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ABSTRACT: Cytochrome P450 2D6 (CYP2D6) is an essential enzyme that 

affects the safety and effectiveness of a broad range of medications through 

its metabolism. We provide here an extensive in-silico investigation of new 

drug candidates that target CYP2D6. To find putative CYP2D6 inhibitors, 

we used virtual screening, structure-based drug design, molecular docking, 

and simulation approaches in the Biovia Discovery Studio 2022 framework. 

By maintaining ADMET and TOPKAT filters, a broad variety of small 

molecules were subjected to virtual screening. After that, the two chosen 

compounds, cmp1 and cmp13, were used in molecular docking studies 

against the 4WNU and 4XRZ proteins to evaluate binding affinities and 

interactions. For 2815 compounds, ADMET and TOPKAT profiling were 

done to get non-toxic molecules. The non-toxic molecules after filtrations 

were taken for the docking studies followed by molecular dynamic 

simulation of the best complex. The best two molecules after ADMET and 

TOPKAT profiling were taken for docking studies, where these results 

demonstrated several intriguing therapeutic options with high binding 

affinities and favorable interactions of compound cmp1 with the active sites 

of 4WNU proteins, with 26.4705 kcal/mol -CDOCKER energy and 44.37 

kcal/mol -CDOCKER interaction energy. These were then selected for 

molecular dynamic simulations to verify the motion of each atom in the real-

time environment. DeltaG_Average = -26.1570 kcal/mol was also computed 

as the MMPBSA energy.  The compound cmp1 was the most significant 

among the series as aninhibitor TargetingCYP2D6. To demonstrate the same, 

this molecule needed to be further examined in-vitro and in-vivo. 

INTRODUCTION: According to the science of 

pharmacogenetics, each patient's genetic profile is 

considered when creating medicines and 

customized treatments. As a result, more patients 

will respond to treatment and fewer will have 

negative side effects from medications 
1
.  
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It is crucial to consider these factors during the 

drug development process because they may help 

to explain, or perhaps avoid, the discarding of drug 

candidates if the right genetic causes are found for 

lack of response or the occurrence of adverse drug 

reactions (ADRs) 
2
.  

On the level of drug transporters, drug-

metabolizing enzymes, drug targets, and other 

biomarker genes, one may generally imagine 

significant pharmacogenetic diversity 
3, 4

. 

Numerous medications, particularly lipophilic 

substances like psychotropics, must be digested 

before being excreted in urine.  
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The cytochrome P450s (haemoproteins), the major 

phase I enzymes, influence drug metabolizing 

enzymes the most 
5-7

. Many endogenous 

compounds, such as steroid hormones, lipids, and 

bile acids, as well as xenobiotics, such as 

prescription drugs, environmental pollutants, and 

dietary phytochemicals, are metabolized by CYPs 

during phase I metabolism 
3
. Hence, it is presently 

believed that up to 25% of the medications that are 

often prescribed in clinics are metabolized by the 

cytochrome P450 2D6 (CYP2D6) enzyme, which 

has historical significance for pharmacogenetics 
8-9

. 

Among these, the highly polymorphic CYP2C9, 

CYP2C19, and CYP2D6 are responsible for around 

40% of the human liver's phase I metabolism 
3
. 

Since these enzymes oversee 80% of phase I drug 

metabolism, CYP plays a crucial function 
4
. Drug 

efficacy or toxicity may result from inhibition or 

stimulation of CYP2D6 metabolism, which might 

change the pharmacokinetic profile of the 

concurrently delivered drug 
8
.  

Additionally, individual variations in drug 

metabolism are also influenced by the 

polymorphisms of CYP1A2, CYP2A6, CYP2B6, 

and CYP2C8. The polymorphism of CYP2D6, 

which has a significant clinical impact and was the 

first of the polymorphic P450s to be described at 

the molecular level, is likely the most widely 

studied polymorphically expressed drug 

metabolizing enzyme in humans 
10

. CYP2D6 is a 

polypeptide of 497 amino acids. The enzyme 

accounts for only a small percentage of all hepatic 

P450s, but its role in drug metabolism is 

extensively higher than its relative content 
11

. After 

being identified as the gene causing the altered 

activity seen with medications like debrisoquine 

and others, CYP2D6 became the focus of 

significant research 
12

.  

It soon became clear that CYP2D6 activity was 

affected by a wide range of polymorphisms in 

every region of the world 
13-14

. In the initially 

investigated Caucasian groups, some genotypes 

resulted in a total lack of CYP2D6 activity; 

however, research in populations of different ethnic 

origins indicated reduced function and even 

hyperfunctional CYP2D6 variants 
9-10

. The effect 

that a CYP2D6 polymorphism has on therapy with 

any of the drugs listed above depends on the 

metabolizer status that the polymorphism(s) causes 

in the patient receiving therapy as well as whether 

the parent drug is active or if CYP2D6 is necessary 

for it to be metabolized into an active metabolite. If 

the parent drug is potent, then ultrarapid 

metabolizers may experience a lack of efficacy 

while intermediate metabolizers and poor 

metabolizers may experience difficulties because of 

plasma concentrations of the drug that are higher 

than expected 
15

. Treatment with CYP2D6 

substrates might be challenging due to medication 

interactions and genetic variability 
16-17

. Numerous 

medications (such as statins) are CYP2D6 

inhibitors and combining an inhibitory medication 

with a CYP2D6 substrate might change the 

patient's outward appearance 
16

. As a result, the 

field of CYP pharmacogenetics is crucial for both 

the development of new medications and their use 

in clinical practice. Genetic variation has a 

significant impact on the variability of enzyme 

activity between individuals because the enzyme is 

the only drug metabolizing CYP that cannot be 

generated.  

The genetic variation of the enzyme has a 

significant impact on the metabolism and effects of 

several pharmaceuticals, including neuroleptics, 

analgesics, antiemetics, and anticancer drugs 
18-19

. 

Codeine, dextromethorphan, metoprolol, and 

nortriptyline, to name just a few, are among the 

medications processed by this enzyme. Initially, it 

was discovered that these medications had 

markedly different pharmacokinetics and 

therapeutic effects, which led to the discovery of 

the CYP2D6 genetic polymorphism 
20-22

. Drugs, for 

instance, thioridazine, debrisoquine, phenformin, 

and captopril, which demonstrate comparatively 

limited therapeutic windows, can be difficult when 

used by 2D6-poor metabolizers 
23-24

.  

Various computational chemistry techniques have 

been used to study cytochrome P450s during the 

past few years, focusing on either the P450 proteins 

themselves, the small compounds that are 

processed by or inhibit P450s, or a combination of 

the two. Due to the clinical significance of P450s in 

the metabolism of xenobiotics and endogenous 

compounds and the identification of potential drug-

drug interactions, computational models that can 

predict the potential involvement of P450s in the 

metabolism of endogenous compounds, drugs, or 

drug candidates are important tools in drug 
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discovery and development 
25-27

. The purpose of 

this study was to develop a methodology for the 

search for prospective CYP2D6 inhibitors using 

various databases. Computational approaches were 

utilized to increase the likelihood of finding new 

inhibitors in a shorter period with high validation 

predictions. In our paper, we detail our attempts to 

pinpoint the crucial structural prerequisites for 

inhibiting CYP2D6 and how these prerequisites 

helped us develop new, powerful inhibitors. To do 

this, we have used ligand-based pharmacophore 

modelling techniques, molecular docking, studies 

of density functional theory, and virtual screening 

of huge chemical databases for new scaffolds. 

These methods provide an excellent opportunity to 

evaluate the theory of a prospective 

pharmacological action. 

MATERIAL AND METHODS: 

Selection of Data: The selection of data is a crucial 

step for identifying possible lead compounds for 

subsequent therapeutic development in virtual 3D 

database screening. Database searches typically 

have an advantage over other De Novo drug design 

methods since the retrieved or identified 

compounds may be conveniently accessible for 

pharmacological screening techniques. For the 

virtual screening of the compounds, Biovia 

Discovery Studio 2022's built-in databases were 

used, which were downloaded from the CHEMBL. 

A total of 2815 compounds were selected from the 

sizable database using filters for property, 

ADMET, toxicity prediction, Lipnski’s rule and 

Veber’s rule for their drug-like characteristics. 

These drugs' agonistic activity was measured in 

terms of IC50 values as a gauge of their 

pharmacological potency. Nevertheless, pIC50 

values were also computed.  

Preparation of ligands: The selected ligand 

molecules were prepared by using the prepare 

ligand module of Biovia Discovery Studio 2022 
26

, 

to correct the representation of ligand chemistry in 

vivo and enumerate several likely configurations by 

adding hydrogens, calculated 3D coordinates, 

enumerated ionization states, ionized functional 

groups, generated tautomers and isomers, 

duplicates were removed, bad valences were fixed, 

standardize charges for common groups were 

assigned and the largest fragment was retained to 

carry forward by following the CHARMm-based 

energy minimizer using 2000 steps of the steepest 

descent and the conjugate gradient method with a 

gradient of 0.01 kcal/mol RMSD.  

Pharmacokinetic and Pharmacodynamic 

Properties: All the small molecules were 

optimized with their property using different tools 

as filters by the property, ADMET (Absorption, 

Distribution, Metabolism, Excretion, and Toxicity), 

Lipinski rule (hydrogen bond donor groups- less 

than 5, molecular weight less than 500, hydrogen 

bond acceptor less than 10 and an octanol/water 

partition coefficient (LogP) value of less than 5) 

and Veber rule (0 or less than 10 rotatable bonds 

and polar surface area equal to or less than 140) for 

their drug-like qualities 
27, 28

.  

ADMET predictions include hepatotoxicity 
29

, 

human intestinal absorption 
30, 31

, aqueous 

solubility 
32-33

, and plasma protein binding 

characteristics (PPB) 
34-36

. Hit ligands that passed 

through each of these screening procedures and 

satisfied the requirements were used for molecular 

docking. The potential for developing new 

therapeutic molecules has increased as a result. It 

would be extremely beneficial to optimize these 

characteristics early in the drug design phase to 

reduce ADMET issues later in the development 

process.  

Specifically, blood-brain barrier (BBB), solubility, 

and absorption standards were concentrated on 

ADME. Based on the graphical depiction plotted 

against ADMET AlogP98 vs. ADMET PSA 2D in 

the best prediction space, which displays a 

contained level of 95% for BBB and 99% for 

human intestine absorption, respectively, the results 

are interpreted. The TOPKAT AMES mutagen city 

and NTP rodent carcinogenicity were analyzed for 

the selected candidates 
37-39

.  

Density Functional Theory (DFT) Calculations: 
The main molecular characteristics of a molecule 

were determined through DFT calculations. The 

candidates found in this investigation had their 3D 

structures optimized using DFT simulations. These 

structures were then employed in the calculations 

of the molecular orbitals, specifically the energy 

gap (E) and the highest occupied molecular orbital 

(HOMO), as well as the lowest unoccupied 

molecular orbital (LUMO) 
40

. 
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Preparation of Protein: The two targeted protein 

structures were selected for our studies with PDB 

id: 4WNU and 4XRZ having quinidine and BASE 

1 as in-bound inhibitors respectively. Both the 

protein structures are x-ray crystallographic 

structures which were downloaded via an inbuilt 

open URL tool in Biovia Discovery Studio 2022 
41

, 

from Protein Data Bank (https://www. rcsb.org). 

The protein structure of 4WNU is a human 

cytochrome P450 2D6 with quinidine complex 

whereas 4XRZ is a human cytochrome P450 2D6 

BACE1 Inhibitor 6 Complex. The resolution of the 

4WNU protein was reported as 2.26 Å 
42

 whereas 

for 4XRZ it was 2.40 Å 
43

. The length of selected 

proteins 4WNU and 4XRZ was found to have 467 

and 457 amino acids respectively. The protein 

reports were analyzed using the protein report and 

analysis tool of the macromolecule module in 

Biovia Discovery Studio 2022. It was evident from 

both the protein reports that some water molecules 

shared some bonding interactions with the protein 

and its bound inhibitor. Therefore, we preserved all 

those water molecules that interacted with the 

protein while allowing the rest to be deleted. The 

protein structures were prepared using the prepare 

protein tool which inserted missing atoms in 

incomplete residues, modelling missing loop 

regions using an inbuilt Looper algorithm, deleted 

alternate conformations (disorder), removed waters 

which were not required, standardized atom names, 

protonating titratable residues using predicted pKa 

and CHARMm based minimization tasks were 

performed.  

Binding site Prediction: The identification of 

druggable pockets or cavities on a target protein is 

crucial for the creation of innovative approaches in 

the drug discovery process. Protein surface cavities 

are commonly referred to as binding sites, which 

can exhibit a wide range of sizes and shapes, 

whether they are ligand-bound 
44

. Thus, in the 

context of drug discovery, more precise criteria are 

required to distinguish between strong binding 

sites. The shape and size of cavities, in addition to 

the chemical complementarity between the ligand 

and the protein atoms, appear to be the primary 

drivers of protein-ligand interactions that facilitate 

binding. It has been assumed that they do not 

model the ability of a detected cavity to bind a 

drug-like molecule; instead, they presume that a 

binding site is a cavity or cleft in the receptor 

surface.Biovia Discovery Studio 2022 has three 

protocol to predict binding sites. In this present 

work, we have used the From PDB site records tool 

under the Receptor-ligand interaction protocol for 

the identification of binding sites using protein 

information available in PDB databases. We have 

chosen our ligand molecules using the same 

binding pocket as the protein structures we had 

chosen because they contained inhibitors. The most 

time-coupled approach is energy-based, to sum up.  

By energetically mapping favorable regions for 

binding, they can compute the energy between a 

probe and the target on a grid 
45, 46

. 

Molecular Docking: Molecular docking is an in-

silico method for determining the potential ligand 

binding landscape within a macromolecular protein 

or receptor's binding site. Hit compounds from the 

virtual screening using various filters like ADME, 

toxicity predictions, Lipinski and Verber’s rule and 

pharmacophoric model were subsequently assessed 

by molecular docking studies to determine the 

potential binding orientation within the binding 

pocket of 4WNU and 4XRZ proteins.  The docking 

ligand (CDOCKER) tool of the Receptor-ligand 

interaction module of Biovia Discovery Studio 

2022 
47

, was utilized to check the interactions 

between the proteins and ligands. The CDOCKER 

algorithm has generated X:6.94255, Y:23.6642, Z:-

3.57496 sphere with a radius of 23Å coordinates 

for the binding site from receptor cavity of 4WNU 

and X:-5.8635, Y:26.7216, Z:-79.2442 with the 

radius of 26 Å for 4XRZ protein. The highest 

binding affinity of the ligand to the receptor protein 

is provided by a lower value of -CDOCKER energy 

and -CDOCKER interaction energy. The most 

stable protein-ligand complexes were then prepared 

for molecular dynamics (MD) simulations, which 

could replicate the circumstances of in-vitro and in-

vivo investigations. 

Calculate Binding free Energy: The binding free 

energy 
48, 49

 of simulated trajectories in Molecular 

Mechanics-Poisson Boltzmann with non-polar 

Surface Area (MMPBSA) was computed via the 

subsequent formula: 

Gbinding = G(a) – (G(b)+ G(c)) 

Here, Ga, it represents the protein-ligand complex's 

overall free energy, Gb is the free energy of protein 

and Gc, is the free energy of the ligand. 
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One of the most popular techniques for calculating 

the interaction energy of biomolecular complexes is 

the MM-PBSA methodology. MM-PBSA can 

decode large conformational changes and entropic 

contributions to the binding energy in conjunction 

with MD simulation. 

Molecular Dynamic Simulations: The Standard 

dynamic cascade (SDC) protocol of Biovia 

Discovery Studio 2022 was used to perform 

molecular dynamic simulation of protein-ligand 

complexes. Before SDC we applied CHARMM 

force field to the protein and ligand complex 

followed by their solvation by providing 

orthorhombic cell shape explicit periodic boundary. 

Some counterions (Na+, Cl−) were also added to 

the system during salvation to neutralize the 

system. The final frames generated in SDC were 

subjected to Dynamic NAMD for 50 ns on a GPU 

mode with NPT ensemble and 300K temperature 

which used the Langevin dynamic algorithm for 

temperature control and Langevin Piston for 

pressure control. Once dynamics had been 

completed the Analysis trajectory tool was used to 

get the Root mean squared deviation (RMSD), 

Root mean squared fluctuation (RMSF) and Radius 

of gyration (Rg). 

RESULTS AND DISCUSSION: 
Preparation of Compounds:  Structurally diverse, 

2815 compounds were chosen with their IC50 

values from the inbuilt 

P450_2D6_chembl_database of Biovia Discovery 

Studio 2022. As a measure of pharmacological 

potency, the agonistic activity of these compounds 

was measured in terms of IC50 values, as they were 

bio-assessed in similar circumstances. However, 

pIC50 values were also calculated. Initially, various 

pharmacokinetic, physiochemical and 

pharmacodynamic filters like ADMET/TOPKAT, 

Lipinski and Verber’s rule were applied for the 

selection of lead molecules. After, by keeping all 

the filters for the selection of lead molecules we 

prepared ligand molecules and enumerated their 

likely configuration. A detailed description of 

ADMET and Toxicity profiling of selected 

molecules is given in Table 1 and 2. The ADMET 

plot between ADMET_AlogP98 and 

ADMET_PSA_2D is given in Fig. 1, to filter out 

the molecules which were not coming under the 

selection criteria. Out of 2815 compounds, a list of 

twenty-five ligand molecules were chosen based on 

their pharmacokinetic (ADMET solubility level, 

ADMET_BBB level, ADMET_CYP2D6, ADMET 

Hepatotoxicity, ADMET absorption level, and 

ADMET_PPB prediction) and pharmacodynamic 

(TOPKAT Mouse Female NTP and TOPKAT 

Ames Mutagenesis) properties were listed in Table 

2. In conjunction with ligand molecules, quinidine 

serves as a standard reference molecule. The ligand 

molecules were further prepared by adding 

hydrogens using the software's prepare ligand 

protocol. Their 3D coordinates were then 

calculated, their ionization states were counted, 

their functional groups were ionized, tautomers and 

isomers were produced, duplicates were eliminated, 

incorrect valences were fixed, charges for common 

groups were standardized, and the largest 

fragments were sorted. In Biovia Discovery Studio 

there are six different methods available for the 

conformation generation. In the present work, the 

BEST conformation method was chosen for the 

generation of conformation, as it works with the 

best coverage of conformational space. Detailed 

information about the TOPAKT Ames Mutagenesis 

and Mouse Female NTP model prediction for 

selected compounds, is given in Fig. 3 to 7, with its 

top chemical features for positive and negative 

contribution towards toxicity.  

TABLE 1: DETAILED DESCRIPTION OF CRITERIA FOR SELECTION OF 22 LIGAND MOLECULES FROM 

THE SERIES OF 2860 MOLECULES BASED ON THEIR PHARMACOKINETIC PREDICTIONS (ADMET) 

Parameters Description 

Aqueous solubility Improved bioavailability of drug with solubility (DS predicts at 25° C) 

Level=3 (Good) 

Blood-brain barrier penetration (BBB) 

 

To predict blood/brain conc., drug should cross BBB, hence lipophilic, 

especially for CNS drugs level=0 (very high), level=1 (high), level=2 (optimal) 

Cytochrome P450 (CYP450) 2D6 

inhibition 

To predict enzyme inhibition, involved in metabolism, primary located in liver 

and CNS level=False (non-inhibition), True (inhibition) 

Hepatotoxicity To predict liver toxicity level= False (Good), True (Bad) 

Human intestinal absorption (HIA) 

 

To predict absorption after oral administration, also predicts polar surface area 

(PSA), helps in drug transportation, more PSA effects drug penetration into cell 
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membrane (LT 140 Å) level= 0 (Good), 1(moderate) 

Plasma protein binding 

 

To predict binding of drug to blood plasma protein, binding to PPB affects drug 

bioavailability, hence effects its efficacy. level= False (Good) 

 
FIG. 1: ADMET PLOT IN BETWEEN ADMET_ALOGP98 AND ADMET_PSA_2D AFTER FILTERING THE 

LIGAND MOLECULES BASED ON THEIR ADMET PROPERTIES 

TABLE 2: A LIST OF SELECTED TWENTY-FIVE LIGAND MOLECULES ON BASIS OF THEIR 

PHARMACOKINETIC PROPERTIES (ADMET SOLUBILITY LEVEL, ADMET_BBB LEVEL, ADMET CYP2D6, 

ADMET_HEPATOTOXICITY, ADMET ABSORPTION LEVEL, ADMET PPB PREDICTION) AND 

PHARMACODYNAMIC PROPERTIES (TOPKAT MOUSE FEMALE NTP AND TOPKAT AMES MUTAGENESIS) 

Comp IC5

0 

ADMET 

solubility 

level 

ADM

T 

BBB 

level 

ADMET

CYP2D6 

ADMET

Hepato- 

toxicity 

ADMET 

Absorption 

level 

ADMET 

PPB 

prediction 

TOPAKT 

Mouse_ 

Female 

NTP 

TOPAKT 

Ames 

Mutagenesis 

cmp1 

cmp2 

cmp3 

cmp4 

cmp5 

cmp6 

cmp7 

cmp8 

cmp9 

cmp10 

cmp11 

cmp12 

cmp13 

cmp14 

cmp15 

cmp17 

cmp18 

cmp19 

1 

6.3 

6.3 

7.9 

6.3 

10 

1.6 

6.3 

6.3 

10 

7.9 

10 

1 

6.3 

4 

6.3 

6.3 

6.3 

3 

2 

2 

3 

2 

3 

2 

3 

3 

2 

0 

2 

3 

1 

2 

1 

1 

4 

2 

0 

1 

3 

1 

2 

1 

1 

3 

1 

0 

1 

2 

0 

1 

0 

4 

3 

false 

true 

false 

false 

false 

true 

true 

true 

false 

false 

true 

true 

false 

true 

false 

true 

true 

false 

false 

false 

false 

true 

false 

false 

true 

false 

false 

true 

false 

false 

false 

false 

true 

true 

true 

false 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

0 

0 

1 

0 

1 

2 

0 

true 

true 

false 

true 

true 

false 

true 

true 

false 

true 

true 

true 

false 

true 

false 

true 

false 

false 

Non-Carcinogen 

Non-Carcinogen 

Non-Carcinogen 

Non-Carcinogen 

Non-Carcinogen 

Carcinogen 

Non-Carcinogen 

Carcinogen 

Non-Carcinogen 

Non-Carcinogen 

Non-Carcinogen 

Non-Carcinogen 

Carcinogen 

Non-Carcinogen 

Non-Carcinogen 

Non-Carcinogen 

Non-Carcinogen 

Non-Carcinogen 

Non-Mutagen 

Non-Mutagen 

Non-Mutagen 

Non-Mutagen 

Non-Mutagen 

Non-Mutagen 

Non-Mutagen 

Non-Mutagen 

Non-Mutagen 

Non-Mutagen 

Non-Mutagen 

Non-Mutagen 

Non-Mutagen 

Non-Mutagen 

Non-Mutagen 

Non-Mutagen 

Non-Mutagen 

Non-Mutagen 
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cmp20 

cmp21 

cmp22 

cmp23 

cmp24 

cmp25 

quinidine 

2.5 

12.6 

12.6 

10 

10 

10 

1.2 

2 

2 

1 

2 

1 

2 

3 

1 

0 

0 

0 

1 

0 

2 

false 

true 

false 

true 

false 

true 

true 

true 

false 

false 

false 

true 

false 

false 

0 

0 

1 

1 

0 

0 

0 

true 

true 

true 

true 

true 

true 

false 

Non-Carcinogen 

Non-Carcinogen 

Non-Carcinogen 

Non-Carcinogen 

Carcinogen 

Non-Carcinogen 

Carcinogen 

Mutagen 

Non-Mutagen 

Non-Mutagen 

Non-Mutagen 

Mutagen 

Non-Mutagen 

Non-Mutagen 

 

 
FIG. 2: TOPAKT AMES MUTAGENESIS MODEL PREDICTION FOR CMP1, WITH ITS TOP CHEMICAL 

FEATURES FOR POSITIVE AND NEGATIVE CONTRIBUTION TOWARDS TOXICITY 
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FIG. 3: TOPAKT_MOUSE_FEMALE_NTP MODEL PREDICTION FOR CMP1, WITH ITS TOP CHEMICAL 

FEATURES FOR A POSITIVE AND NEGATIVE CONTRIBUTION TOWARDS TOXICITY 

 
FIG. 4: TOPAKT_AMES MUTAGENESIS MODEL PREDICTION FOR CMP13, WITH ITS TOP CHEMICAL 

FEATURES FOR POSITIVE AND NEGATIVE CONTRIBUTION TOWARDS TOXICITY 

 
FIG. 5: TOPAKT_ MOUSE_FEMALE_NTP MODEL PREDICTION FOR CMP13, WITH ITS TOP CHEMICAL 

FEATURES FOR A POSITIVE AND NEGATIVE CONTRIBUTION TOWARDS TOXICITY  
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FIG. 6: TOPAKT_ AMES MUTAGENESIS MODEL PREDICTION FOR QUINIDINE, WITH ITS TOP CHEMICAL 

FEATURES FOR POSITIVE AND NEGATIVE CONTRIBUTION TOWARDS TOXICITY  

 
FIG. 7: TOPAKT_ MOUSE_FEMALE_NTP MODEL PREDICTION FOR QUINIDINE, WITH ITS TOP CHEMICAL 

FEATURES FOR POSITIVE AND NEGATIVE CONTRIBUTION TOWARDS TOXICITY 

Preparation of Protein Structure: The selected 

protein structures were prepared by using protein 

prepare protocol of Biovia Discovery Studio 2022. 

First protein structure was analyzed using Protein 

report and analysistool.  

During the protein preparation, the HOH753, 

HOH767, HOH769, HOH821, HOH822, and 

HOH887 water molecules for 4WNU and 

HOH714, HOH720, HOH721, HOH725, HOH752, 

HOH764 and HOH778 for 4XRZ were retained. 

The pocket amino acids of 4WNU as ARG101, 

VAL119, PHE120, TRP128, ARG132, ALA305, 

GLY306, THR309, THR313, VAL374, HIS376, 

PHE436, SER437, ARG441, CYS443, LEU444, 

GLY445 and for 4XRZ as ARG101, VAL119, 

PHE120, TRP128, ARG132, ILE186, THR309, 

THR313, GLN364, VAL374, HIS376, LEU399, 

PRO435, PHE436, SER437, ARG441, CYS443, 

LEU444, GLY445 were identified. The structures 

of protein were validated by Ramachandran plot 

Fig. 8 showing maximum amino acids into the 

allowed region. The local backbone conformation 

of each residue in a protein is graphically depicted 

by the Ramachandran Plot. In the plot glycine was 

represented as a triangle, proline as a square, and 

all other types as a circle. 
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FIG. 8: (A) RAMACHANDRAN PLOT OF PROTEIN 4WNU (B) RAMACHANDRAN PLOT OF PROTEIN 4XRZ 

Binding site Prediction: Among three protocols 

present in Biovia Discovery Studio we have used, 

from PDB site records tool from Receptor-ligand 

interaction protocol. The software uses Flood 

filling algorithm for the generation of binding sites. 

The X, Y and Z coordinates of the binding site 

sphere were identified as 5.094727, -2.717602 and 

14.032852 respectively. The radius of the binding 

site sphere was found to be 8.8 Aº. The red sphere 

of the binding site on both protein structures is 

shown in Fig. 9. 

  
FIG. 9: (A) RED SPHERE SHOWS THE BINDING SITE OF PROTEIN 4WNU (B) RED SPHERE SHOWS THE 

BINDING SITE OF PROTEIN 4XRZ 

Molecular Docking: The present research work 

has been done via using the CDOCKER protocol of 

Biovia Discovery Studio 2022 for docking of 

ligand molecules 
50

 CDOCKER is a robust 

CHARMm-based docking technique that has been 

demonstrated to produce extremely accurate 

docked poses. Here, high-temperature molecular 

dynamics is used to create a collection of ligand 

conformations. The process of translating the 

ligand's centre to a specific point within the 

receptor active site, followed by a series of random 

rotations, results in random orientations of the 

conformations. Every orientation is put through 

simulated molecular dynamics annealing. The 

temperature is raised to a high level and then 

lowered to the desired level. A final minimization 

of the ligand in the rigid receptor using non-

softened potential is performed. The CHARMm 

energy (interaction energy plus ligand strain) and 

the interaction energy alone are determined for 

each final position. The stances are sorted by 

CHARMm energy, and only the poses with the 
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highest scores (more adverse, favoring binding) are 

kept. CDOCKER can also be used as a docking 

refinement method if ligands are pre-positioned in 

the receptor active site (without a site sphere 

defined). The workflow followed for CDOCKER 

docking protocol is given in Fig. 10. 

 
FIG. 10: WORKFLOW FOLLOWED FOR CDOCKER 

DOCKING PROTOCOL OF BIOVIA DISCOVERY 

STUDIO 

The CDOCKER docking protocol used the 

Momany-Rone ligand partial charge method. The 

pose cluster radius was set to 0.1 for the generation 

of 10 random conformations, with 1000 dynamic 

steps. The docking summary shown by the software 

includes the number of refined poses and the 

ligands which failed to be docked. Docking poses 

are ordered by -CDOCKER_Energy where a higher 

value indicates a more favourable binding, this 

score includes internal ligand strain energy and 

receptor-ligand interaction energy. The negative of 

the interaction energy is also reported as -

CDOCKER_Interaction_Energy.  The top two 

compounds were designated as the best inhibitors 

and chosen for additional analysis after they were 

bound to each target with the highest binding 

affinity.The docked results for top ligand molecules 

with their best poses i.e. cmp1 and cmp13 were 

analysed in terms of -CDOCKER Energy and -

CDOCKER Interaction Energy.  

The compound cmp1 demonstrated the lowest 

binding affinity 26.4705 kcal/mol with 4WNU and 

23.5713 kcal/mol with 4XRZ in terms of -

CDOCKER Energy and 44.37 kcal/mol with 

4WNU and 40.691 kcal/mol with 4XRZ in terms of 

-CDOCKER Interaction Energy which was 

followed by the compound cmp13, 14.9831 

kcal/mol with 4WNU and 12.6244 kcal/mol with 

4XRZ in terms of -CDOCKER Energy and 31.9318 

kcal/mol with 4WNU and 29.6301 kcal/mol with 

4XRZ in terms of -CDOCKER Interaction Energy. 

As a reference molecule, quinidine hasn't 

demonstrated particularly strong interactions with 

any proteins. The -CDOCKER Interaction Energy 

was 45.9235 kcal/mol with 4XRZ and 44.2938 

kcal/mol with 4WNU, while the -CDOCKER 

Energy for quinidine was determined to be -

17.8009 kcal/mol with 4WNU and -12.0632 

kcal/mol with 4XRZ. Comparing the compounds 

cmp1 and cmp13 to the reference quinidine 

molecule, it was found that the former 

demonstrated noticeably better binding interactions 

with the chosen proteins.  The -CDOCKER Energy 

and -CDOCKER interaction Energy for quinidine, 

cmp1, and cmp13 are shown in Table 5 and 6. The 

docking score and binding interactions of cmp1 

have shown the most significant association with 

the 4WNU as compared with cmp13. The oxygen 

atom at position ten in compound cmp1 has been 

shown to form one conventional hydrogen bonding 

with SER304.  

Three other carbon-hydrogen bindings were also 

shown, one with GLN244 by another oxygen atom 

at position thirteen, and two with SER304 and 

oxygen and hydrogen atoms at positions eleven and 

six respectively. Position sixteen is the aromatic 

ring's pi alkyl interaction with GEU121. These 

bonds, especially hydrogen bonds, have a 

significant impact on the specificity of ligands. 

Additionally, three interactions between water 

molecule HOH822 and the oxygen atoms at 

positions one and eight have been observed. In 

compound cmp13, there are four carbon hydrogen 

bonds were identified one in between one hydrogen 

atom present in seventh position and GLU216, two 

in between two hydrogen present in second 

position and SER304 and one in between triazole 

moiety and LEU213.  

A total of four pi alkyl interactions were observed, 

where two formed in between morpholine ring and 

PHE483, PHE120, one in between ALA300 and 

aromatic ring present and one in between triazole 
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moiety and LEU213. It was also observed that 

PHE247 and the aromatic ring had one pi-pi 

interaction. The reference molecule quinidine, on 

the other hand, has shown one conventional 

hydrogen bond between hydrogen atom of -OH 

group and GLU216. One hydrogen bond was seen 

in the HOH822 and -OH group. Whereas the 

reference molecule, quinidine, has shown one 

conventional hydrogen bond in between hydrogen 

atom of -OH group and GLU216.One hydrogen 

bond was seen in the HOH822 and -OH group. 

Additional interactions that were observed involved 

pi alkyl and different amino acids, such as 

ALA300, PHE120, PHE483, ALA305, LEU248 

and LEU110.Figure 17 provides a detailed 

graphical description of all the bonding with cmp1, 

cmp2, and quinidine. In 17a, the compound cmp1 

docking position with 4WNU is displayed, and in 

17b, the cmp13 docking stance with 4WNU is 

illustrated, in 17c quinidine docking position with 

4WNU is presented, while the interaction diagram 

of cmp1 with 4WNU is depicted in 17d, in 17e the 

interaction diagram of cmp13, and the 17f 

quinidine interaction diagram is illustrated. 

It was discovered that certain chemicals' binding 

interactions with 4XRZ were less substantial than 

those with 4WNU. It has been discovered that the 

compound cmp1 interacts pi alkyl with PHE120, 

ALA305, and LEU248. The compound cmp13 

exhibited a single carbon-hydrogen bond between 

the fifth-position hydrogen and GLU216, as well as 

between the pi anion and GLU216 and PHE247, 

LEU213, and ALA305, respectively. On the other 

hand, quinidine has demonstrated carbon-hydrogen 

interaction between the hydrogen atom and 

SER304 and the oxygen atom and LEU213. It has 

been seen that HOH714 and hydrogen atoms 

interact. However, interactions with PHE120, 

ALA305, LEU110, Leu121, and GLY212 were 

also seen to be pi alkyl, alkyl, and amide pi 

stacked.   Fig. 18 provides a detailed graphical 

description of all the bonding with cmp1, cmp2, 

and quinidine. In 18a, the compound cmp1 docking 

position with 4XRZ is displayed, and in 18b, the 

cmp13 docking stance with 4XRZ is illustrated, in 

18c quinidine docking position with 4XRZ is 

presented, while the interaction diagram of cmp1 

with 4XRZ is depicted in 18d, in 18e the 

interaction diagram of cmp13, and the 18f 

quinidine interaction diagram is illustrated. 

TABLE 3: DOCKING RESULTS OF COMPOUNDS 

CMP1, CMP13 AND QUINIDINE WITH 4WNU 

S. 

no. 

Compound -CDOCKER 

Energy 

-CDOCKER 

Interaction Energy 

1 cmp1 26.4705 44.37 

2 cmp13 14.9831 31.9318 

3 quinidine -17.8009 44.2938 

 
FIG. 11: (A) CMP1 DOCKING POSE WITH 4WNU (B) CMP13 DOCKING POSE WITH 4WNU (C) QUINIDINE 

DOCKING POSE WITH 4WNU (D) CMP1 INTERACTION DIAGRAM WITH 4WNU E) CMP13 INTERACTION 

DIAGRAM WITH 4WNU (F) QUINIDINE INTERACTION DIAGRAM WITH 4WNU 
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TABLE 4: DOCKING RESULTS OF COMPOUNDS CMP1, CMP13 AND QUINIDINE WITH 4XRZ 

S. no. Compound -CDOCKER Energy -CDOCKER Interaction Energy 

1 cmp1 23.5713 40.691 

2 cmp13 12.6244 29.6301 

3 quinidine -12.0632 45.9235 

 
FIG. 12: (A) CMP1 DOCKING POSE WITH 4XRZ (B) CMP13 DOCKING POSE WITH 4XRZ (C) QUINIDINE 

DOCKING POSE WITH 4XRZ D) CMP1 INTERACTION DIAGRAM WITH 4XRZ (E) CMP13 INTERACTION 

DIAGRAM WITH 4XRZ (F) QUINIDINE INTERACTION DIAGRAM WITH 4XRZ 

DFT Calculations: Using the density functional 

quantum mechanics method in DMol3, the 

Calculate Energy (DFT) protocol allowed us to 

determine the energy or optimize the shape of a 

group of tiny molecules. Characteristics including 

the dipole, atomic charges, HOMO and LUMO 

energies, and total energy, among others. This 

protocol helped to perform density functional QM 

calculation using DMol3. It used density functional 

theory (DFT), which is implemented in DMol3, to 

calculate a range of molecular and atomic 

characteristics. Using delocalized internal 

coordinates, DMol3 has long been one of the 

quickest techniques for molecular DFT 

computations and can efficiently carry out structure 

optimizations of molecular systems. The protocol 

has calculated various energies such as total 

energy, binding energy, HOMO and LUMO energy 

and dipole magnitude. The electron density 

isovalue is set to 0.03 by default. Molecular orbitals 

have two phases: the positive phase, which is 

coloured blue, has an isovalue of 0.01 and is 

colored negatively, which is colored red. In Figure 

13, a comprehensive pictorial representation is 

provided. In Fig. 13A, the electrostatic potential is 

mapped on the isosurface of the electron density of 

cmp1, and in Fig. 13B, the electrostatic potential is 

mapped on the isosurface of the electron density of 

cmp13. Fig. 13C displays the visualization of the 

HOMO molecular orbitals of cmp1, while Fig. 13D 

displays the visualization of the HOMO molecular 

orbitals of cmp13. Fig. 13E describes the LUMO 

molecular orbitals of cmp1 and Fig. 13F displays 

the LUMO molecular orbitals of cmp13. However, 

Table 5 has displayed all the energies calculated 

with the implementation of DMol3, the total energy 

of cmp1 is -1,063.33 and cmp13 is -715.506, the 

binding energy of cmp1 is -7.83124 and for cmp13 

is -5.7123, HOMO and LUMO energies for cmp1 

were found to be -0.198091 and -0.105304, 
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whereas for cmp13 HUMO was found to be -

0.186289 and LUMO -0.0798764. The dipole 

magnitude calculated for both cmp1 and cmp13 

was 2.58611 and 1.98999 respectively. 

 
FIG. 13: (A) SURFACE PLOTS SHOWING THE ELECTROSTATIC POTENTIAL MAPPED ON THE 

ISOSURFACE OF THE ELECTRON DENSITY OF CMP1 (B) SURFACE PLOTS SHOWING THE 

ELECTROSTATIC POTENTIAL MAPPED ON THE ISOSURFACE OF THE ELECTRON DENSITY OF CMP13 (C) 

VISUALIZATION OF THE HOMO MOLECULAR ORBITALS OF CMP1 (D) VISUALIZATION OF THE HOMO 

MOLECULAR ORBITALS OF CMP13 (E) VISUALIZATION OF THE LUMO MOLECULAR ORBITALS OF CMP1 

(F) VISUALIZATION OF THE LUMO MOLECULAR ORBITALS OF CMP13 

TABLE 5: DETAILS OF CALCULATED MOLECULAR PROPERTIES OF CMP1 AND CMP2 

S. 

no. 

Compound Total_energy_

DMol3 

Binding_energy_D

Mol3 

HOMO_energy_D

Mol3 

LUMO_Energy_

DMol3 

Dipole_Mag_

DMol3 

1 cmp1 -1,063.33 -7.83124 -0.198091 -0.105304 2.58611 

2 cmp13 -715.506 -5.7123 -0.186289 -0.0798764 1.98999 

 

Molecular Dynamic Simulation: An 

understanding of the biomolecule's atomic structure 

is extremely beneficial and frequently yields 

significant insight into how it functions. However, 

because the atoms in a biomolecule are constantly 

in motion, the dynamics of the individual 

molecules affect both their intramolecular 

connections and molecular function. In addition to 

a static image, it would be appealing to be able to 

view these biomolecules in motion, tamper with 

them at the atomic level, and observe how they 

react. Unfortunately, controlling how individual 

atoms move while being observed is challenging. 

Working with a computer simulation of the 

relevant proteins at the atomic level is an appealing 

alternative. Based on a broad model of the physics 

driving interatomic interactions, molecular 

dynamics (MD) simulations predict the long-term 

motion of every atom in a protein or other 

molecular system 
51

. Molecular dynamics can be 

used to generate a realistic model of a structure's 

motion, perform conformational searching, produce 

a time series analysis of structural and energetic 

properties, explore energy decay, and analyze 

solvent effects. Molecular dynamics simulations 

may help in understanding critical aspects of 

protein function that involve both small-scale and 

large-scale atomic movements. Assigning a force 

field to the input molecule in molecular mechanics 

simulations is a crucial step. On basis of our 

docking results, we have taken the cmp1 in 

complex with 4WNU for simulation studies. In the 

Biovia Discovery Studio, the CHARMm force 

field, using automatic parameter estimation allows 

for the systematic assignment of all forcefield 

parameters for virtually any form of molecule, even 

by inexperienced users. The CHARMm force field 

is a highly flexible molecular mechanics and 

dynamics program. After assigning the force field 

to the complex structure of cmp1 with 4WNU, 
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further subjected to solvation protocol. Where 

water boundaries were assigned around the 

complexes. This step added orthorhombic explicit 

solvation boundary with a minimum of 3 Aْ 

distance with an addition of 5171 water, 14 

Sodium, 16 Chloride. Following solvation, the 

complexes were subjected to Standard Dynamic 

Cascade (SDC) protocol with two-step 

minimizations with maximum steps of 500 each. 

First, the Steepest Decent method of minimization 

was set followed by the Conjugate Gradient. The 

heating step was set to be 50ps and results were 

saved at each 20ps interval, targeted 300 (K) 

followed by 150ps equilibration. The final frames 

were got in the production step at 50ps with NPT 

type. The SDC protocol of Discovery Studio uses 

Leapfrog Verlet dynamic integrator with the 

SHAKE constraint algorithm. The restart files from 

SDC were subjected to Dynamics (NAMD) for 100 

ns with GPU mode to get the final confirmations. 

The Dynamics (NAMD) of Discovery Studio uses 

the Langevin Dynamics algorithm for temperature 

control and the Langevin Piston algorithm for 

pressure control. The total energy, potential energy, 

kinetic energy, Van der Walls energy, and 

electrostatic energy of the system were found to be 

-60141.8950 kcal/mol, -75046.1817 kcal/mol, 

14904.2867 kcal/mol, -421.4725kcal/mol and -

81251.4142 kcal/mol respectively. The structural 

characteristics of a molecular dynamics trajectory 

can be examined using the Analyze Trajectory 

protocol to get the RMSD, RMSF and Rg keeping 

the first frame as a reference with respect to their 

atom fit, from backbone to backbone.  

 
FIG. 14: FLOWCHART OF THE STEPS FOLLOWED DURING MOLECULAR DYNAMIC SIMULATION 

 
FIG. 15: (A) THE PLOT IN-BETWEEN TIME (NS) AND TEMPERATURE (K) FOR CMP1 COMPLEX WITH 

4WNU (B) RMSD PLOT OF CMP1 COMPLEX WITH 4WNU (C) THE PLOT IN-BETWEEN TIME (NS) AND 

TOTAL ENERGY (KCAL/MOL) FOR CMP1 WITH 4WNU(D) RMSF PLOT OF CMP1 WITH 4WNU
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Where the Root mean square deviation (RMSD) 

was studied to analyze the average movement of 

atoms throughout molecular dynamics simulation, 

Root mean square fluctuation (RMSF) was studied 

to analyze the fluctuation of amino acid residues / 

Secondary structure of protein with respective to 

initial structure, and Radius of gyration (Rg) was 

used to study weighted-RMSD of atoms as a 

function of time and make to ensure the 

compactness of the protein structure during 

dynamics. 

MMPBSA Calculation: In drug development 

initiatives, it is crucial to comprehend and measure 

the intensity of interactions between ligands and 

proteins to determine how modifications to a ligand 

may affect binding affinity. Molecular Mechanics 

Generalized Born Surface Area (MM-GBSA) was 

used to calculate the binding free energy change of 

the simulated trajectories, utilizing vander Wall 

atomic radii and an implicit solvent dielectric 

constant of 80. Using the Momany Rone partial 

charge estimation method, the entropy temperature 

was maintained at 298.15 kelvin as the default 

value. TheMMPBSA was calculated as 

DeltaG_Average -26.1570 kcal/mol. 

CONCLUSION: In the present work, we have 

taken the series of 2815 small molecules which are 

present in the 3D databases of Biovia Discovery 

studio 2022 against Cytochrome P450 2D6 via in-

silico screening. By applying pharmacokinetic and 

pharmacodynamic filters for high throughput 

screening we have got 25 molecules from the 

series. Whereas two compounds cmp1 and 

cmp13have shown capabilities against these filters, 

so we have taken these two molecules for 

molecular docking and molecular dynamic 

simulations studies to check their binding 

interactions, affinity and sustainability. The 

docking studies have revealed that the compound 

cmp1in complex with 4WNU had exhibited the 

lowest -CDOCKER energy and -CDOCKER 

interaction energy with values 26.4705 kcal/mol 

and 44.37 kcal/mol respectively, whereas cmp13 

exhibited the -CDOCKER energy and -CDOCKER 

interaction energy with values 14.9831 kcal/mol 

and 31.9318 kcal/mol respectively. The docking 

studies of cmp1 and amp13 with 4XRZ 

demonstrated that cmp1 exhibited -CDOCKER 

energy and -CDOCKER interaction energy with 

values of 23.5713 kcal/mol and 40.691 kcal/mol 

respectively, whereas cmp13 exhibited 12.6244 

kcal/mol and 29.6301 kcal/mol respectively. The 

standard molecule i.e. quinidine, has shown -

17.8009 kcal/mol and 44.2938 kcal/mol as -

CDOCKER energy and -CDOCKER interaction 

energy with 4WNU and -12.0632 kcal/mol 45.9235 

kcal/mol as -CDOCKER energy and -CDOCKER 

interaction energy with 4XRZ. Based on these 

results, we have taken compound cmp1 for our 

molecular dynamic simulations to check the 

sustainability and stability of cmp1 in a complex 

with 4WNU. The CHARMms-based molecular 

dynamic simulation was employed for 100 ns. The 

RMSD was RMSF recorded with respect to the 

backbone-to-backbone atom group fit for each 

conformation. The MMPBSA binding energies 

were also calculated. The molecular visualization 

revealed that cmp1 as an inhibitor for 4WNU 

showed significant binding. Hence, we have 

considered cmp1 as a potential molecule based on 

computational analysis including molecular 

docking and molecular dynamic simulations. As we 

have concluded that cmp1 has shown interestingly 

significant results with 4WNU than 4XRZ. The 

present study, based on computational analysis has 

demonstrated that cmp1 has great potential as a 

Cytochrome P450 2D6 inhibitor. In order to 

demonstrate the same, this molecule needed to be 

further examined in-vitro and in-vivo. 
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