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ABSTRACT: This review explores the multifaceted roles of Src kinases, a 

subfamily of non-receptor tyrosine kinases, shedding light on their 

involvement in diverse diseases. Src-family protein tyrosine kinases (SFKs) 

exhibit widespread expression across various cell types, influencing their 

behavior and functionality. Src's presence in distinct subcellular locations, 

such as plasma membranes, perinuclear membranes, and endosomal 

membranes, underscores its versatility and potential impact on cellular 

processes. Research indicates a significant association between SFKs and 

various disorders, emphasizing their relevance as potential therapeutic 

targets. The intricate interplay of SFKs in cellular membranes suggests a 

nuanced role in disease pathogenesis. The comprehensive examination of Src 

kinase's involvement in different cellular contexts contributes to a better 

understanding of its potential implications in disease development. In 

conclusion, this study underscores the pivotal role of Src kinase and 

positions it as a promising therapeutic target for addressing a spectrum of 

illnesses. By elucidating the intricate mechanisms through which SFKs 

operate in cellular membranes, this review advocates for further exploration 

of Src kinases as crucial players in disease pathology. Recognizing the 

diverse roles of SFKs provides a foundation for the development of effective 

and secure treatments, opening avenues for targeted interventions in diseases 

where Src kinases play a pivotal role. 

INTRODUCTION: A family of non-receptor 

tyrosine kinases includes the Src family kinases 

(SFKs), a collection of different proteins. Of all 

non-receptor tyrosine kinases, SFKs are the most 

numerous. During research to understand the 

mechanism by which retroviruses cause tumours, 

Src kinase was found.  
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The first tyrosine kinase to be discovered was the 

viral oncogene of the virus (Rous Sarcoma Virus), 

v-Src kinase. The intrinsic protein tyrosine kinase 

functionality of a gene product was first identified 

in Src.  

There are now 10 members of the SFK that have 

been discovered; nine of these members (Src, Yes, 

Fgr, Fyn, Lyn, Hck, Lck, Blk and Frk) are 

expressed in mammals, while the tenth member 

(Yrk) is only present in chickens 
1, 2

. Depending on 

their bodily expression pattern, these members can 

be further categorized. Most tissues express Src, 

Yes, Fgr and Fyn from the first group, whereas 
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Lyn, Hck, Lck and Blk from the second group are 

mostly expressed in hematopoietic cells 
2–4

. Src and 

Src family protein kinases take role in a variety of 

cellular activities such as transcription, apoptosis, 

differentiation, development, immunological 

response and nervous system function 
56

. Cancer 

has been linked to dysregulation of the Src protein 

kinase, which has drawn a lot of interest in this 

family of protein kinase enzymes 
7
. The structure, 

regulation, and most recent research about the 

function of SFKs in various disorders will all be 

examined in the article. 

Structure of Src Family Kinases: 

General Structure: SFKs are a family of 

cytoplasmic tyrosine kinases that belong to the Src 

family. It has a short C-terminal tail, two SH2 and 

SH3 Src homology domains, a catalytic tyrosine-

protein kinase domain (SH1) and an N-terminal 

region containing a 14-carbon myristoyl group 
5
. 

All three domains are crucial for signal 

transduction with the SH1 domain having a 

catalytic role and the SH2 & SH3 domains 

possessing non-catalytic regulatory properties 
8, 9

. 

Fig. 1 depicts the distinctive structure of SFKs. 

 
FIG. 1: STRUCTURE OF SRC KINASE 

Active Sites: There is an ATP-binding lobe and a 

peptide-binding lobe in the c-Src kinase catalytic 

domain. The 180 residues and peptide-binding lobe 

that make up the substrate-docking site are not all 

participate in docking.  

According to the Ala scanning experiments, six of 

them (Ser-273, Arg-279, Ser-280, Arg-281, Arg-

283 and Phe-382) are important substrate-docking 

site determinants. Using two mutants, one with 

quadruple mutations (QM) of Ser280Ala, 

Arg281Ala, Arg283Ala and Phe382Ala, Lee et al. 
10

 confirmed the significance of these six residues. 

The Tyr527-containing region of the viral Src (v-

Src) is missing in the cellular protein (c-Src), which 

differs from it. The kinase activity is inhibited by 

Tyr527 phosphorylation; therefore the enzyme is 

still active even without it 
9
. 

Biological Function of Enzyme: Src tyrosine 

kinase enzymes are involved in the signalling 

pathways that regulate a wide range of biological 

activities including gene transcription, immune 

response, cell adhesion, cell cycle progression, cell 

differentiation, apoptosis, movement, 

transformation, proliferation and other crucial 

cellular functions 
9
.  

Activation of Enzyme: The process by which 

SFKs are activated involves several steps, and the 

specific molecular mechanism depends on the type 

of cell and extracellular cues.  

 
FIG. 2: ACTIVATION OF SRC KINASE 
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The first step in the activation process is the 

stimulation of receptors, adaptors, or effectors, 

which then interact with the inactive SFKs' SH2/3 

domains to open the closed conformation. In order 

to stabilise the active conformation, exposed pTyr-

527 dephosphorylates and the activated SFKs 

relocate to the proper intracellular locations 
11

. The 

activation loop Tyr419 of the Src protein is where 

intermolecular auto-phosphorylation takes place 
5
. 

To remove restrictions and create a functional 

kinase, the helix C needs to be reoriented 
12

. In 

response to activation, Src tyrosine kinase enzymes 

can phosphorylate a number of different proteins, 

including p38, mitogen-activated protein kinase 

(MAPK), and extracellular signal-regulated kinase 

(ERK). Cell development, differentiation, 

senescence, and inflammation are all regulated by 

MAPKs. Endothelial cell migration, survival, and 

permeability are all related to p38, whereas 

inflammation and cell proliferation are related to 

ERK. One of the main by-products of lipid 

peroxidation is 4-hydroxynonenal (4-HNE). Src 

modulates the HNE-induced activation of the 

MAPKs/AP-1 signalling pathway and increased 

COX-2 expression 
13, 14

. 

Members of Src Kinases 

Src kinase: Src has been discovered to be involved 

in a number of cellular activities including 

migration, differentiation and proliferation. Src has 

been discovered to have a function in 

oligodendrocyte maturation and neuronal 

development 
15

. Osteopetrosis, a deficiency in bone 

resorption that causes an overgrowth of bone 

develops in Src knockout mice. Despite having a 

large number of osteoclasts, these animals suffer 

from severe osteopetrosis. Therefore, the problem 

does not represent poor osteoclast activity 

especially disruption of the cell's actin cytoskeleton 

but rather poor osteoclast recruitment 
16

. Recently, 

it was shown that Src knockout mice had problems 

lactating, supporting the theory that Src is also 

involved in the formation of the mammary gland 
17

. 

Fyn kinase: Fyn (59 kDa) is widely expressed 

SFK. Fyn comes in isoforms a, b and c. Isoform a 

also known as Fyn (B) was originally discovered 

and determined to be strongly expressed in the 

brain; Isoform b also known as Fyn (T) is unique to 

hematopoietic cells (T cells); and Isoform C has 

been discovered in blood cells.  

These isoforms result from alternate splicing of the 

Fyn gene's seventh exon which codes for the kinase 

domain 
18

. Fyn has the capacity to bind and 

phosphorylate several intracellular signalling 

molecules which allows it to participate in a wide 

range of cellular processes. Cellular adhesion, T-

cell signaling and brain functioning have all been 

linked to Fyn 
18

.According to research using Fyn 

knockout mice, Fyn is involved in some brain 

processes 
19

. The formation of the hippocampus 

region is aberrant in Fyn knockout mice, and they 

also exhibit problems in learning and memory, 

myelination lossandthymocyte signaling 
15, 20

. 

Lyn kinase: Within the distinct domain, alternative 

splicing produced two Lyn isoforms: isoform at (53 

kDa) and isoform b (56 kDa). In B-cells, Lyn is the 

SFK that is most abundantly expressed. Lyn has an 

interesting dual function in B cell receptor 

signalling; it is crucial for signal initiation but also 

participates in the signal's subsequent negative 

regulation dependent on the stimulus and the cell's 

stage of development 
21, 22

.  

It has been discovered to play a role in regulating 

cellular growth and inhibiting apoptosis. It has also 

been demonstrated to express itself in healthy 

prostate epithelium 
23

. Lyn knockout mice exhibit 

aberrant prostate gland morphogenesis decreased 

B-cell activity and autoimmune illness.Although 

the number of B-cells in the bone marrow of lyn 

knockout mice is similar to that seen in normal 

mice, the number of peripheral B-cells is reduced 

by more than 50% 
23–25

. 

Yes kinase: Another widely expressed SFK is yes 

kinase (62 kDa) which is notably abundant in 

fibroblasts, endothelial cells and the brain 
26

. The 

tyrosine phosphorylation levels of FAK, p130Cas 

and paxillin are significantly reduced in mutant 

animals and immunoglobulin A (IgA) transport 

through epithelial cells is also significantly reduced 
27

. Only Yes was discovered to be functionally 

implicated in the increased signalling that 

contributes to the malignant phenotypes of 

melanoma cells, despite the fact that numerous 

members of the Src family kinases were expressed 

in the melanoma cells. Yes kinase has also been 

found in malignant melanomas, gastric cancers and 

breast cancers but less often 
28

. 
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Fgrkinase: In addition to being highly expressed in 

mouse osteoclasts, Fgr (58 kDa) is mostly detected 

in hematopoietic cells 
29

. Fgr expression is shown 

in mature B-cells, neutrophils, monocytes and 

macrophages. A number of intracellular signalling 

pathways in myeloid cells including cytokine 

receptor signalling and fc fragment of IgG receptor 

signalling have been revealed to be regulated by 

Fgr, just as Hck and Lyn 
29

.  

According to Fgr knockout mice, Fgr is involved in 

signalling in a variety of immune cells and 

favourably modulates mast cell degranulation and 

phospholipase D activation. 

Lckkinase: Due to the fact that T-cells (natural 

killer cells) are the major source of Lck (56 kDa) 

expression, hematopoietic cells are the main subset 

to express Lck 
30

. The maturation of 

oligodendrocytes, mitochondrial apoptosis and 

neuronal development have all been linked to Lck 
15, 31

. T-cell development is said to be halted in Lck 

knockout mice and T-cell receptor signalling is also 

said to be affected 
21, 32

.  

Additionally, it was discovered that Lck knockout 

mice lack the ability to produce Lck and this 

prevented them from expressing Lck when 

anticancer medicines were administered 
31

. 

Hckkinase: Embryonic stem cells and 

hematopoietic cells of the myeloid and monocytic 

lineage are the major locations where Hck (59 

kDaand 61 kDa) is expressed. When cytokines are 

present, Hck is discovered to be activated and is a 

crucial part of the signalling pathways in activated 

macrophages. Hck levels rise when monocytes 

differentiate and it is involved in apoptosis, granule 

secretion, adhesion, phagocytosis and other 

processes 
29, 33

. 

Blkkinase: Blk (56 kDa) is mostly expressed in 

hematopoietic cells primarily in B-cells, although it 

is also present in early thymic precursors, 

interleukin-17-producing T cells and pancreatic -

cells 
34

.  

It is essential for the growth of T cells that produce 

IL-17, according to Blk knockout mice. Blk also 

plays a role in controlling the cellularity of the 

thymus during ontogeny and is expressed in 

lymphoid precursors 
35

. 

Intracellular Compartmentalization of Src 

Kinase: 

Intracellular Migration of Src Kinase to the 

Nucleus: Remarkably, the acetylated iteration of 

Src, marked by modifications on Lys5, Lys7, and 

Lys9, undergoes translocation towards the nucleus. 

Within this nuclear domain, it establishes a 

dynamic partnership with STAT3, instigating 

precise gene regulatory mechanisms and fostering 

cancer cell proliferation. Furthermore, the 

acetylated Src variant, characterized by changes at 

Lys401, Lys423, and Lys427, heightens its intrinsic 

kinase activity, thereby intensifying its proficiency 

in enlisting and activating STAT3 
36

.  

In the context of osteosarcoma, the SaOS-2 cell 

line, characterized by diminished aggressiveness, 

manifests a conspicuous nuclear abundance of Src. 

This phenomenon occurs concomitantly with 

subdued myristoylation of Src and attenuated 

expression of N-myristoyltransferase (NMT) 

enzyme within the cells. Conversely, the 143B 

osteosarcoma cells, exemplifying heightened 

metastatic potential, display diminished nuclear 

accumulation of Src, accompanied by pronounced 

myristoylation and elevated NMT expression 
37

. 

Src Translocation to the Mitochondrial Domain: 

The initiation of Src activation by EGF triggers a 

subsequent phosphorylation event on Tyr845 of 

EGFR. This molecular cascade culminates in the 

targeted migration of both Src and EGFR to the 

mitochondrial precinct. Remarkably, the 

suppression of Src activity leads to a complete 

abrogation of EGFR and Src translocation to the 

mitochondria, underscoring the intricate interplay 

between these molecules in orchestrating this 

intracellular event 
38

. Within the intricate milieu of 

mitochondria, the EGFR establishes a binding 

affinity with the cytochrome C oxidase subunit II 

(CoxII). This molecular engagement initiates a 

cascade that involves the phosphorylation of CoxII, 

eliciting a discernible dampening effect on the 

activity of complex IV. This, in turn, gives rise to a 

notable decrease in the levels of ATP production, 

subsequently impacting cellular energy 

dynamics.AKAP121 functions as a central scaffold, 

binding PKA, PTPD1, and Src, where PTPD1 

activates Src on AKAP121, driving mitochondrial 

localization of both PTPD1 and Src 
39

." 
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Role of SFKs in Various diseases: 

Role of SFKs in Chronic Pain: 

Inflammatory Pain: The activation of immune 

cells in the peripheral or central nociceptive 

networks and maladaptive plastic alterations are 

linked to inflammatory pain 
40

. Inducible nitric 

oxide synthase (iNOS), TNF-α and cyclo-

oxygenase (COX)-2 are only a few of the 

inflammation-related genes that are induced by 

transcription factors like NF-κB and other factors 
41

. NF-κB upstream regulatory molecule, Src, was 

shown to be phosphorylated in a recent research. 

Furthermore, Momordica cochinchinensis Spreng, 

popularly known as gac or red melon, can lessen 

the production of NF-κB, iNOS, and COX-2 in 

LPS-activated RAW264.7 cells by directly 

blocking Src/Syk activation 
42

. The c-Src/NF-B 

relationship may therefore constitute a different 

therapeutic target for the treatment of inflammatory 

pain. Previous research has demonstrated that 

improving NMDAR 2B subunit activity in the 

spinal cord following intradermal injection of CFA 

required phosphorylation of the NMDAR 2B 

subunit by Src or Fyn 
43, 44

. This mechanism 

involves a number of transmembrane receptors, 

including EphBRs, GPCR/protein kinase A (PKA) 

and GPCR/protein kinase C (PKC) 
44, 45

. 

Furthermore, CFA-induced mechanical allodynia is 

delayed by intrathecal infusion of the Src inhibitor 

PP2 
45

. Supraspinal processes appear to be 

implicated in the involvement of Src in pain 

transmission in addition to spinal mechanisms. 

According to this research, ARC Src/GluN2BR 

activation may be a factor in inflammatory pain 
44

. 

Neuropathic Pain: In the CNS, a pathologically 

changed state is referred to as neuropathic pain 
46

. 

The symptoms of neuropathic pain include tactile 

allodynia which is an aberrant pain response to 

harmless stimuli and hyperalgesia which is an 

increase in sensitivity to painful stimuli 
47, 48

. 

Treatment of neuropathic pain is still a significant 

issue in clinical practise despite growing 

understanding of the processes behind chronic pain 
49

. The causes of neuropathic pain of various 

etiologies have been studied using a variety of 

animal models, including those for PNI, diabetes, 

spinal cord injury (SCI) and chemotherapy-induced 

pain 
48, 49

. The importance of SFKs in neuropathic 

pain brought on by PNI and diabetes has recently 

come to light, according to a growing body of 

research 
50, 51

. 

Diabetic Neuropathy: One of the most frequent 

consequences of diabetes is neuropath which is still 

an unresolved clinical issue 
52

. Due to the fact that 

the cellular and molecular causes of diabetic 

neuropathy are largely unclear, it frequently resists 

the effects of modern analgesics. Increased 

NMDAR activity has been shown in prior research 

to significantly contribute to central sensitization in 

diabetic neuropathy 
52, 53

. It has been demonstrated 

that the widely distributed enzyme protein tyrosine 

phosphatase 1B (PTP1B) stimulates Src and 

increases the tyrosine phosphorylation of NMDAR 

in the spinal cord which aids in the onset of 

diabetic neuropathy 
51

.  

In addition, siRNA-mediated PTP1B or PTP 

inhibitor knockdown suppresses Src activity and 

restores mechanical allodynia in rats that have 

received STZ injections. These results show that 

PTP1B exaggerates pain responses via a critical 

route involving Src/GluN2B signalling. The current 

data further support the activation of spinal 

microglia in rats given STZ injections, not only 

through changes in morphology but also through 

activation of intracellular signalling involved in 

microglia activities. When STZ is injected, 

microglia becomes activated, as demonstrated by 

Tsuda et al. 
54

 and this process involves the 

SFK/ERK signalling pathway. Furthermore, 

intrathecal injection of the ERK activation inhibitor 

U0126 significantly reduces tactile allodynia in 

diabetic rats. 

Cancer Pain: Both neuropathic and inflammatory 

pain may include elements in the mechanism of 

cancer pain, but it also has unique features 
55

. Src, a 

protein tyrosine kinase that is not a receptor is 

involved in the development of the disease, 

angiogenesis and metastasis, all of which can cause 

pain in patients with bone cancer 
56

. Osteoclasts, 

platelets and neurons all have high levels of Src 

expression 
57

. In terms of pain pathology, several 

studies have shown that Src activation causes the 

NMDARs to get phosphorylated which in turn 

phosphorylates the Src causing bone cancer pain. 

Recombinant IL-18 can cause pain hypersensitivity 

and the activation of GluN2B as demonstrated by 

Liu et al. in spinal injection to naive rats 
56

. 
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Role of SFKs in Cardiovascular diseases:  
Hypertension: Ineffective peptide hormones that 

cause vasoconstriction such as angiotensin II (Ang 

II), catecholamines and calcium channels are the 

focus of the principal hypertension treatments now 

on the market 
58

. In the homeostasis and 

pathophysiology of the cardiovascular system, the 

bioactive peptide Ang II is essential 
59

. A number 

of cellular signalling pathways according to earlier 

investigations have been shown to promote 

vasoconstriction. In order to bind Gq/11 and Gi/o 

proteins, it activates the AT1 receptor. Ca2+ 

concentrations in the cytosol rise as a result of 

activating phospholipase C (PLC). Protein kinase 

C, ERK1/2, JNK and p38 kinases as well as 

tyrosine kinases like SFK are all activated as a 

result 
60–63

.  

Activation of SKF is the first step in Ang II-

induced signal transduction, and SKF is crucial for 

Ang II-induced vascular responses such ERK1/2 

activation, cell migration, and proliferation 
64–66

. 

However, it is still unknown how SFK affects 

arterial contractions and how it contributes to the 

hypertension brought on by Ang II. Bo Qin et al. 

discovered that SKF inhibitors SU6656 

significantly reduced the level of systemic blood 

pressure in Ang II-treated animals, which is 

associated with phosphorylation of the smooth 

muscle myosin light chain (MLC) in the 

mesenteric-resistant blood arteries 
67

. By activating 

Yap through Src kinase, Gp130 is a possible 

therapeutic target to enhance heart regeneration 

following myocardial damage 
68

. 

Arrhythmia: In addition to various systemic 

disorders, medicines, food, exercise and a number 

of structural cardiac abnormalities, arrhythmias 

frequently occur 
69

. Dasatinib and all-trans retinoic 

acid were combined in a first-phase clinical 

research with patients who had acute myeloid 

neoplasms. One negative effect of dasatinib was 

discovered by Redner et al. to be the development 

of grade 3 QTcprolongations in patients having a 

history of coronary artery disease and coronary 

artery bypass grafting 
70

. Therefore, it becomes 

sense to surmise that SFKs and arrhythmia are 

related. In a study by Lin et al., they investigated 

the effects of Src, Fyn and Yes on the 

hyperpolarizing-activated cyclic nucleotide-gated 4 

pacemaker channels with its mutant D553N which 

was discovered in a patient with cardiac 

arrhythmias. The gating characteristics of D553N 

were enhanced by the active SFKs Src, Fyn and 

Yes, as was demonstrated in this work 
71

. Through 

increasing tyrosine phosphorylation in the heart, 

these three SFKs were able to restore the surface 

expression of D553N for normal current 

expression. The validity of SFKs activity in relation 

to cardiac pacemaker activity has been confirmed 

by a number of later investigations 
72

. Another 

study found that Src inhibition decreased the 

internalisation and degradation of connexin 43, a 

crucial component of gap connections throughout 

the heart to increase conduction speed and diminish 

arrhythmia inducibility after MI 
73, 74

. As a preview 

of our future research efforts, it does not here 

comprehensively explore the precise impact of 

SFKs on the pathophysiology of arrhythmia. 

Finding the efficient endogenous regulating 

mechanism of SFKs to treat cardiac arrhythmias is 

crucial.  

Other Heart diseases: Lck and other SFKs could 

primarily control CVB3 replication in T cells, 

dendritic cells, B cells and macrophages, 

alleviating the viral myocarditis brought on by 

group B coxsackieviral (CVB) infection in mice 
75

. 

By following the path of its downstream signalling 

molecules, Opavsky et al. discovered that BERK-

1/2, a signal protein downstream of Lck may be 

activated by Lck and other SFKs to complete the 

effective CVB3 replication in both infected T cells 

and cardiac myocytes. The creation of medications 

that specifically interfere with the replication and 

persistence of this virus in vivo may be made 

possible by the discovery of SFKs, particularly Lck 

as an important regulator of CVB3 replication 
76

.  

This would prevent the onset of viral myocarditis. 

Additionally, it has been shown in studies on 

hypertrophic cardiomyopathy that Fyn and 

NADPH oxidase 4 (NOX4) are both present in the 

perinuclear region of cardiomyocytes. Through 

their interaction, the N-terminal unique domain of 

Fyn phosphorylated tyrosine 566 in the C-terminus 

of NOX4 which in turn negatively regulated 

NOX4-induced exacerbation of pathological 

myocardial hypertrophy, Further; several 

investigations discovered a strong connection 

between SFKs and the emergence of heart valvular 

disease 
77

.  



Singh et al., IJPSR, 2024; Vol. 15(5): 1280-1295.                                          E-ISSN: 0975-8232; P-ISSN: 2320-5148 

International Journal of Pharmaceutical Sciences and Research                                                                              1286 

In order to slow down TGF-1-induced 

myofibroblast activation of dormant aortic valve 

interstitial cells, a differentiation process linked to 

calcific aortic valve disease, Hutcheson et al. 

discovered that 5-HT2B antagonism altered the 

function and spatial location of Src and physically 

restricted it 
78

. In other words, it is not difficult to 

conclude that SFKs also play a significant role in 

other cardiovascular disorders in light of the facts 

mentioned above. 

Role of SFKs in nNeurological disorders:  

Learning and Memory: It appears that SFKs are 

crucial for memory and learning. Through 

modulation of the NMDA receptors, it is 

hypothesised that a few members of the Src family 

may be crucial in the control of neuronal plasticity 

and memory formation 
79

. The NMDA receptor's 

NR2A and NR2B subunits are phosphorylated by 

Src which strengthens the currents that are 

generated by the receptor 
79, 80

. A cellular model for 

memory and learning is thought to be the process 

of inducing long-term potentiation (LTP) in the 

hippocampus. The application of anti-src1 and the 

distinct domain peptide fragment Src (40-58) 

directly into the neurons by diffusional exchange 

from the patch electrode has been demonstrated to 

suppress LTP. Along with this, the NMDA receptor 

conductance was upregulated via Src and NR2B's 

tyrosine residues were more often phosphorylated 
81

.  

A phosphopeptide (pYEEI peptide) SFK activator 

which is a ligand for SFK SH2 domains and an 

antibody, anti-cst1 which inhibit SFKs but not 

other protein tyrosine kinases have been used to 

link SFKs to endogenous upregulators of NMDAR 

activity 
79,82

. According to research, Src expression 

and activity are both elevated in the hippocampal 

following spatial learning and Src activity is 

necessary for the correct establishment of one-trial 

avoidance memory in rats 
83

. Furthermore, Fyn 

knockout mice have problems with hippocampus 

long-term potentiation and have trouble learning 

specific kinds of spatial memory. It was discovered 

that Src family kinase activity is required for 

memory extinction and reacquisition in the CA1 

area of the dorsal hippocampus by utilizing the 

particular inhibitor of the Src family, PP2 
84

. 

Further research revealed that blocking the 

establishment of memory when Src kinase inhibitor 

(PP2) is injected into the CA1 area of the dorsal 

hippocampus immediately or 30 minutes after 

training 
83

. 

Parkinsonism: Parkinsonism has been discovered 

to be significantly impacted by SFKs. According to 

research, nicotinic acetylcholine receptor activation 

protective treatment can slow the progression of 

neurodegenerative illnesses including parkinson's 

and alzheimer's through the Src pathway 
85

. It was 

discovered that the src kinase inhibitor PP2 therapy 

decreased the protective effect of nicotine 

indicating that Src is involved in the protective 

effect's mechanism. Src-family protein tyrosine 

kinase (PTKs) activity in the striatum of 

parkinsonian rats has been significantly altered as 

evidenced by the downregulation of the genes 

encoding Src and Lyn by dopamine deafferentation 
86

. Compared to normal mice, Lyn knockout mice 

showed less spontaneous motor activity 
87

. In Lyn 

knockout mice, the increased NMDA signalling 

appears to be related to this impairment. The 

striatum's NMDA receptors are regarded to be a 

potential target for cutting-edge parkinson's disease 

treatment strategies since they play a significant 

role in the motor function 
88

. 

Epilepsy: In epilepsy, aberrant brain activity leads 

to recurring seizures, strange behaviour, feelings 

and even unconsciousness. Epilepsy is a chronic 

central nervous system (neurological) illness 
89

. 

The development of axons and dendrites, variations 

in receptor compositions, synaptic growth and 

preservations can all be used to identify an epileptic 

brain. Cell signalling pathways are in charge of 

controlling the inflammatory processes 
90–94

.  

The prevention of the establishment of epileptic 

circuitry and/or the delay of the onset of epilepsy 

following brain damage is both possible with the 

inhibition of these pathways. In animal and in-vitro 

models of chronic epilepsy, kinase signalling with 

activated JAK-STAT, BDNF-TrkB and PI3K-Akt-

mTOR pathways has been shown 
95–102

. Few 

kinases have been discovered to yet to have a 

significant impact on epilepsy 
103

. There are a 

number of kinases that function in glia, neurons 

and microglia 
104

, and it's possible that they have a 

significant impact on epileptogenesis and/or the 

onset of epilepsy. It is necessary to conduct 

experiments in order to identify the specificity of 
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certain kinase inhibitors 
105–107

. Only a few kinases 

such as FGFRs, VEGFRs, Flt, EGFR, Erbb 

receptors, IGF-1R, c-Met, cFMS, GM-CSFR and 

PDGFRs as well as several neurotrophin receptors 

have been investigated for preventing or changing 

epilepsy due to the availability of inhibitors. The 

phosphorylation alterations in the epileptic brain 

and all of the receptor tyrosine kinase described 

above have been studied in the literature 
108–111

. 

While Src-pY416 expression was considerably 

reduced in human symptomatic epileptic tissues, 

total Src protein expression increased as compared 

to the control group. According to study findings, 

the NRG1-ErbB4-Src signalling pathway may 

control the reduced phosphorylation of GluN2B in 

human symptomatic epileptic tissues 
112

. 

Tuberculosis: In the top 10 global mortality, 

tuberculosis continues to be a pandemic. Infection 

with Mycobacterium tuberculosis is estimated to 

affect 1.7 billion people worldwide or 23% of the 

world's population, resulting in an annual increase 

of more than 10 million new cases of TB. 

Approximately 1.5 million individuals died of TB 

according to a report by the WHO. However, the 

lengthy length of therapy and the advent of 

multidrug-resistant tuberculosis (MDR-TB) 

significantly heightened the need for the 

development of more selective new anti-TB 

medications for successful treatment. According to 

Chandra et al., Src is essential for defining cellular 

reactions to Mycobacterium tuberculosis infection. 

As a result, they draw the conclusion that signalling 

processes downstream of activated Src (pY416) 

and upstream of transcriptionally regulated Src 

would be crucial in determining the process's 

mechanistic viability 
113

. A considerable impact on 

the survival of the H37Rv, MDR and exceptionally 

drug-resistant (XDR) strains of Mycobacterium TB 

has also been demonstrated by investigations on 

Src inhibition. Src inhibition, which can control TB 

infection in guinea pigs is similarly important in 

THP-1 macrophages for lowering survival 
114

. In 

order to develop host-directed anti-TB medications, 

Src kinase inhibitors were therefore included. 

Mammary Gland Development: In order to 

produce milk, the mammary gland must develop. 

Numerous stimuli and signalling channels control 

it. A critical part in cell signalling is played by the 

Src family of non-receptor tyrosine kinases. In the 

growth of the mammary gland, Src has been shown 

to be a crucial signalling modulator. A block in 

secretory activation that leads in lactation failure 

was seen in a research by Watkin et al.
17

 on Src 

knockout mice. Src appears to be necessary, they 

conclude, for effective downstream signalling, 

enhanced prolactin receptor expression, and 

alveolar cell structure 
17, 115

. Additionally, Src is 

reported to be active in breast tumours, where it is 

believed to play a crucial role in fostering the 

malignant phenotype. In breast cancer transgenic 

mice models, Src activity is also observed to be 

increased 
116

. Therefore, based on the 

aforementioned investigations, it is determined that 

the growth of the mammary gland requires a 

balance in the activation of Src kinase activity. 

Hematopoietic disorders: In general, a number of 

factors control hematopoiesis (growth hormones). 

In hematopoiesis, SFKs may play a significant role. 

SFKs are discovered to be involved in a number of 

cellular processes that lead to the formation of 

hematopoietic cells. Lyn, Hck, Lck and Blk are 

among the SFKs that are said to be particularly 

expressed in hematopoietic cells whereas Src, Yes, 

Fgr and Fyn are SFKs that are widely expressed. 

Study of knock-out animals that have displayed 

distinct deficits in either the growth or function of 

hematopoietic cells has provided direct proof that 

SFKs are involved in hematopoiesis 
117

.  

B-cells are where Blk and Lyn are largely 

expressed. While Lyn is necessary for typical B-

cell growth and communication, any interruption of 

the gene producing Blk does not result in any B cell 

abnormality. Peripheral B-cell numbers in Lyn 

knockout mice were reported to have dropped (by 

more than 50%) 
24

. Lyn deletion mice have B-cells 

that are hyper-responsive to B-cell signalling. 

According to theory, this causes aberrant B-cell 

growth which in turn triggers the creation of self-

antibodies and the emergence of an autoimmune 

illness 
118

. Specifically in T cells, Lck and Fyn are 

expressed. The proper growth and operation of 

thymocytes are hampered by any alteration to the 

genes that encode this SFKs. Thymocyte formation 

is slowed down when the Lck gene is disrupted. 

Along with T-cell receptor (TCR) signalling, Lck 

activity is also necessary for T-cell development 
119

. When functional Lck is reintroduced into T 

cells that are nonresponsive to TCR stimulation 
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because of a deficiency in functional Lck 

expression, the T cells' functions may return. 

Furthermore, the Fyn (T) T-cell-specific isoform 

exhibits normal thymocyte development despite 

deficient TCR signalling. None of the 

hematopoiesis-related defects in Hck and Fgr 

knockout mice were particularly pronounced. The 

production of reactive oxygen species and 

degranulation in neutrophils derived from Hck and 

Fgr knockout mice are both shown to be defective 
120

. 

Chronic kidney diseases: A growing global public 

health concern is CKD 
121

. The therapies that are 

currently used to treat CKD are unsuccessful. 

Therefore, identifying and evaluating novel 

treatment targets is essential to researching 

effective and secure solutions. In-depth 

investigations of the pathophysiology of CKD's 

several important signal routes and mediators have 

been published in recent decades 
122, 123

.  

Transforming growth factor-b1 (TGF-b1) and Ang 

II are among the several factors that have so far 

been identified as powerful fibrogenic mediators. 

The therapeutic efficiency of these elements 

however, is insufficient as evidenced by their 

pharmacological limitations. Src kinase is activated 

in kidney fibroblasts in response to TGF-b1 or 

serum, and the fibrotic kidney following unilateral 

ureteral obstructions, according to Yan et al. 
124

. 

After unilateral ureteral obstructions, renal fibrosis 

is alleviated (in vivo) by blocking Src with PP1 or 

silencing it with small interfering RNA (siRNA). 

TGFb1/Smad3 and epidermal growth factor 

receptor (EGFR) signalling appear to be interrupted 

by Src inhibition caused by PP1. This work 

demonstrates that Src kinase functions as an 

integrator of various fibrogenic signals brought on 

by the activation of many membrane receptors. 

Activation of the Ang II receptor can trigger Src 

activation, according to Chen et al. 
125

. It controls 

the TGF-induced production of EGFR and its 

ongoing phosphorylation. As a result, Src could be 

a new target for therapeutic intervention in fibrotic 

CKD. 

Src Kinase Inhibitors: The Src proto-oncogene, 

sometimes known as the "sarcoma gene," is a 

transcription factor that might possibly cause 

certain cells to undergo malignant changes. Src 

inhibitors are a class of inhibitors that target the Src 

kinase family of tyrosine kinase. 

Dasatinib: Chronic myeloid leukemia and 

Philadelphia chromosome acute lymphoblastic 

leukemia are both diseases that can be treated with 

dasatinib, a once-daily oral tyrosine kinase 

inhibitor. Dasatinib is rapidly absorbed and takes 

0.25 to 1.5 hours for its concentration in the blood 

to reach its maximum level. Food has little effect 

on oral absorption. The absolute bioavailability of 

dasatinib in humans remains unknown due to the 

absence of an intravenous formulation that would 

allow the calculation of a reference exposure 
126, 127

. 

With a terminal half-life of 3–4 hours, dasatinib is 

eliminated by cytochrome P450 (CYP) 3A4-

mediated metabolism 
127

. Only 20% of an oral dose 

(100 mg), based on total radioactivity is recovered 

after 168 hours in unchanged faeces (19%, 

including probable non-absorption), urine (1%) or 

both. Age (including toddlers and people up to 86 

years of age), race, and renal insufficiency had no 

effect on the pharmacokinetics of dasatinib. 

Antacids, H2-receptor blockers and proton pump 

inhibitors are pH-adjusting agents that reduce the 

absorption of dasatinib. Dasatinib may also interact 

with inducers or inhibitors of CYP3A4 
128

. 

Saracatinib: Another ATP-competitive SRC and 

SFK inhibitor, saracatinib (formerly AZD0530; 

AstraZeneca) is active against ABL and activated 

mutant versions of EGFR (L858R and L861Q) 
129, 

130
. Four cell lines (derived from colon, prostate 

and lung cancer) in a panel of 13 human cancer cell 

lines treated with saracatinib showed 

submicromolar growth suppression and inhibitory 

effects on migration and invasion 
131, 132

. 

Saracatinib reduced FAK, paxillin and STAT3 

activity along with the development of 3 of 16 

human-derived pancreatic cancer xenografts in-

vivo. In addition, to predict growth inhibition in an 

independent sample of eight xenografts, researchers 

generated and validated a gene expression profile 

based on LRRC19 and IGFBP2 expression, which 

demonstrated 100% sensitivity and 83% specificity 
133

. In addition, saracatinibhas demonstrated 

activity in in-vitro and in-vivo models of castration-

resistant prostate cancer (CRPC) 
134

. 

Ponatinib: A third-generation kinase inhibitor 

called ponatinib is designed to correct the 
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intermediate T315I mutation. ABL1 mutations and 

the native BCR-ABL1 kinase were inhibited by this 

drug in several experiments. Since imatinib is no 

longer recommended for the treatment of chronic 

myeloid leukemia (CML) or for patients with the 

T315I mutation, ponatinib is now approved for the 

treatment of CML in all stages of the disease that 

are resistant to dasatinib and nilotinib. Ph+ acute 

lymphoblastic leukemia (ALL) is another 

indication for treatment. Thrombotic cardiovascular 

events occurred in 2013 leading to temporary 

discontinuation of ponatinib. Since then, other 

researchers have examined the baseline 

characteristics of patients before ponatinib 

administration, particularly the cardiovascular 

profile 
135

. 

Imatinib: The tyrosine kinase inhibitor imatinib is 

also known by its experimental designation STI-

571 and is marketed by Novartis under the trade 

names Gleevec (in Canada, South Africa and the 

United States) and Glivec (in Australia, Europe and 

Latin America). Imatinib is absorbed after oral 

administration and after a brief interaction with P-

glycoprotein (P-gp) on the membrane of intestinal 

epithelial cells, it moves into the intestinal lumen. 

Organic cation transporter 1 (OCT1) transports 

imatinib to hepatocytes in the liver where the 

hepatic enzyme cytochrome P450 (CYP) 3A4 can 

continue to convert imatinib to N-desmethyl. Then, 

a portion of imatinib and N-desmethylimatinib is 

glucuronidated to O- or N-glucuronides by UDP-

glucuronosyltransferases 
136

. Breast cancer 

resistance protein (BCRP) located in the hepatocyte 

apical membrane and facilitates transport from 

hepatocytes to bile. Colonic bacterial 

glucuronidases can convert imatinib and N-

desmethyl imatinib glucuronides back to their 

original formsimatinib and N-desmethylimatinib 

during enterohepatic recirculation. Imatinib has an 

oral bioavailability of 98.3% 
137

. 

Nilotinib: Second-generation TKIs with increased 

activity against imatinib-resistant mutant BCR-

ABL1 cells include nilotinib and dasatinib. The 

target range of nilotinib and imatinib is comparable 

although nilotinib is 30-fold more potent against 

BCR-ABL1 (type 2 inhibition) in-vitro 
138

. It can 

kill certain CML cells with ABL1 domain 

mutations that are resistant to imatinib
139

. It has a 

major molecular response (MMR) and a deep 

molecular response (DMR defined as a 4.0 log 

decrease in BCR-ABL1 transcript (MR4.0) or 

greater) of 77 and 66% at 5 years and 82.6% and 

73% at 10 years, respectively in TKI-naive patients 

with CML CP 
140, 141

. Nilotinib is known to 

increase the risk of cardiovascular events (CVEs) 

such as heart failure, arrhythmias, QT prolongation 

and coronary heart disease. In light of this, nilotinib 

is contraindicated in individuals with a history of 

cerebrovascular events, ischemic heart disease or 

peripheral arterio-occlusive disease 
142

 and should 

be administered with caution to patients with 

metabolic or cardiovascular comorbidities such as 

diabetes mellitus.  

The ability of nilotinib to accelerate atherosclerotic 

processes and increase the risk of cardiovascular 

damage is not fully known. In contrast to 

cardiomyopathy, frequent hyperglycemia and 

dyslipidemia with nilotinib may promote the 

development of atherosclerosis and coronary artery 

disease. In addition, there is evidence that it 

increases the risk of pancreatitis. In patients 

receiving nilotinib 400 mg twice daily for 5 years 
141

, coronary heart disease was 3–4 degrees 

recorded in 6.1% and cerebrovascular disease in 

2.2%. 

Bosutinib: BCR-ABL1 (type 1 inhibition) and 

SRC family kinases are the main targets of the 2nd 

generation TKI bosutinib. Compared to imatinib, it 

is 200 times more effective in inhibiting ABL1 

kinase 
143, 144

. According to the current BFORE 

investigation, bosutinib had a higher MMR rate at 1 

year compared to imatinib in the context of first-

line CML CP 
145

. Except for more frequent diarrhea 

and liver damage with bosutinib, the toxicity 

profiles of the two TKIs were not statistically 

different. Bosutinib, which increases the amount of 

circulating serotonin, inhibits the serotonin 

reuptake transporter (SERT), which is associated 

with diarrhea
146

.Elevated liver enzymes are also 

often seen, especially early in bosutinib treatment, 

but they can last longer than 12 months 
147

 and 

force some patients to stop taking the medication.  

Notably, bosutinib inhibits other molecules linked 

to cell cycle control and calcium/calmodulin-

dependent protein kinases (CAMK) but lacks 

clinically meaningful efficacy against KIT or 

PDGFRA 
148, 149

. Investigations into long-term 
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effectiveness and adverse event characteristics are 

still ongoing. 

Trametinib: A second-generation small molecule 

inhibitor of MEK kinase is trametinib 

(GSK1120212, JTP-74057). It works as an 

allosteric, ATP-uncompetitive inhibitor with nano-

molar action against both MEK 1 and MEK 2 

kinases with a half-maximal inhibitory dose of 0.7-

14.9 nmol/L for MEK1/MEK2 
150, 151

. Prior to 

trametinib, MEK inhibitors had limited clinical 

activity because non-malignant cells were 

dependent on the MAPK pathway, making it 

difficult to administer an adequate dose of the 

inhibitor. Inhibitors of MEK1/2 had been 

previously investigated as targeted therapies for 

tumours dependent on activating mutations in the 

MAPK pathway 
152, 153

.  

Trametinib has a different pharmacokinetic profile 

compared to other MEK inhibitors that have been 

reported with a prolonged half-life and low peak-

to-trough ratios which allowed it to overcome the 

limited therapeutic index of the MEK inhibitor. A 

panel of more than 180 kinases including B-Raf, C-

Raf and MEK5, the closest kinase homolog to the 

active site and defined on one side by an activation 

loop was used to demonstrate drug specificity for 

MEK1/2. Trametinib has been shown to suppress 

p-ERK 1/2 which in turn inhibits cell proliferation. 

Consequently, tumor cell lines containing mutant 

B-RAF or Ras had the greatest inhibition 
150

. 

According to in-vitro research, trametinib inhibits 

cell growth, arrests the G1 cell cycle and triggers 

apoptosis. 

Tirbanibulin: Athenex, Inc. (previously Kinex 

Pharmaceuticals) and international partners are 

developing tirbanibulin, a first-in-class Src kinase 

signalling inhibitor and tubulin polymerization 

inhibitor for the topical treatment of actinic 

keratosis and psoriasis. Src activity has been related 

to actinic keratosis and squamous cell carcinoma 

and elevated levels of Src have been demonstrated 

to play a role in both primary tumour growth and 

metastasis 
154

. As a result, tubulin polymerization 

inhibitors may be able to treat actinic keratosis. 

There are no active studies examining oral 

tirbanibulin at the moment, however it has been 

studied in early phase clinical trials in patients with 

a variety of malignancies including acute myeloid 

leukaemia 
155

, prostate cancer 
156

 and other solid 

tumours 
157

. 

CONCLUSION: In addition to their physiological 

roles in hematopoiesis, mammary gland 

development, learning, and memory, SFKs have 

pathophysiological roles in a number of illnesses, 

including cancer and several neurological 

conditions. Thus, SFKs are becoming novel 

pharmaceutical targets, and in the near future, SFK 

inhibitors may offer new therapeutic options for a 

variety of diseases like cancer, epilepsy, and 

Parkinsonism. Therefore, more focused and 

therapeutically applicable medicines targeting 

SFKs should be used in future broad exploratory 

research and clinical trials. 
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