0.218	0.973	0.017	0.339	0.082	0.852	0.003
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	102	0.210	Tr	ifluoromethyl	Group Biois	osteres	0.002	0.0001
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F33	0.575	0.419	0.832	0.046	0.262	0.635	0.021
F35 0.180 0.918 0.051 0.107 0.105 0.005 F35 0.48 0.839 0.884 0.329 0.534 0.828 0.008 F37 0.598 0.395 0.629 0.037 0.378 0.709 0.005 F38 0.109 0.5 0.978 0.018 0.147 0.815 0.016 F39 0.589 0.225 0.698 0.045 0.136 0.8 0.013 F40 0.585 0.535 0.944 0.17 0.428 0.756 0.016 F41 0.066 0.247 0.96 0.029 0.112 0.659 0.019 F42 0.338 0.374 0.143 0.317 0.55 0.382 0.006 F43 0.316 0.455 0.93 0.049 0.214 0.719 0.017 F44 0.659 0.778 0.913 0.045 0.268 0.744 0.035 F45 0.441 0.853 0.885 0.392 0.599 0.838 0.006 F46	F34	0.156	0.39	0.052	0.024	0.109	0.055	0.205
F36 0.48 0.839 0.884 0.329 0.534 0.828 0.008 F37 0.598 0.395 0.629 0.037 0.378 0.709 0.005 F38 0.109 0.5 0.978 0.018 0.147 0.815 0.016 F39 0.589 0.225 0.698 0.045 0.136 0.8 0.013 F40 0.585 0.535 0.944 0.17 0.428 0.756 0.016 F41 0.066 0.247 0.96 0.029 0.112 0.659 0.019 F42 0.338 0.374 0.143 0.317 0.55 0.382 0.006 F43 0.316 0.455 0.93 0.049 0.214 0.719 0.017 F44 0.659 0.778 0.913 0.045 0.268 0.744 0.035 F45 0.441 0.853 0.885 0.392 0.599 0.838 0.006 F46 0.461 0.921 0.97 0.168 0.369 0.842 0.013	F35	0.150	0.4	0.918	0.054	0.079	0.035	0.005
F370.5980.3950.6010.3270.3780.7090.005F380.1090.50.9780.0180.1470.8150.016F390.5890.2250.6980.0450.1360.80.013F400.5850.5350.9440.170.4280.7560.016F410.0660.2470.960.0290.1120.6590.019F420.3380.3740.1430.3170.550.3820.006F430.3160.4550.930.0490.2140.7190.017F440.6590.7780.9130.0450.2680.7440.035F450.4410.8530.8850.3920.5990.8380.006F460.4610.9210.970.1680.3690.8250.017F470.410.9250.9690.1660.3890.8420.013F480.4950.8270.9310.0780.4890.8120.005F490.4890.6940.9120.6690.5310.7330.008F500.5060.8460.9370.1230.6650.8680.017Flutamide0.5780.8580.4980.0670.7860.8620.018	F36	0.48	0.839	0.884	0.329	0.534	0.828	0.008
F380.1090.50.0270.00180.1470.8150.016F390.5890.2250.6980.0450.1360.80.013F400.5850.5350.9440.170.4280.7560.016F410.0660.2470.960.0290.1120.6590.019F420.3380.3740.1430.3170.550.3820.006F430.3160.4550.930.0490.2140.7190.017F440.6590.7780.9130.0450.2680.7440.035F450.4410.8530.8850.3920.5990.8380.006F460.4610.9210.970.1680.3690.8250.017F480.4950.8270.9310.0780.4890.8120.005F490.4890.6940.9120.6690.5310.7330.008F500.5060.8460.9370.1230.6650.8680.017Flutamide0.5780.8580.4980.0670.7860.8620.018	F37	0 598	0.395	0.629	0.037	0.378	0.709	0.005
F39 0.589 0.225 0.698 0.045 0.136 0.817 0.016 F40 0.585 0.535 0.944 0.17 0.428 0.756 0.016 F41 0.066 0.247 0.96 0.029 0.112 0.659 0.019 F42 0.338 0.374 0.143 0.317 0.55 0.382 0.006 F43 0.316 0.455 0.93 0.049 0.214 0.719 0.017 F44 0.659 0.778 0.913 0.045 0.268 0.744 0.035 F45 0.441 0.853 0.885 0.392 0.599 0.838 0.006 F46 0.461 0.921 0.97 0.168 0.369 0.825 0.017 F47 0.41 0.925 0.969 0.166 0.389 0.842 0.013 F48 0.495 0.827 0.931 0.078 0.489 0.812 0.005 F49 0.489 0.694 0.912 0.669 0.531 0.733 0.008 <	F38	0.109	0.5	0.978	0.018	0.147	0.815	0.016
F400.5850.5350.9440.170.4280.7560.016F410.0660.2470.960.0290.1120.6590.019F420.3380.3740.1430.3170.550.3820.006F430.3160.4550.930.0490.2140.7190.017F440.6590.7780.9130.0450.2680.7440.035F450.4410.8530.8850.3920.5990.8380.006F470.410.9250.9690.1660.3890.8420.013F480.4950.8270.9310.0780.4890.8120.005F490.4890.6940.9120.6690.5310.7330.008F500.5060.8460.9370.1230.6650.8680.017Flutamide0.5780.8580.4980.0670.7860.8620.018	F39	0.589	0.225	0.698	0.045	0.136	0.8	0.013
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F40	0.585	0.535	0.944	0.17	0.428	0.756	0.016
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F41	0.066	0.247	0.96	0.029	0.112	0.659	0.019
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F42	0.338	0.374	0 143	0.317	0.55	0.382	0.006
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F43	0.316	0.455	0.93	0.049	0.214	0.719	0.017
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F44	0.659	0.778	0.913	0.045	0.268	0.744	0.035
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F45	0.441	0.853	0.885	0.392	0.599	0.838	0.006
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F46	0.461	0.921	0.97	0.168	0.369	0.825	0.017
F480.4950.8270.9310.0780.4890.8120.005F490.4890.6940.9120.6690.5310.7330.008F500.5060.8460.9370.1230.6650.8680.017Flutamide0.5780.8580.4980.0670.7860.8620.018	F47	0.41	0.925	0.969	0.166	0.389	0.842	0.013
F490.4890.6940.9120.6690.5310.7330.008F500.5060.8460.9370.1230.6650.8680.017Flutamide0.5780.8580.4980.0670.7860.8620.018	F48	0.495	0.827	0.931	0.078	0.489	0.812	0.005
F50 0.506 0.846 0.937 0.123 0.665 0.868 0.017 Flutamide 0.578 0.858 0.498 0.067 0.786 0.862 0.018	F49	0.489	0.694	0.912	0.669	0.531	0.733	0.008
Flutamide 0.578 0.858 0.498 0.067 0.786 0.862 0.018	F50	0.506	0.846	0.937	0.123	0.665	0.868	0.017
	Flutamide	0.578	0.858	0.498	0.067	0.786	0.862	0.018

H-HT; the human hepatotoxicity, DILI; drug-induced liver injury, Ames; Test for mutagenicity, ROA; rat oral acute toxicity, NR-AR; androgen receptor - a nuclear hormone receptor, NR-AR-LBD; molecule bind with LBD of androgen receptor, Carc.; carcinogenicity.

Screening of DL and DS: Parameters like mutagenicity, tumorigenicity, irritant, reproductive, DL, and DS have been calculated using PEO. The results of DL and DS are shown in Table 6. Around 75% of analogues showed good DL scores and all newer analogues showed higher DS than

flutamide. The DL score was -6.59 for analogue F19 followed by ligand F24 with a DL score of -6.14. The maximum DS was found 0.44 for analogue F2 and F5 followed by ligands F6, F7, F9 and F10 with the DL score of 0.43.

DL **Toxicity Risk** DS Entry no. Μ R **Aryl Group Bioisosteres** F1 G G G G -10.190.42 F2 G G G G -11.50 0.44 F3 G G G G -10.66 0.42 F4 G G G G -11.23 0.40 F5 G G G G -10.84 0.44 G G G F6 G -12.02 0.43 F7 G G G G -21.78 0.43 F8 G G G G -11.16 0.41 F9 G G G G -12.890.43 F10 G G G G -12.4 0.43 R 0 F11 G 0 -14.93 0.16 G G G F12 G -22.340.43 F13 R 0 G 0 -11.53 0.14 F14 G G -12.76 0.41 G G F15 G G G G -14.55 0.36 Nitro Group Bioisosteres F16 -9.74 R 0 0 0.17 G F17 0 G 0 -8.65 R 0.16 F18 0 G R 0 -8.45 0.15 F19 R 0 G 0 -6.59 0.17 F20 R 0 G 0 -7.01 0.16 F21 R 0 G 0 -8.69 0.17 0 G 0 F22 R -7.32 0.16 F23 R 0 G 0 0.16 -6.8 F24 R 0 G 0 -6.14 0.15 F25 R 0 R 0 -52.49 0.08 F26 R 0 G 0 -9.24 0.14 F27 R 0 G 0 -5.93 0.17 F28 R 0 G 0 -10.78 0.16 0.16 F29 R 0 G 0 -5.94 F30 R 0 G 0 -5.59 0.15 F31 R 0 G 0 0.14 -7.1 -8.92 F32 R 0 G 0 0.17 **Trifluoromethyl Group Bioisosteres** F33 R 0 -6.86 0.18 0 G F34 R 0 G -9.02 0.17 Ο R 0 G F35 0 -5.32 0.18 F36 R 0 G 0 -7.22 0.15 F37 R 0 G 0 -7.81 0.17 F38 R 0 R R -6.87 0.05 F39 R 0 G 0 -8.02 0.18 F40 R 0 G 0 -8.03 0.17 R R R F41 R -6.6 0.05 F42 R 0 G 0 0.11 -6.4 F43 R 0 G 0 -9.6 0.16 F44 0 G 0 0.18 R -6.88 F45 R G -8.94 0.15 0 0 F46 R 0 G -4.31 0.17 0 R 0 G 0 F47 -5.82 0.16 F48 R 0 G 0 -5.87 0.16 F49 0 G R 0 -9.87 0.16 F50 R 0 G 0 -11.67 0.15 Flutamide R 0 G 0 -12.9 0.16

TABLE 6: DRUG LIKENESS AND DRUG SCORE OF ANALOGUES

M; mutagenic, T; Tumorigenic, I; irritant, R; reproductive, G; no toxicity risk, O; toxicity risk, R; high toxicity risk, DL; drug likeness, DS; drug score.

Molecular Docking Study of Flutamide Analogues: The structures of all ligands (Table 1) were drawn in 2D, converted into 3D, and saved as .mol/PDB file. In order to optimise the ligands for docking, they were first optimised. All the ligands we reanalysed for their interaction with proteins through docking scores. A molecular docking score identifies ligands that interact with orientation, as seen with the androgen receptor. A 3D and 2D interaction between ligands and androgen receptors is shown in **Fig. 3** and **4**, respectively. The ligands showed good docking poses. **Table 7** displays the log values of the ligands as well as the proteinligand interaction scores (total score values) found during docking (the docked postures obtained through visualisation). Docking poses were identified for the ligands with the target protein. Docking poses must demonstrate how the ligand fits into the binding region of the protein.

F39 Flutamide FIG. 3: 3D DOCKING POSES OF COMPOUND F3, F17, F39 AND FLUTAMIDE

FIG. 4: 2D DOCKING POSES OF COMPOUND F3, F17, F39 AND FLUTAMIDE

Based on the docked conformations of the androgen receptor complex, intermolecular docking simulations were conducted and energy values calculated. Most of the ligands had good binding scores with 2AM9. The interaction was measured by the binding energy of the best ligand pose measured in *kcal/mol*. The binding poses and their energy are listed in **Table 7**. The obtained docking scores are between -7.76 to -9.75Å. All the ligands docked within the binding pocket region suggest their shape complements with the androgen receptor. The 3-dimentional presentation of the docking pose of ligand molecules like F3, F17, F39, and Flutamide with androgen receptors is shown in Fig. 3. Compared to flutamide as a standard, most compounds have very good docking scores. Ligands like F3, F17, F19, and F37 showed higher docking scores and multiple docking poses. In ligand F1, multiple interactions were observed, including 845ARG, 858GLN, and 845ARG at distances of 2.99Å, 2.55Å, and 2.98Å, respectively. Ligand F6 had multiple interactions with amino acid residues such as 752ARG at different distances of 2.83Å, 2.32Å, and 2.99Å. There was no interaction between Ligand F7 and any amino

 TABLE 7: DOCKING SCORE OF THE ANALOGUES

acid residue. Ligand F9 shows the interaction with the 746VAL residue of amino acid at a distance of 2.74Å. Ligand F19 interacted with 746PHE and 752ARG residue of amino acid at distance 2.99Å and 2.83Å, respectively. In addition, Ligand F37 has interacted with various amino acid residues such as 752ARG, 708GLY, and 704LEU at a distance of 2.25Å, 2.52Å, and 2.89Å, respectively. Furthermore, ligands F3, F17, and F39 were found to show interaction with the same amino acid residue 746VAL at a distance of 2.99Å, 2.13Å and 2.31Å, respectively, as shown in **Table 7**. These compounds might be powerful androgen receptor inhibitors, based on the results. In this study, it has been observed that some compounds show common amino acid residue (746VAL) interactions with ligands which have a significant role in binding and biological activity. 746Val protein amino acid residue and flutamide interacted with carbon-hydrogen residue which is also shown in the literature ³⁴. 746VAL might account for this anti-tumour activity. An important outcome of this study may result in the design of novel androgen receptor antagonists along with docking analysis.

Entry no.	Docking score (Kcal/mol)	Amino acids interaction			
Aryl Group Bioisosteres					
F1	-7.76024	1500N-854ARG,2.99A, 1543N-858GLN,2.55A, 1500N-854ARG,2.93A,			
		1543N-858GLN,2.49A, 1497N-854ARG,2.33A			
F3	-7.88016	1180N-746VAL,2.99A			
F4	-9.55183	1826S-784CYS,2.53A			
F6	-8.74	1284N-752ARG, 2.83A, 1284N-752ARG, 2.32A, 1283N-752ARG, 2.99A			
F7	-	No Hydrogen Bonds			
F9	-9.052	1284N-752ARG, 2.74A			
Nitro Group Bioisosteres					
F17	-8.75	1180N-746VAL, 2.131A			
F19	-9.48	1482O-764PHE, 2.99A, 1284N-752ARG, 2.83A			
F21	-9.71	1166O-745MET, 2.900A			
Trifluoromethyl Group Bioisosteres					
F37	-9.01	1284N-752ARG, 2.25A, 559N-708GLY, 2.52A, 495O-704LEU, 2.89A			
F38	-9.75	1812N-783GLN,2.99A, 3494N-883LYS, 2.59A			
F39	-8.81937	1180N-746VAL,2.31A			
F40	-7.90854	1740N-779ARG,2.56A, 1740N-779ARG,2.99A			
Flutamide	-8.26474	1180N-746 VAL,2.25A			

CONCLUSION: Flutamide is one of the antiandrogen drugs used in the treatment of PC. Hepatotoxicity is a major side effect, which is why drugs are pulled from the market. Flutamide was structurally modified by using a bioisosteric approach to get less toxic compounds than flutamide. The *in-silico* design of drugs is a

promising method for developing antiandrogen drugs. In the design of newer analogues of flutamide, a bioisosteric approach was used. As part of the investigation, ADMET lab 2.0 and PEO were used to calculate ADMET properties, DL and DS. For the docking study, Argus Lab 4.0.1 was used to confirm the best docking score by interaction between ligand and protein. A docking study of F3, F7, F17, F19, F37, and F39 ligands demonstrated that these ligands had better binding characteristics with the androgen receptor model in comparison to the other ligands. The docking study reflects that the ligands interact with the androgen receptor, which is evident by the docking scores. Ligands F3, F17, F39 and flutamide had similar interactions (746Val amino acid residue). The common amino acid residue 746Val plays a crucial role in the activity and binding affinity of the selected compounds. The data obtained from ADMET properties prediction, DL, DS, and docking studies of ligands, compounds F3, F17, and F39 could be promising drugs in the management of PC.

ACKNOWLEDGMENTS: The authors wish to thank the Head, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (CG) for providing required facilities to perform the research work.

CONFLICTS OF INTEREST: The authors declare that they have no known financial conflicts of interest.

REFERENCES:

- Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global Cancer Statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin 2021; 71: 209-249. doi:10.3322/caac.21660
- Mohler JL, Titus MA, Bai S, Kennerley BJ, Lih FB, Tomer KB and Wilson EM: Activation of the androgen receptor by intratumoral bioconversion of androstanediol to dihydrotestosterone in prostate cancer. Cancer Res 2011; 71(4): 1486-1497. doi:10.1158/0008-5472.CAN-10-1343
- 3. Zhang A, Zhang J, Plymate S and Mostaghel EA: Classical and non-classical roles for pre-receptor control of DHT metabolism in prostate cancer progression. Horm Cancer 2016; 7: 104-113. doi:10.1007/s12672-016-0250-9
- 4. Michaud JE, Billups KL and Partin AW: Testosterone and prostate cancer: an evidence-based review of pathogenesis and oncologic risk. Ther Adv Urol 2015; 7(6): 378–387. doi:10.1177/1756287215597633
- Brzoskwinia M, Pardyak L, Rak A, Kaminska A, Hejmej A, Marek S, Kotula-Balak M and Bilinska B: Flutamide alters the expression of chemerin, apelin, and vaspin and their respective receptors in the testes of adult rats. Int J Mol Sci 2020; 21: 4439. doi:10.3390/ijms21124439
- Paunikar VM and Barapatre SA: Relationship between endogenous testosterone and prostate carcinoma. Fam Med Prim Care Rev 2022; 11(7): 3735-3739. doi:10.4103/jfmpc.jfmpc_2349_21
- 7. Hejmej A and Bilinska B: The effects of flutamide on cellcell junctions in the testis, epididymis, and prostate.

Reprod Toxicol 2018; 81: 1-16. doi:10.1016/j.reprotox.2018.06.014

- Kesavan G and Chen S: Highly sensitive manganese oxide/hexagonal boron nitride nanocomposite: An efficient electrocatalyst for the detection of anti-cancer drug flutamide. Microchem J 2021; 163: 105906. doi:10.1016/j.microc.2020.105906
- Blobaum AL, Byers FW, Bridges TM, Locuson CW, Conn PJ, Lindsley CW and Daniels JS: A screen of approved drugs identifies the androgen receptor antagonist flutamide and its pharmacologically active metabolite 2-hydroxyflutamide as heterotropic activators of cytochrome P450 3A in vitro and in vivo. Drug Metab Dispos 2015; 43: 1718-1726. doi:10.1124/dmd.115.064006
- Ball AL, Kamalian L, Alfirevic A, Lyon JJ, and Chadwick AE: Identification of the additional mitochondrial liabilities of 2-hydroxyflutamide when compared with its parent compound, flutamide in HepG2 cells. Toxicol Sci 2016; 153(2): 341–351. doi:10.1093/toxsci/kfw126
- Zhang L, Guo J, Zhang Q, Zhou W, Li J, Yin J, Cui L, Zhang T, Zhao J, Carmichael PL, Middleton A and Peng S: Flutamide induces hepatic cell death and mitochondrial dysfunction via inhibition of Nrf2-mediated heme oxygenase-1. Oxid Med Cell Longev 2018; 2018: 1–12. doi:10.1155/2018/8017073
- Ding Y, Ma H, Xu Y, Yang F, Li Y, Shi F and Lu Y: Potentiation of flutamide-induced hepatotoxicity in mice by Xian-Ling-Gu-Bao through induction of CYP1A2. J Ethnopharmacol 2021; 278(6): 114299. doi:10.1016/j.jep.2021.114299
- Khan MF and Murphy CD: Nitroreduction of flutamide by cunninghamella elegans NADPH: Cytochrome P450 reductase. Biochem Biophys Rep 2022; 29: 101209. doi:10.1016/j.bbrep.2022.101209
- 14. Venkatesh K, Muthukutty B, Chen S, Karuppiahc C, Amanulla B, Yang C and Ramaraj SK: Nanomolar level detection of non-steroidal antiandrogen drug flutamide based on ZnMn2O4 nanoparticles decorated porous reduced graphene oxide nanocomposite electrode. J Hazard Mater 2020; 405: 124096. doi: 10.1016/j.jhazmat.2020.124096
- Dick A and Cocklin S: Bioisosteric Replacement as a Tool in Anti-HIV Drug Design. Pharmaceuticals 2020; 13: 36. doi:10.3390/ph13030036
- 16. Losev TV, Gerasimov IS, Panova MV, Lisov AA, Abdyusheva YR, Rusina PV, Zaletskaya E, Stroganov OV, Medvedev MG and Novikov FN: Quantum Mechanical-Cluster Approach to Solve the Bioisosteric Replacement Problem in Drug Design. J Chem Inf Model 2023; 63(4): 1239–1248. doi: 10.1021/acs.jcim.2c01212
- Tse EG, Houston SD, Williams CM, Savage GP, Rendina LM, Hallyburton I, Anderson M, Sharma R, Walker GS, Obach RS and Todd MT: Nonclassical Phenyl Bioisosteres as Effective Replacements in a Series of Novel Open-Source Antimalarials. J Med Chem 2020; 63(20): 11585-11601. doi:10.1021/acs.jmedchem.0c00746
- Kumari S, Carmona AV, Tiwari AK and Trippier PC: Amide bond bioisosteres: strategies, synthesis, and successes. J Med Chem 2020; 63(21): 12290-12358. doi:10.1021/acs.jmedchem.0c00530
- Basuri TS and Meman AS: Role of Bioinformatics, Chemoinformatics and Proteomic In Biomarker Identification And Drug Target Validation In Drug Discovery Processes. Int J Pharm Sci Res 2011; 2(10): 2521-2533.
- 20. Bhati S, Kaushik V and Singh J: *In-silico* identification of piperazine linked thiohydantoin derivatives as *in-silico*

identification of piperazine linked thiohydantoin derivatives as novel androgen antagonist in prostate cancer treatment. Int J Pept Res Ther 2018; 25(3): 845-860. doi:10.1007/s10989-018-9734-5

- Shan J and Ji C: MolOpt: A Web Server for Drug Design using Bioisosteric Transformation. Curr Comput.-Aided Drug Des 2020; 16(4): 460-466. doi:10.2174/1573409915666190704093400
- 22. Xiong G, Wu Z, Yi J, Fu L, Yang Z, Hsieh C, Yin M, Zeng X, Wu C, Lu A, Chen X, Hou T and Cao D: ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res 2021; 49: W5-W14. doi:10.1093/nar/gkab255
- 23. Dong J, Wang NN, Yao ZJ, Zhang L, Cheng Y, Ouyang D, Lu A and Cao D: ADMETlab: a platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J Cheminformatics 2018; 10(29): 1-11. doi:10.1186/s13321-018-0283-x
- 24. Wang N, Deng Y, Zhu M, Wang J, Wen M, Yao Z, Dong J, Lu A and Cao D: Article ADME properties evaluation in drug discovery: prediction of caco-2 cell permeability using a combination of NSGA-II and boosting. J Chem Inf Model 2016; 56(4): 763-773.
- Lei T, Li Y, Song Y, Li D, Sun H and Hou T: ADMET evaluation in drug discovery:15. Accurate prediction of rat oral acute toxicity using relevance vector machine and consensus modeling. J Cheminformatics 2016; 8(6): 1-19. doi:10.1186/s13321-016-0117-7
- 26. Srivastava R: Theoretical Studies on the Molecular Properties, Toxicity, and Biological Efficacy of 21 New Chemical Entities. ACS Omega 2021; 6 (38): 24891-24901. doi: 10.1021/acsomega.1c03736

- 27. Zerroug A, Belaidi S, Benbrahim I, Sinha L and Chtita S: Virtual screening in drug-likeness and structure/activity relationship of pyridazine derivatives as Anti-Alzheimer drugs. J King Saud Univ Sci 2019; 31(4): 595–601.
- Morris GM and Lim-Wilby M: Molecular docking. Methods mol biol 2008; 443: 365-382. doi:10.1007/978-1-59745-177-2_19
- 29. Kitchen DB, Decornez H, Furr JR and Bajorath J: Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 2004; 3: 935-949. doi:10.1038/nrd1549
- Thompson MA: Molecular docking using ArgusLab, an efficient shape-based search algorithm and the A Score scoring function. ACS meeting, Philadelphia 2004. Available
 at:

http://www.arguslab.com/arguslab.com/ArgusLab.html.

- Tanguenyongwatana P and Jongkon N: Molecular docking study of tyrosinase inhibitors using ArgusLab 4.0.1: A comparative study. Thai J Pharm Sci 2016; 40(1): 1-53.
- 32. Wang R, Lai L and Wang S: Further development and validation of empirical scoring functions for structurebased binding affinity prediction. J Comput.-Aided Mol Des 2002; 16(1): 11-26. doi:10.1023/a:1016357811882
- 33. Karami TK, Hailu S, Feng S, Graham R and Gukasyan HJ: Eyes on Lipinski's Rule of Five: A New "Rule of Thumb" for Physicochemical Design Space of Ophthalmic Drugs. J Ocul Pharmacol Ther 2022; 38(1): 43-55.
- 34. Suhandi C, Fadhilah E, Silvia N, Atusholihah A, Prayoga RR, Megantara S and Muchtaridi M: Molecular Docking Study of Mangosteen (*Garcinia mangostana* L.) Xanthone-Derived Isolates as Anti Androgen. Indones J Cancer Chemoprevention 2021; 12(1): 11-20.

How to cite this article:

Gupta AK, Mishra A and Jain SK: *In-silico* design of flutamide analogues as androgen receptor antagonist and molecular docking studies. Int J Pharm Sci & Res 2023; 14(12): 5785-01. doi: 10.13040/IJPSR.0975-8232.14(12).5785-01.

All © 2023 are reserved by International Journal of Pharmaceutical Sciences and Research. This Journal licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

This article can be downloaded to Android OS based mobile. Scan QR Code using Code/Bar Scanner from your mobile. (Scanners are available on Google Playstore)