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ABSTRACT: Background: NCp7 is a nucleocapsid protein of HIV-1, a retrovirus 

causing AIDS in human beings. It is a small protein of 72 amino acids that plays an 

important role in being a chaperone protein involved in viral development. HIV has 

shown resistance to drugs engineered to treat its infections. Objectives: In this 

study, a Structure-Activity Relationship analysis of two distinct derivatives based on 

point pharmacophore was carried out to obtain an NCp7 inhibitor of better 

performance. Materials and Methods: A Pharmacophore and 3D-QSAR modeling 

of Pyridinioalkanoyl thioesters and Benzamide-based thiolcarbamates derivatives 

was performed. Results: A four-point hypothesis of HHRR pharmacophoric feature 

was determined. A 3D-QSAR model was built which was validated through 

regression analysis. Molecular docking often lead compounds showed that the 

compound ZINC65398698 possesses a higher affinity towards NCp7 protein and 

binds well whereas other leads possessed only moderate binding affinity. The 

ADME/T prediction of all the ten lead compounds showed accepted values of 

biophysical properties. As ZINC65398698 showed higher binding affinity, a 

molecular dynamics simulation was performed to determine the stability of the 

protein-ligand system and to study the atomistic detail of protein residue behavior 

after forming a complex with the ligand. The RMSD and RMSF analysis showed 

that the complex is highly stable throughout the production run. So the complex can 

be more stable within the same environment and act as potential inhibitors was 

determined in this procedure. Conclusions: The suggested Ligand can be then 

subjected to a model study after the synthesizing procedure. 

INTRODUCTION: HIV (Human 

Immunodeficiency Virus) weakens the immune 

system of a patient by attacking T cells. HPV 

infection or cervical inflammation increases the 

risk of HIV infection in men and women, 

potentially fueling their mutual spread 
1
. HIV also 

reduces the number of CD4 cells (T cells) in the 

body. Also, the person is more likely to get other 

infections. 
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HIV is a retroviral agent that causes acquired 

immune deficiency syndrome (AIDS) and has been 

linked to 4 million deaths in 2016 
2
. Sub-Saharan 

Africa remains the region with more than 80% of 

all infected individuals, while HIV-2 is restricted to 

West Africa along the Upper Guinean forests 
3
.  

HIV-AIDS patients in India have a higher risk of 

various cancers, with a distinct pattern of 

malignancies based on age, sex, and CD4 counts at 

the time of diagnosis 
4
. HIV-positive people in the 

Dharwad district face severe social, economic, and 

health challenges, with most living in rural areas, 

having no opportunistic infections, and living in 

nuclear families 
5
. Small molecules that bind to the 

viral capsid protein can be potent inhibitors of HIV 

infection and exhibit high barriers to viral 
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resistance
6
. Systematic reviews regarding the 

mortality and rate of infections have been so 

prevalent that radical efforts are being undertaken 

for a curative emergence against the virus. Two 

types of HIV could be recognized genetically and 

antigenically. HIV-1 is the reason for the current 

overall pandemic, while HIV-2 is found in West 

Africa and yet infrequently somewhere else. 

Studies suggest that HIV-1 is more pandemic than 

HIV-2, which is primarily an epidemic in West 

Africa and better controlled by affected individuals. 

HIV-2 has not spread as a large pandemic and is 

well controlled by the majority of affected 

individuals, while HIV-1 has become more 

pandemic due to its low efficiency at productively 

infecting dendritic cells 
7
. HIV-2 is less pathogenic 

and confined mainly to West Africa, while HIV-1 

is pandemic and aggressive 
8
.  

In the last four years, adult HIV occurrence has 

risen in some regions. Overall, India‟s HIV 

outbreak is slowing down. Between 2010 and 2017 

new infections declined by 27% and AIDS-related 

deaths more than halved, falling by 56%. However, 

in 2017, new infections increased to 88,000 from 

80,000 and AIDS-related deaths increased to 

69,000 from 62,000. In 2017, 79% of people living 

with HIV were aware of their status, of which 56% 

were on antiretroviral treatment (ART) 
9
. The HIV 

outbreak in India is driven by sexual transmission, 

which accounted for 86% of new infections in 

2017/2018 
10

. The three states with the highest HIV 

incidence Manipur, Mizoram, and Nagaland are in 

the east of the country. 

Protein Nucleocapsid (NCp7) is a nucleocapsid 

protein of HIV-1, a retrovirus that causes AIDS in 

humans 
11

. It is a small protein of 72 amino acids 

that plays an important role in being a chaperone 

protein involved in viral development. The 

nucleocapsid protein plays a crucial role in 

compacting viral double-stranded DNA within the 

mature HIV-1 capsid, potentially preventing capsid 

uncoating and NC loss 
12

. The nucleocapsid protein 

plays a crucial role in compacting viral double-

stranded DNA within the mature HIV-1 capsid, 

potentially preventing capsid uncoating and NC 

loss. Multiple binding modes of the HIV-1 

nucleocapsid protein compact double-stranded 

DNA into a conformation compatible with reverse 

transcription, regulating genomic pressure on the 

capsid and preventing premature uncoating. The 

nucleocapsid proteins of several retroviruses have 

been studied extensively, and high-resolution 

structural data are available for the NC proteins of 

HIV-1 
13

. Song et al., 2002 and Goel et al., 2002 

reported Pyridinioalkanoyl Thioesters and 

Benzamide-based Thiolcarbamates 
14, 15

. This work 

currently employs a computational measure to 

understand the effect of variants of 

pyridinioalkanoyl thioesters (PATEs) and 

benzisothiazolone derivatives (BITA) as drugs on 

the NCp7 domain present in the nucleocapsid of the 

HIV-1 protein. In this work, we describe the 

discovery of a new active combination of 

Carbamates and Thioesters ligands based on the 

NCp7 domain of HIV Type 1.  

A pharmacophore model for HIV-1 Nucleocapsid 

P7 inhibitors was used for the QSAR study, it was 

compared using database screening and molecular 

docking to discover novel lead compounds. 

Pharmacomodels help define the mechanism of 

therapeutic compounds, enabling the development 

of novel drugs and improved understanding of 

pharmacology 
16

. 

QSAR modeling is used during drug discovery for 

predicting the biological activity of drug 

candidates. QSAR models are used to determine 

the biological properties of chemical molecules 

based on their chemical structure 
17

. Quantitative 

structure-activity relationship (QSAR) techniques 

have advanced in translational toxicology, reducing 

animal testing and promoting computational 

approaches as viable tools for reducing animal 

testing 
18

. 

Further computational prediction of 

pharmacokinetic parameters like Absorption, 

Distribution, Metabolism, and Excretion (ADME) 

and toxicity studies have ended up progressively 

important in drug selection and advancement 

procedure and are guaranteeing tools for right-on-

time screening of potential drug candidates
19

. 

Characterizing absorption, distribution, 

metabolism, and excretion (ADME) processes is 

crucial for drug-target and drug-body interactions, 

enabling reliable interspecies and human 

pharmacokinetic estimations 
20

. Studies suggest 

that computer-aided drug design helps accelerate 

drug development by aiding in experiment design, 

https://www.avert.org/professionals/hiv-around-world/asia-pacific/india#footnote5_qq7pfup
https://consensus.app/papers/pharmacology-chemical-biology-meier/c2904e4d154853468d2ca9873fbc96e6/
https://consensus.app/papers/pharmacology-chemical-biology-meier/c2904e4d154853468d2ca9873fbc96e6/
https://consensus.app/papers/pharmacology-chemical-biology-meier/c2904e4d154853468d2ca9873fbc96e6/
https://consensus.app/papers/automated-framework-qsar-model-building-kausar/f52f4223c04b5575b5a60a305d5aa142/
https://consensus.app/papers/automated-framework-qsar-model-building-kausar/f52f4223c04b5575b5a60a305d5aa142/
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hit identification, optimization, and evaluation, and 

predicting pharmacokinetics and potential effects, 

while also benefiting fields like bioinformatics and 

biomedical engineering 
21

. Characterizing 

absorption, distribution, metabolism, and excretion 

(ADME) processes is crucial for drug-target and 

drug-body interactions, enabling reliable 

interspecies and human pharmacokinetic 

estimations. De novo drug design generates novel 

molecular structures from atomic building blocks 

with no a priori relationships, using computational 

methods like structure-based and ligand-based 

design 
22

.  

The application of Computer Aided Drug Design 

(CADD) and Quantitative Structure-activity 

Relationship (QSAR) study on developing novel 

drugs for these diseases is limited. Quantitative 

structure-activity relationship (QSAR) techniques 

have advanced in translational toxicology, reducing 

animal testing and promoting computational 

approaches as viable tools for reducing animal 

testing. 3D-QSAR/MD method combines 3D-

quantitative structure-activity relationships (QSAR) 

with computational molecular dynamics (MD) 

studies for drug design, making it more cost-

effective and less time-consuming 
23

. 3D QSAR is 

a statistical model used in drug design and 

optimization, and can be taught and learned 

through web applications like 3d-qsar.com 
24

. 3D-

QSAR is a method for predicting the structural and 

functional properties of molecules, providing useful 

information for designing new and effective 

inhibitors 
25

.  

Molecular dynamics (MD) is a computer 

simulation method for studying the physical 

movements of atoms and molecules. In this study, 

it is used to find out whether the best inhibitor 

obtained from the final screening is stable 

throughout the simulation period inside the 

nucleocapsid domain without any significant 

fluctuation within some period. Molecular 

dynamics simulation is a widely used approach for 

understanding complex systems on the atomistic 

scale, with applications in physics, chemistry, 

engineering, life, and medical science 
26

. Molecular 

dynamics (MD) is a computer simulation method 

for studying the physical movements of atoms and 

molecules, providing detailed microscopic 

sampling on molecular scale 
27

.  

Molecular dynamics techniques help characterize 

various conformations and molecular interactions, 

allowing for the search of suitable compounds for 

specific biochemical purposes and reducing the 

consumption of chemical reagents and time 
28

. 

Molecular dynamics simulation is a widely used 

approach for understanding complex systems on 

the atomistic scale, with applications in physics, 

chemistry, engineering, life, and medical science. 

Molecular dynamics studies collect functional 

information on molecules at specific times and in 

specific environments, revealing properties and 

mechanisms of action. Molecular dynamics (MD) 

is a computer simulation method for studying 

physical movements of atoms and molecules, 

providing detailed microscopic sampling on 

molecular scale. Molecular dynamics simulation 

generates atomic trajectories of a system of 

particles by numerical integration of Newton's 

equation of motion, for a specific interatomic 

potential. 

MATERIALS AND METHODS: 

Biological Data Set: The selected target protein 

structure of the Nucleocapsid protein P7 domain of 

HIV type 1 virus was retrieved from Protein 

Databank with the PDB ID: 1ESK. Twenty-five 

Pyridinioalkanoyl Thioesters derivatives and 

eighteen Benzamide-based Thiolcarbamates 

derivatives were obtained from different references. 

Preparing Ligands: The molecules were drawn 

using ACD chemdraw freeware. Studies suggest 

using ChemDraw freeware for drawing and 

optimizing chemical structures, improving 

chemistry skills and understanding, and predicting 

chemical shifts in organic compounds. ChemDraw 

software is used as a medium for learning 

hydrocarbon materials in drawing 2D and 3D 

chemical structures, improving teacher ability and 

facilitating students' understanding of abstract 

chemistry learning 
29

. 

ChemDraw Professional 16.0 software was used to 

accurately draw the chemical structures of 1,3,4-

Oxadiazole derivatives for molecular docking 

simulations targeting breast and lung cancers
30

. 

ChemDraw Ultra software was used to draw 

chemical structures of novel carboxamide series 

compounds for virtual molecular docking 

simulations on Mycobacterium tuberculosis target 

https://en.wikipedia.org/wiki/Computer_simulation
https://en.wikipedia.org/wiki/Computer_simulation
https://en.wikipedia.org/wiki/Computer_simulation
https://en.wikipedia.org/wiki/Motion_(physics)
https://en.wikipedia.org/wiki/Motion_(physics)
https://en.wikipedia.org/wiki/Motion_(physics)
https://en.wikipedia.org/wiki/Atoms
https://en.wikipedia.org/wiki/Molecules
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DNA gyrase 
31

. LigPrep2.7 was used for structure 

improvement and energy minimization 
32

. Ligprep 

in Schrodinger is used for pre-processing of ligands 

before performing extra precision docking with 

target proteins. Studies suggest that LigPrep in 

Schrodinger is used for pre-processing and 

optimizing ligands for molecular interactions, in-

silico screening, and virtual screening in drug 

discovery and repurposing. Ligprep in Schrodinger 

is used for pre-processing of ligands before 

performing extra precision docking with target 

proteins 
33

. LigPrep in Schrodinger software 

optimizes ligands prepared from US-FDA drug-

bank for molecular interactions and drug 

repurposing 
34

. Ligprep in Schrodinger is a module 

that prepares approved drugs for virtual screening 

and molecular dynamics simulations 
35

. Studies 

suggest that the ZINC database is a collection of 

commercially-available molecules for ligand and 

drug discovery, featuring tools for searching, 

predicting zinc binding sites, and estimating zinc 

deficiency prevalence. The ZINC database is a 

collection of commercially-available natural 

products 
36

. Energy-minimized structures and their 

activity values were imported to PHASE 
37

 to 

generate a pharmacophore model. IC50 value of the 

reference structure converted into pIC50 value. The 

predicted IC50 values from the IC50 available in 

micromolar in the reference structure were 

calculated using the following equation; pIC50 = (-

log IC50+6). pIC50 values above 5.1 were 

considered active and below 3.9 were considered 

inactive and the rest were moderately active. The 

dataset was divided randomly into a training set 

and a test set by taking 80% of the total molecules 

in the training set and 20 % in the test set. 

Pharmacophore Modeling: The PHASE module 

of the Schrodinger suite is used for modeling 

pharmacophore. Pharmacophore sites were created 

from pharmacophore features. Common 

Pharmacophore hypotheses were generated from 

the 28-member training set molecules by using a 

grid spacing of 1.0 Å. Then the developed 

pharmacophore model was validated by calculating 

the activity of test set molecules. The association 

between the experimental and predicted activities 

of the molecules of training and test sets is shown 

in Table 1.  

TABLE 1: ACTUAL AND PREDICTED ACTIVITIES FOR TRAINING AND TEST SET COMPOUNDS ALONG 

WITH CALCULATED PROPERTIES 

Compound 

ID 

R1 R2 R3 X IC50 

(µM) 

Experimental 

logPIC50 

Predicted 

logIC50 

Residual Pharm 

set 

QSAR 

set 

1 NH2 H H Cl 6.8 5.167 5.27 -0.103 Active Training 

2 NH2 H H Cl 5.4 5.267 5.45 -0.183 Active Training 

6 NH2 H H Br 201 3.698 4.77 -1.072 Inactive Training 

7 NH2 H CH3 Br 101 3.995 4.58 -0.585 Moderate Training 

8 NH2 H CH2CH3 Br 200 3.698 3.6 0.098 Inactive Training 

10 NH2 H CH2CH(CH3)2 Br 5.2 5.283 5.45 -0.167 Active Training 

12 NH2 H CH2C6H5 Br 4.5 5.346 4.97 0.376 Active Training 

13 NH2 H CH2CONH2 Br 317 3.498 3.82 -0.322 Inactive Training 

14 NH2 H CH2CH2CONH2 Br 317 3.498 3.9 -0.402 Inactive Training 

15 NH2 CH3 CH3 Br 23 4.46 4.35 0.11 Moderate Training 

17 NH2 H CH3 Br 132 3.879 3.88 -0.001 Inactive Training 

20 NHCH3 H H Br 21 4.677 4.54 0.137 Moderate Training 

21 OH H H Br 317 3.498 3.46 0.038 Inactive Training 

22 OH H H Br 10 5 4.74 0.26 Moderate Training 

23 OC2H5 H H Br 317 3.498 3.61 -0.112 Inactive Training 

24 OC2H5 H H Br 1.4 5.853 5.35 0.503 Active Training 

25 OC2H5 H H Br 0.9 6.045 6.11 -0.065 Active Training 

26 OCH3 H CH3 Br 5.9 5.229 5.36 -0.131 Active Training 

5a H CH3 - - 41.2 4.385 4.16 0.225 Moderate Training 

5c CH3 CH3 - - 38.3 4.416 4.37 0.046 Moderate Training 

5d H CH3 - - 40.2 4.395 4.44 -0.045 Moderate Training 

5h H C(CH3)3 - - 142 3.847 - - Inactive Training 

5k CH3 4-FC6H4 - - 130 3.886 - - Inactive Training 

5m H 4-

CF3C6H4 

- - 128 3.892 3.71 0.182 Inactive Training 

5n H Br - - 4.9 5.309 - - Active Training 

5o CH3 Br - - 8 5.096 - - Moderate Training 

6b H Py+Br- - - 153 3.815 3.9 -0.085 Inactive Training 

6c CH3 Py+Br- - - 200 3.698 3.88 -0.182 Inactive Training 
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4 NH2 H CH3 Br 63 4.2 4.99 -0.79 Moderate Test 

5 NH2 H CH(CH3)(C2H5) Cl 10 5 4.18 0.82 Moderate Test 

9 NH2 H CH(CH3)2 Br 9.9 5.004 5.11 -0.106 Moderate Test 

11 NH2 H CH(CH3)(C2H5) Br 20.1 4.696 4.52 0.176 Moderate Test 

16 NH2 H H Br 110 3.958 4.21 -0.252 Moderate Test 

18 NH2 H H - 12 4.92 4.8 0.12 Moderate Test 

19 NH2 H H Br 9 5.045 4.58 0.465 Moderate Test 

5b H CH3 - - 39.4 4.404 4.02 0.384 Moderate Test 

5e CH3 CH(CH3)2 - - 76 4.119 - - Moderate Test 

5f H CH(CH3)2 - - 55.1 4.258 - - Moderate Test 

5g CH3 C(CH3)3 - - 125 3.903 - - Moderate Test 

5i H Cyc-

Pentyl 

- - 17.3 4.761 - - Moderate Test 

5j H Cyc-

Hexyl 

- - 11.9 4.924 - - Moderate Test 

5l CH3 4-

NO2C6H4 

- - 23.1 4.636 - - Moderate Test 

6a H Py+Br- - - 70 4.154 4.49 -0.336 Moderate Test 

Tabular representation of predicted and calculated properties of reference ligands selected as training and test set compounds. 

The activity above 5.1 was arbitrarily taken as active and activity less than 3.9 as inactive during model generation. A total of 7 

were active in the training set and compound 25 was selected as a highly active compound in the training set. Compound 6c was 

selected as the least active in the test set. The scaffolds of molecules are categorized into R1, R2, and R3 for the functional 

group and X for the Ionic group but the compound from two different sources does not have the same feature set so the hyphen 

denoted in the tables do not have any R3 group and X for the corresponding compound. In the Pharmacophore hypothesis 

scoring function, out of 43 molecules 5h, 5k, 5n, 5o, 5e, 5f, 5g, 5i, 5j, and 5l molecules are not scored with Predicted IC50 value 

because of a lack of a functional group to score the defined hypothesis correspondingly. 

3D-QSAR Studies: The 3D-QSAR studies were 

carried out using PHASE version 3.0 implemented 

in the Maestro 9.3 molecular modeling package 

from Schrodinger Molecular Modeling Interface. In 

QSAR studies, the appropriate conformation of the 

compound is required for the accurate calculation 

of 3D descriptors. All the molecules were divided 

into a training set and a test set to maintain the 

structure and activity diversity in both the sets for 

the QSAR model and pharmacophore generation 

and validation. The prepared ligands were used for 

generating common pharmacophore and QSAR 

model building. QSAR modeling was carried out 

using the selected hypothesis by dividing the 

datasets into a training set (80%) and a test set 

(20%) in a random manner.  

Phase presents two options for the alignment of the 

3D structure of molecules the pharmacophore-

based alignment and the atom-based alignment. In 

this study, an atom-based QSAR model was 

explained the Structure Activity Relationship 

(SAR). In atom-based QSAR, a molecule is treated 

as a set of overlapping van der Waals spheres. Each 

atom is placed into one of six categories according 

to a simple set of rules: hydrogens attached to polar 

atoms are classified as hydrogen bond donors (D); 

carbons, halogens and hydrogens are classified as 

hydrophobic/non-polar (H); atoms with an explicit 

negative ionic charge are classified as negative 

ionic (N); atoms with an explicit positive ionic 

charge are classified as positive ionic (P); non-ionic 

nitrogen and oxygen are classified as electron-

withdrawing (W); and all other types of atoms are 

classified as miscellaneous (X). Atom-based QSAR 

models were generated for two sets of point 

pharmacophores. Here 8 active compounds, 12 

inactive compounds, and the rest moderately active 

compounds were chosen to perform a point 

pharmacophore. Grid spacing was set up to 1.0 Å.  

Pharmacophore Screening against Chemical 

Databases with Predicted Pharmacophore 

Model: Around 7,75,000 property-predicted 

ligands from both ZINC and NCI databases 
38

 were 

allowed to interact with the pharmacophore model 

to find a potent molecule. Based on a structure 

target-based search against ZINC and NCI 

database, around 42,72,818 compounds were 

obtained in 2D SDF (Standard Dimension Format) 

format. Virtual screening is one of the fastest and 

most accurate methods to identify the potential 

ligand with desired pharmacophore kinetics 

properties. The well-validated HHRR hypothesis 

was used to search a 3D database for structures that 

match the pharmacophoric features of the model. 

Virtual screening was carried out using Zinc 

Pharmer 
39

 which uses the pharmacophore to 

efficiently search the ZINC database of fixed 

conformers for pharmacophore matches.  
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To accomplish the best 3D similarity search, the 

constraints used also included a maximum of 0.7 Å 

RMSD, obeying 10 rotatable bonds cut off and 

molecular weight range of under 500 Dalton, 

hydrogen bond acceptor not more than 10, 

hydrogen bond donor not more than 5, and partition 

coefficient log p less than 5. A molecule that fits 

well with the pharmacophoric features of the 

HHRR hypothesis was retrieved as a hit. 

Molecular Docking: In the current study, we 

carried out docking of the top fitted ligand in the 

3D-QSAR model i.e., compound ZINC 65398698 

into the active site of the NCp7 (PDB ID: 1ESK). 

For performing molecular docking between the 

protein structure and ligand structure, both of them 

have to be prepared (i.e.) proper atom charges and 

bond orders to be added, necessary Hydrogen 

atoms were added and optimized. Glide ligand 

docking jobs require a set of previously calculated 

receptor grids and ligand structures. The ligand was 

docked with the target protein using the Glide 

module of the Schrödinger suite. The best-fitted 

ligand interacts with the NCP7 domain. Extra 

precision docking profile and high throughput 

screening methods were followed. 

Molecular Dynamic Simulation of the Docked 

Complex: GROMACS
40

 is computational software 

used to perform Molecular Dynamics Simulations 

and Energy Minimization. Molecular dynamics 

simulation studies provide the dynamical behavior 

of the system in real-time. The molecular dynamic 

simulation was performed with GROMOS96 43a1 

force fields using the GROMACS 4.5.5-1 package. 

Before starting the simulations, all the models were 

solvated with the explicit simple point charge 

(SPC216) water in a cubic box with the Periodic 

Boundary Conditions (PBC). The system was 

neutralized with 7 chlorine ions by replacing the 

solvent atoms. The energy minimization was 

performed for the system concerned by using the 

steepest descent method. The topology files and 

charges for the ligand atoms were generated by the 

PRODRG2 Server 
41

. Then, 20 ns for the complex 

having the best G Score and 10 ns for four 

consecutive best score fits of MD simulations were 

carried out with a timestep of 1 fs. 

Pharmacodynamic and Kinetic Study of the 

Docked Ligand: Pharmacodynamics is the 

investigation of a drug‟s influence on an organism 

while pharmacokinetics is the investigation of how 

an organism affects the drug. Pharmacodynamics 

and pharmacokinetics influence the measurement 

of dosage and its effects. Using the Qikprop 

module,
 42

 the biophysical, biochemical, and 

physicochemical properties of the molecule were 

measured. These properties aid in the identification 

and development of drug candidates.  

RESULTS AND DISCUSSION 

3-Dimensional Ligand Structure Generation: 

Based on the substitution of the R group from the 

literature source, R group atoms were added to the 

basic structure of Pyridinioalkanoyl Thioesters and 

Benzamide-based Thiolcarbamates Fig. 1, and they 

were generated using ChemDraw freeware. The 

structures of 43 derivatives are shown in Fig. 2. 

  
FIG. 1: GENERAL R-GROUP SCAFFOLD OF (A) PYRIDINIOALKANOYL THIOESTERS AND (B) BENZAMIDE-

BASED THIOLCARBAMATES HYPOTHESIS GENERATION. IT SHOWS THE GENERAL STRUCTURES OF 

PYRIDINIOALKANOYL THIOESTERS AND BENZAMIDE-BASED THIOLCARBAMATES USED FOR 

PHARMACOPHORE GENERATION DRAWN USING CHEMDRAW FREEWARE 
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FIG. 2: THE 2D STRUCTURES OF 43 REFERENCE LIGANDS FOR PYRIDINIOALKANOYL THIOESTERS AND 

BENZAMIDE-BASED THIOLCARBAMATES DERIVATIVES DRAWN USING CHEMDRAW FREEWARE FROM 

LITERATURE SOURCE 

The figure shows 2D structures of reference ligands 

for Pyridinioalkanoyl Thioesters and Benzamide-

based Thiolcarbamates derivatives drawn using 

ChemDraw freeware from literature sources. 

Ligand Set Taken for the Study: The study was 

carried out using a training set of 25 compounds to 

determine the factors required for the anti-HIV 

activities, which was measured by pIC50.  

Pharmacophore Model Generation and its 

Dataset: For the generation of an atom-based 3D-

QSAR model, forty-three molecules were randomly 

divided into training (25) and test set (18) 

molecules. Eight most active molecules, twelve 

moderately active molecules, and less active 

molecules were included to spread out to assess the 

predictive accuracy of the model, and a set of 9 

molecules was set as a test set. The training set 

molecules were aligned on the common 

pharmacophore hypotheses and analyzed by PLS 

with three factors. The correlation between 

predicted and observed activities of training and 

test set compounds is shown in Fig. 3. The top 

pharmacophore model was found to be associated 

with the four-point pharmacophore hypothesis 

containing two hydrophobic groups (H) and two 

aromatic rings (R) was denoted as HHRR. The 

distance and angles between the pharmacophoric 

features and their sites are reported in Fig. 4. 

Statistically significant 3D-QSAR models were 

predicted using the PLS factor based on the training 

set compounds by validating with test set 

compounds. The training set correlation is 

characterized by PLS factors (R
2
= 0.901, SD= 

0.6056, F= 18.2, P=0.0003115). The test set 

correlation is characterized by PLS factors (Q
2
= 

0.8563, RMSE= 0.3212, Pearson-R= 0.7033). The 

statistical results of PLS factors of atom-based 3D-

QSAR are shown in Table 2.  

  
FIG. 3: GRAPH OF ACTUAL VERSUS PREDICTED IC50 OF TRAINING SET (A), AND TEST SET (B) USING AN 

ATOM-BASED 3D-QSAR MODEL FROM PHASE. THE ABOVE FIGURE SHOWS THE GRAPHICAL 

REPRESENTATION OF IC50 VERSUS THE PREDICTED IC50 OF THE TRAINING SET AND TEST SET USING 

AN ATOM-BASED 3D-QSAR MODEL FROM PHASE. AMONG THE 511 GENERATED HYPOTHESES ONLY 26 

DIFFERENT HYPOTHESES WERE SELECTED BASED ON SURVIVAL SCORE AND BASED ON THE 

PHARMACOPHORE-BASED ALIGNMENT FOR THE TRAINING SET (A), AND 9 DIFFERENT HYPOTHESES 

FOR THE TEST SET (B) 
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FIG. 4: THE BEST PHARMACOPHORE HYPOTHESIS (HHRR 1303

TH
) AND DISTANCE BETWEEN THE 

PHARMACOPHORIC SITES (A) AND ANGLES BETWEEN THE PHARMACOPHORIC SITES ARE IN Å UNIT 

(B). COLOR CODES FOR THE PHARMACOPHORIC FEATURES - GREEN SPHERE FOR HYDROPHOBIC (H); 

ORANGE RING FOR AROMATIC RING (R) 

TABLE 2: PLS STATISTICAL PARAMETERS OF THE SELECTED QSAR MODEL 

S. no. Hypothesis SD R
2
 F P RMSE Q

2
 Pearson-R 

1 HHRR.1303 0.6056 0.901 18.2 0.0003115 0.3212 0.8563 0.7033 

2 HHRR.1313 0.5361 0.5715 29.3 1.931e-005 0.3422 0.2695 0.5807 

3 HHRR.1304 0.5904 0.4804 20.3 0.0001737 0.3693 0.1491 0.5827 

4 HHRR.1517 0.4963 0.6328 37.9 3.379e-006 0.4392 -0.2034 0.1405 

5 HHRR.1312 0.6318 0.4049 15 0.0008303 0.4686 -0.3705 0.1933 

SD = standard deviation of the regression; R2 = correlation coefficient; F= variance ratio; P = significant level of variance ratio; 

RMSE= root-mean-square error; Q2= for the predictive activities; Pearson-R = correlation between the predicted and observed 

activity for the test set. Tabular representation of statistical results of PLS features of atom-based 3D-QSAR. For the best 

hypothesis HHRR, the result at PLS factor 3 was R
2
 = 0.901, Q

2 
= 0.8563, Pearson R = 0.7033, RSME = 0.3212 for statistically 

best model and this model can add an edge to the development of potential anti-HIV agents. 

3D-QSAR Analysis: Additional insights into the 

inhibitory activity were gained by visualizing the 

3D-QSAR model in the context of one or more 

ligands in the series with diverse activity.  

The identification of important features is 

necessary for the interaction between ligands and 

the target protein.  

The atom-based 3D-QSAR with the combined 

effect of hydrogen bond donor, 

hydrophobic/nonpolar, positive ionizable features, 

electron-withdrawing, and other features are 

depicted in Fig. 5 and 6. Fig. 5 and 6 represents the 

cubes generated with the most active compound 

(compound 25) and least active compound 

(compound 6c) respectively.  

The blue-colored region indicates the favorable 

features contributing to the ligand interactions with 

the target enzyme, while the red-colored region 

indicates the unfavorable region of the activity.  

The blue cubes around the substitution of the R-

group suggest that the R-group is significant in 

enhancing the activity, while some unfavorable 

region is indicated by the reference ligand, this red 

cube indicates very little activity when compared to 

the least active compound 6c.  
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FIG. 5: PICTORIAL REPRESENTATION OF THE HYDROPHOBIC AND HYDROPHILIC REGIONS 

GENERATED FOR THE MOST ACTIVE MOLECULE FROM THE QSAR MODEL. BLUE CUBES DEPICTED 

FAVORABLE REGIONS, WHILE RED CUBES INDICATE UNFAVORABLE REGIONS FOR THE ACTIVITY OF 

THE MOLECULE. ATOM-BASED 3D-QSAR MODEL VISUALIZED IN THE CONTEXT OF HYDROGEN BOND 

DONOR FEATURES FOR MOST ACTIVE COMPOUND 25 (A) QSAR MODEL VISUALIZED IN THE CONTEXT 

OF THE FAVORABLE, AND UNFAVORABLE REGIONS OF THE HYDROPHOBIC FEATURES OF THE MOST 

ACTIVE COMPOUND 25 (B) QSAR MODEL VISUALIZED IN THE CONTEXT OF FAVORABLE AND 

UNFAVORABLE REGION POSITIVE IONIZABLE FEATURES OF THE MOST ACTIVE COMPOUND 25 (C) 

QSAR MODEL VISUALIZED IN THE CONTEXT OF FAVORABLE AND UNFAVORABLE REGION ELECTRON 

WITHDRAWING FEATURES OF THE MOST ACTIVE COMPOUND 25 (D) 

  

  
FIG. 6: PICTORIAL REPRESENTATION OF THE HYDROPHOBIC AND HYDROPHILIC REGIONS 

GENERATED FOR THE LEAST ACTIVE MOLECULE FROM THE QSAR MODEL. BLUE CUBES DEPICTED 

FAVORABLEREGIONS, WHILE RED CUBES INDICATE UNFAVORABLEREGIONS FOR THE ACTIVITY OF 

THE MOLECULE. ATOM-BASED 3D-QSAR MODEL VISUALIZED IN THE CONTEXT OF HYDROGEN BOND 

DONOR FEATURES FOR LEAST ACTIVE COMPOUND 6C (A) QSAR MODEL VISUALIZED IN THE CONTEXT 

OF FAVORABLE, AND UNFAVORABLEREGIONS OF THE HYDROPHOBIC FEATURES OF THE LEAST 

ACTIVE COMPOUND 6C (B) QSAR MODEL VISUALIZED IN THE CONTEXT OF FAVORABLE AND 

UNFAVORABLE REGION POSITIVE IONIZABLE FEATURES OF THE LEAST ACTIVE COMPOUND 6C (C) 

QSAR MODEL VISUALIZED IN THE CONTEXT OF FAVORABLE AND UNFAVORABLE REGION ELECTRON 

WITHDRAWING FEATURES OF THE LEAST ACTIVE COMPOUND 6C (D) 
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Docking Profile of Pharmacophore Screened 

Molecule: The compounds obtained from the 

ZINC and NCI database as a control drug 

interacted with the nucleocapsid protein domain p7 

to compare the interaction profile Table 3. The 2D 

structure of ten lead compounds with their 

corresponding database ID is shown in Fig. 7. 

 
FIG. 7: THE 2D STRUCTURE OF TEN LEAD COMPOUNDS WITH THEIR CORRESPONDING DATABASE ID 

REPRESENTATION OF TEN LEAD COMPOUNDS WITH THEIR CORRESPONDING DATABASE ID. FINALLY, 

TEN LIGANDS WERE IDENTIFIED BASED ON THE GLIDE SCORE, WHICH INTERACTED WITH THE 

ACTIVE SITE OF THE NCP7 PROTEIN. 

TABLE 3: GLIDE EXTRA PRECISION (XP) RESULTS FOR TEN LEAD MOLECULES 

S. 

no. 

Compound  

ID 

Glide 

score 

No. of 

Hydrogen 

Bonds 

Interacting 

Residues 

Distance 

(Å) 

Hydrogen bond 

acceptor 

Hydrogen bond 

donor 

1 ZINC65398698 

 

-

11.51 

 

4 LYS 34 

GLY 35 

TRP 37 

CYS 36 

2.45 

2.09 

2.03 

2.11 

A: LYS 34: (H) H 

A: GLY 35: (H) H 

A: TRP 37: (O) O 

A: CYS 36: (O) O 

Ligand: (O) O2 

Ligand: (O) O2 

Ligand: (H) H8 

Ligand: (H) H7 

2 ZINC70361293 

 

-8.42 

 

2 ASN 17 

LYS 38 

2.11 

1.91 

A: ASN 17: (O) O 

A: LYS 38 :(O) O 

Ligand: (H) H11 

Ligand: (H) HO3 

3 ZINC39653853 

 

-8.34 

 

3 CYS 18 

LYS 34 

GLY 35 

2.21 

2.46 

2.09 

A: CYS 18: (O) O 

A: LYS 34: (H) H 

A: GLY 35: (H) H 

Ligand: (H) H15 

Ligand: (O) O3 

Ligand: (O) O3 

4 ZINC10028818 -8.21 1 ASN 17 2.00 A: ASN 17: (O) O Ligand: (H) H11 
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5 ZINC37958236 -7.24 2 CYS 18 

CYS 36 

2.23 

2.35 

A: CYS 18: (O) O 

A: CYS 36: (O) O 

Ligand: (H) H14 

Ligand: (H) H8 

6 ZINC07754815 -7.16 2 ASN 17 

PHE 16 

2.09 

2.35 

A: ASN 17: (O) O 

A: PHE 16: (O) O 

Ligand: (H) H13 

Ligand: (H) H13 

7 ZINC74846276 

 

-7.06 

 

2 LYS 14 

CYS 36 

2.17 

1.86 

A: LYS 14: (H) 3HZ 

A:CYS 36: (O) O 

Ligand: (O) O2 

Ligand: (H) H10 

8 ZINC45539977 -6.91 1 PHE 16 2.10 A: PHE 16: (O) O Ligand: (H) H12 

9 ZINC66182108 -6.76 2 PHE 16 

CYS 36 

2.14 

1.79 

A: PHE 16: (O) O 

A: CYS 36: (O) O 

Ligand: (H) H32 

Ligand: (H) H20 

10 ZINC13813302 

 

-6.31 

 

3 GLY 19 

PHE 16 

LYS 38 

2.38 

2.37 

2.70 

A:  GLY 19: (O) O 

A: PHE 16: (O) O 

A: LYS 38: (O) O 

Ligand: (H) H21 

Ligand: (H) H15 

Ligand: (H) H3 

*Glide score (Kcal/mol); Number of hydrogen bond interactions; Interacting residues, Distance between the protein and ligand 

(Å); Hydrogen bond donor; Hydrogen bond acceptor. Tabular representation of Glide Score and number of Hydrogen bonds of 

ten NCp7 docked inhibitors out of 209 NCp7 Inhibitors. ZINC65398698 has having highest Glide score, selected as hit. 

Interaction of Screened Ligands with NCP7 

Domain: Totally 1000 compounds were subjected 

to interact with the NCP7 domain by incorporating 

the high throughput virtual screening (HTVS) 

method and Glide Docking panel with 

parameterization of Extra Precision value and Rigid 

Docking Algorithm. The resulting docking profile 

shows 10 feasible compounds that can act as to 

inhibit the function of Nucleocapsid Protein 

Domain 7. The Glide score of 10 compounds 

shows a minimum value of -6.31 and a maximum 

value of -11.51.  

Among the docking results, below are the best 

complex structures with better G Score along with 

Protein and Ligand atom bonding Fig. 8, 9, 10. 

   
FIG. 8: BINDING POSES OF THE THREE LEAD COMPOUNDS WITH THEIR CORRESPONDING DATABASE ID 

(A) Docked pose of NCp7 receptor with new 

molecule ZINC65398698. Ligand interaction 

diagram with pink arrows representing electrostatic 

interactions and green linesrepresenting π-π 

interactions. In this Fig. 4 electrostatic interactions 

are observed. The docking simulation of 

ZINC65398698 into the binding site of the NCp7 

was analyzed. The Glide score (-11.51 kcal/mol) 

was calculated as the highest interacted compound. 

A totalof four hydrogen bond interactions were 

formed. The oxygen atom of the ZINC65398698 

well interacted with the backbone hydrogen atom 

of the LYS 34 (Hydrophilic), GLY 35 

(Hydrophobic), and the oxygen atom of TRP 37 

and CYS 36. The hydrogen bond distances were 

calculated (2.45Å, 2.09Å, 2.03Å, 2.11Å). 

(B) Docked pose of NCp7 receptor with new 

molecule ZINC 70361293. The ligand interaction 

diagram with pink arrows represents the 

electrostatic interactions and the green line 

represents π-π interactions. In this Fig. 2 

electrostatic interactions were observed. The 

docking simulation of ZINC70361293within the 

active site of the NCp7 was analyzed with a glide 

score of -8.42 Kcal/mol.  
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Upon the examination of docking features between 

Hit ZINC 70361293 and NCp7, it was found to 

establish close contacts with NCp7 which included 

hydrogen bonding formed between the hit ZINC 

70361293 compound and the active site region of 

NCp7. Totally two hydrogen bond interactions 

were formed between ZINC70361293 into the 

active site of the NCp7. The hydrogen atom of the 

hit molecule ZINC 70361293 strongly interacted 

with the backbone oxygen atom of the ASN 17, 

LYS 38 with bond length 2.11Å, 1.91Å. 

(C) Docked pose of NCp7 receptor with new 

molecule ZINC 39653853. The ligand interaction 

diagram with pink arrows represents electrostatic 

interactions and the green line represents π-π 

interactions. In this figure, three electrostatic 

interactions are observed. The docking of ZINC 

39653853 had a glide score of -8.34 kcal/mol. 

Upon examination of docking features between 

ZINC 39653853 and NCp7, it was found only three 

hydrogen bonds were formed between the ZINC 

39653853 compound and the active site region of 

NCp7. The first one is the hydrogen atom of the 

ligand molecule well interacted with the backbone 

oxygen atom of the negatively charged residues 

CYS 18, and the second one is the oxygen atom of 

the ligand molecule was nicely bonded with the 

backbone hydrogen atom of the positively charged 

residue of LYS 34 and the third one is the oxygen 

atom of the ligand molecule were tightly interacted 

with the backbone hydrogen atom of the positively 

charged residue of GLY 35. The hydrogen bond 

length was noted (2.21Å, 2.46 Å, 2.09Å). 

   
FIG. 9: BINDING POSES OF THE THREE LEAD COMPOUNDS WITH THEIR CORRESPONDING DATABASE ID 

(A) Docked pose of NCp7 receptor with new 

molecule ZINC10028818. The ligand interaction 

diagram with pink arrows represents electrostatic 

interactions and the green line represents π-π 

interactions. In this figure, one electrostatic 

interaction was observed. The binding 

conformation of ZINC10028818 within the active 

site of NCp7 had a Glide score of -8.21 kcal/mol. 

Hit ZINC10028818 formed one hydrogen bond 

with the active site of the NCp7 residues like ASN 

17 (2.00Å). The hydrogen atom of the ligand 

molecule ZINC10028818 nicely interacted with the 

backbone oxygen atom of the ASN 17. The 

hydrogen atom of the ligand molecule acts as a 

hydrogen bond donor, and the oxygen atom of the 

protein molecule NCp7 acts as a hydrogen bond 

acceptor. (B) Docked pose of NCp7 receptor with 

new molecule ZINC37958236. The ligand 

interaction diagram with pink arrows represents 

electrostatic interactions and the green line 

represents π-π interactions. In this figure, two 

electrostatic interactions are observed. Hit 

ZINC37958236 had a Glide score of -7.24 

kcal/mol. Upon the examination of docking 

features between Hit ZINC37958236 and NCp7, it 

was found only two hydrogen bond interactions 

were formed between the hit compound and the 

active site region of NCp7. The first one is the 

hydrogen atom of the hit compound 

ZINC37958236well interacted with the backbone 

oxygen atom of the negatively charged residues of 

the CYS 18, second interaction was the side chain 

oxygen atom of the negatively charged residue of 

CYS 36 strongly interacted with hydrogen atom of 

the hit compound ZINC37958236. The hydrogen 

atom of the hit compound acts as a hydrogen bond 
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donor, and the oxygen atom of the NCp7 protein 

molecule acts as a hydrogen bond acceptor. The 

bond lengths were observed (2.23Å and 2.35Å). 

(C) Docked pose of NCp7 receptor with new 

molecule ZINC07754815. The ligand interaction 

diagram with pink arrows represents electrostatic 

interactions and the green line represents π-π 

interactions. In this figure, two electrostatic 

interactions are observed. The binding mode of the 

hit molecule ZINC07754815 within the binding 

pocket of the NCp7 was analyzedby Glide score (-

7.16 kcal/mol). Upon the examination of docking 

features between Hit ZINC07754815and the 

binding site of the NCp7, it was found hydrogen 

bonds were formed between the hit compound and 

the active site region of NCp7.  

First interactions were formed with the positively 

charged residue of ASN 17 and hydrogenatom of 

the hit molecule. The side chain oxygen atom of the 

positively charged residue of PHE 16 were well 

interacted with the hydrogen atom of the 

ZINC07754815. The hydrogen bond distance 

between the protein-ligand was observed (2.09Å, 

2.35Å). 

  

  
FIG. 10: BINDING POSES OF THE FOUR LEAD COMPOUNDS WITH THEIR CORRESPONDING DATABASE ID 

(A) Docked pose of NCp7 receptor with new 

molecule ZINC74846276. The ligand interaction 

diagram with pink arrows represents electrostatic 

interactions and the green line represents π-π 

interactions. In this figure, two electrostatic 

interactions were observed. The binding mode of 

the ZINC74846276 within the active site of the 

NCp7 was visualized. Upon the examination of 

docking features between ZINC74846276 and 

NCp7, it was found hydrogen bonding interactions 

were formed between the hit compound and the 

active site region of NCp7. The backbone hydrogen 
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atom of the positively charged residues of LYS 14 

was well interacted with the oxygen atom of the 

ZINC74846276, and then the hydrogen atom of the 

ZINC74846276tightly interacted with the side 

chain oxygen atom of the hydrophobic residue of 

CYS 36 with bond distance (2.17Å, 1.86Å).  

(B) Docked pose of NCp7 receptor with new 

molecule ZINC45539977. The ligand interaction 

diagram with pink arrows represents electrostatic 

interactions and the green line represents π-π 

interactions. In this figure, one electrostatic 

interaction was observed. The docking simulation 

of ZINC45539977 had a glide score of -6.91 

kcal/mol and Upon the examination of docking 

features between ZINC45539977 and NCp7, it was 

found only one hydrogen bond was formed 

between the ZINC45539977 compound and active 

site region of NCp7. The hydrogen atom of the 

ligand molecule was nicely bonded with the 

backbone oxygen atom of the negatively charged 

residue of PHE 16. The hydrogen bond length was 

noted as 2.10Å. 

(C) Docked pose of NCp7 receptor with new 

molecule ZINC66182108. The ligand interaction 

diagram with pink arrows represents electrostatic 

interactions and the green line represents π-π 

interactions. In this figure, two electrostatic 

interactions were observed. The binding mode of 

the ZINC66182108 within the active site of the 

NCp7 was visualized. There are two hydrogen 

bond interactions formed between ZINC66182108 

and NCp7. The hydrogen atom of the ligand 

molecule tightly interacted with the backbone 

oxygen atom of the negatively charged residues of 

PHE 16, and then the hydrogen atom of the hit 

molecule interacted with the backbone oxygen 

atom of the hydrophobic residues of CYS 36. The 

bond lengths were noted as 2.14Å, 1.79Å 

correspondingly. 

(D) Docked pose of NCp7 receptor with new 

molecule ZINC13813302. The ligand interaction 

diagram with pink arrows represents electrostatic 

interactions and the green line represents π-π 

interactions. In this figure, three electrostatic 

interactions were observed. The binding mode of 

the hit molecule ZINC13813302 within the binding 

pocket of the NCp7 wasanalyzed with, a Glide 

score (-6.31 kcal/mol). Upon the examination of 

docking features between ZINC13813302 and 

NCp7, hydrogen bonding interactions were 

observed between the hit compound and the active 

site region of NCp7. It was found that the hydrogen 

atom of the ligand formed hydrogen bonds with the 

oxygen atoms of GLY 19, PHE 16, and LYS 38 

respectively with hydrogen bond distances of 

2.38Å, 2.37Å, and 2.70Å between protein residues 

and ligand atoms. 

Pharmacodynamic and Kinetic Study on the 

Identified Lead Molecules: The ADME properties 

of the ten newly identified lead molecules were 

assessed using the QikProp tool of the Schrödinger 

suite. The above-mentioned ten lead molecules 

satisfied drug-like properties based on Lipinski‟s 

rule of five. The molecular weight of the lead 

molecules was found to be less than 500Da, the 

number of hydrogen bond donors less than 5, and 

hydrogen bond acceptors are less than 10, and the 

predicted octanol/water partition coefficient 

(QPlogPo/w) is less than 5. Then these lead 

compounds were further evaluated for their drug-

like behavior through analysis of pharmacokinetic 

parameters required for absorption, distribution, 

metabolism, excretion, and toxicity (ADMET) by 

use of QikProp. For the ten lead molecules, the 

aqueous solubility (QPlogS) critical for estimation 

of absorption and distribution of drug within the 

body ranged between -5.010 to -0.485 respectively. 

The predicted IC50 value for the blockage of HERG 

K+ channels is in the acceptable range below -5. 

The predicted value of binding to human serum 

albumin (QPksha) lies in the acceptable range of ~ 

-0.397 to -2.661. The predicted Brain/Blood 

barriers are under the acceptable range of ~ -5.050 

to -1.791. All the pharmacokinetics parameters fit 

well with the acceptable range defined for use in 

humans. The results of the Pharmacodynamic and 

kinetic study on the identified lead molecules are 

listed in Table 4. 

TABLE 4: ADME PROPERTIES OF THE LEAD MOLECULES AS VERIFIED BY USING QIKPROP 

Ligand ID QPlogS QPlogKhsa LogBB MW HBD HBA QPlog(o/w) HERG 

ZINC65398698 -3.240 -0.313 -1.316 272.306 2.000 7.000 0.880 -4.470 

ZINC70361293 -2.810 0.259 -0.258 264.324 1.000 3.250 2.417 -5.277 
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ZINC39653853 -5.780 0.471 -0.225 504.455 2.000 7.750 4.186 -5.804 

ZINC10028818 -3.852 -0.181 -1.030 346.339 1.000 7.500 2.072 -5.165 

ZINC37958236 -4.389 0.473 0.037 275.390 1.000 3.000 3.897 -4.125 

ZINC07754815 -3.809 -0.264 -0.768 304.363 1.000 6.000 2.176 -4.396 

ZINC74846276 -4.846 0.319 -0.378 320.363 1.000 4.000 3.471 -3.900 

ZINC45539977 -4.460 0.102 -0.756 292.398 2.000 3.000 3.128 -4.038 

ZINC66182108 -4.322 0.825 0.469 277.449 1.000 2.250 4.822 -5.782 

ZINC13813302 -5.464 0.682 -0.028 367.505 1.000 4.500 5.014 -5.696 

Ligand IDs are of the zinc database. Predicted aqueous solubility; S in mol/L (acceptable range; -6.5 to 0.5); Prediction of 

binding to human serum albumin (acceptable range; -1.5 to 1.5); Prediction of brain/blood (acceptable range; -3.0 to 1.2); 

Molecular weight (<500Da); Hydrogen bond donor (<5); Hydrogen bond acceptor (<10); Predicted octanol /water partition 

coefficient log p (acceptable range; -2.0 to 6.5); Predicted IC50 value for blockage of HERG K+ channels (acceptable range: 

below. -5.0). Tabular representation of ten newly identified leads assessed by the use of the Qikprop tool of the Schrödinger 

suite. The above-mentioned ten lead molecules satisfy drug-like properties based on Lipinski‟s rule of five. 

Molecular Dynamic Simulation of Best G-score 

Docked Complex: Molecular dynamics of the 

protein-ligand complex were performed by 

applying Berenson‟s Temperature (301K) coupling 

method and the Parrinello-Rahman Pressure 

coupling method. Five complexes simulated in the 

water environment have the G Score of -11.51, -

8.42, -8.34, -8.21, and -7.24 respectively. A best-fit 

score of -11.51 was simulated for 20 ns whereas 

other G-scored complexes were done for a 10 ns 

equilibration run. The following observables were 

determined as the density of the system was 

constant at around 1000(kg/m
3
) which shows the 

system is well stabilized inside a solvated cubic 

box. The temperature of the system was stable 

throughout the equilibration run at 310K with a 

thermal fluctuation of ±5K. The kinetic energy of 

the system was found to be stable at 28 J/mol with 

a mean fluctuation of ± 5 J/mol. The applied 

pressure to the system was observed to be 

fluctuating around ±500 bar however on average is 

stable. 

NCp7 Protein-ligand Complex Stability: 

Molecular dynamics simulation for 20 ns, of NCp7 

protein-ligand complex ZINC65398698 (5-[3,5-

dimethyl-4-(2-oxopropyl) -1H-pyrazol-1-yl] 

pyridine-3-carboxamide) having high binding 

affinity was performed 
43

. To make comparative 

values of the stability further consequent G Scored 

complexes were simulated. The stability of the 

NCp7 protein after it binds to the ligand was 

checked by analyzing the trajectories obtained after 

the Molecular Dynamics Simulation. 

Root Mean Squared Deviation (RMSD): The 

complex stability was determined by calculating 

root mean squared deviation (RMSD), and root 

mean squared fluctuation (RMSF) of the complex. 

The RMSD analysis predicts the stability of protein 

and its structural variation while evolving with 

time. The RMSD of the protein-ligand complex for 

the trajectories written for a 20 ns production run 

was analyzed to identify the stability of the system 

at each time interval. It was observed that the 

complex is stable within the early 10 ns production 

run Fig. 11. Between 1.5 to 12.5 ns, the complex 

was observed to fluctuate from equilibrium with 

minor deviation of 0.1 nm, thereafter i.e. from 14.1 

ns to 20 ns the system again attained equilibrium. 

On average, the system was observed to be stable 

with an RMSD of 0.3 Å. The system achieves 

equilibrium in the early 100-150 ps and remains 

stable thereafter for a 20 ns simulation period. The 

complex stability shows that there is no major 

structural variation in protein after binding with 

ligand whereas ZINC10028818, ZINC37958236, 

ZINC70361293, and ZINC39653853 Fig. 12 ID 

with protein complexes are showing simulation 

within 0.1 to 0.25 Å in 10 ns itself so the best-fit 

score of ZINC65398698 complex are showing best 

complex. 

 
FIG. 11: RMSD PLOT OF PROTEIN-LIGAND 

COMPLEX IN 20 NS MD SIMULATION RUN 
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FIG. 12: RMSD PLOT OF PROTEIN-LIGAND COMPLEX IN 10 NS MD SIMULATION RUN 

Root Mean Square Fluctuation (RMSF): The 

RMSF plot depicted in Fig. 13 presents the protein 

backbone flexibility after forming a complex with 

ligand, ZINC65398698 (5-[3,5-dimethyl-4-(2-

oxopropyl) - 1H – pyrazol – 1 - yl] pyridine-3-

carboxamide). The RMSF plot showed to what 

extent each residue of NCp7 protein fluctuated 

during the production run. It was observed that the 

protein residues, Asp (N), Ala (A), Lys (K), Met 

(M), and Glu (Q) were found to be more flexible 

with RMSF of 0.5 nm, 0.1 nm, 0.12 nm, 0.14 nm, 

and 0.15 nm respectively which implies that 

mentioned residues had greater movement from its 

native position during dynamics simulation. The 

remaining residues were observed to be flexible 

with an average RMSF of 0.5-0.17 nm which 

shows that these residues had constrained 

flexibility from their mean position and, hence 

were rigid and possessed limited movement during 

dynamics simulation whereas the other four 

complexes showed fluctuation in between 0.5 to 

0.35 which has maximum simulation in 

intermolecular interaction Fig. 14. 

 
FIG. 13: RMSF PLOT OF PROTEIN-LIGAND COMPLEX IN 20 NS MD SIMULATION RUN 
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FIG. 14: RMSF PLOT OF PROTEIN-LIGAND COMPLEX IN 10 NS MD SIMULATION RUN 

Hydrogen Bond Interaction: ZINC65398698 

complex Fig. 15 has having total number of 

hydrogen bonds within the complex is 24. Whereas 

the other four Fig. 16 complexes have a maximum 

of 12 hydrogen bonds with a complex system of 

MD simulation for 20 ns and 10 ns equilibrium 

productivity run. 

 
FIG. 15: HYDROGEN BOND INTERACTIONS OF THE PROTEIN-LIGAND COMPLEX IN 20 NS MD 

SIMULATION RUN 

 
FIG. 16: HYDROGEN BOND INTERACTIONS OF THE PROTEIN-LIGAND COMPLEX IN 10 NS MD 

SIMULATION RUN 
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The overall objective of this work is to identify 

potential drug targets for the HIV-I sub-type which 

is infecting millions of human beings worldwide. 

We have adopted Nucleocapsid Protein Domain p7 

as a target as it has a critical role in HIV-I 

replication that can inactivate the virus infectious 

process.  

A challenge in structure-based virtual screening is 

the assessment and ranking of predicted ligand 

conformations because the scoring functions 

implemented in the Maestro v9.3 include 

assumptions simplifying the complexity of 

molecular recognition. The core structure of the 

nucleocapsid p7 domain was docked with the 

compounds obtained from ZINC and NCI. We 

generated pharmacophore models for the HIV-1 

NCp7 and screened commercial databases to find 

possible lead compounds for our drug discovery 

project.  

We identified compounds that interacted best at the 

active binding site of NCp7 in terms of 

pharmacophore mapping and docking using two 

different scoring functions, showing very 

promising inhibitory activity. Altogether, we have 

shown that pharmacophore modeling, database 

screening, and prediction of the compounds with 

docking resulted in truly promising compounds for 

the drug-designing process in the future.  

CONCLUSION: In conclusion, a ligand-based 

computational approach was used to identify 

molecular structural features required for an 

effective NCp7 inhibitor to discover drugs to 

prevent and cure varieties of HIV. Based on 25 

training set compounds, a highly predictive 

pharmacophore model was generated which 

consists of two hydrophobic groups (H) and two 

aromatic rings (R). The pharmacophore model 

generated was used for three-dimensional queries 

in database searches for new potent molecules and 

to design new molecules and forecast their 

inhibitory activity for NCp7 quantitatively before 

undertaking any synthesis. Thus, our 

pharmacophore model helps identify novel lead 

compounds with improved NCp7 inhibitory 

activity through 3D database searches. 
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