(Research Article)

10

IJPSR (2024), Volume 15, Issue 9

INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES AND RESEARCH

Received on 18 April 2024; received in revised form, 10 May 2024; accepted, 24 May 2024; published 01 September 2024

DESIGN AND EVALUATION OF BILAYER & TRILAYER TABLET COMBINATION OF ANTIRETROVIRAL DRUGS

R. Natarajan^{*} and R. Sambath Kumar

Department of Pharmaceutics & Research, The Erode College of Pharmacy, Erode - 638112, Tamil Nadu, India.

Keywords:

HIV medication combinations, Immediate release, Sustained release, Bilayer and trilayer tablets and AIDS

Correspondence to Author: Dr. R. Natarajan

Professor and Head, Department of Pharmaceutics & Research, The Erode College of Pharmacy, Erode - 638112, Tamil Nadu, India.

E-mail: svcpnatarajan@gmail.com

ABSTRACT: A non-nucleoside reverse transcriptase inhibitor (NNRTI) is Nevirapine. Zidovudine and Lamivudine are antiretroviral medications that are members of the nucleoside analogue class. Combination of three commonly used in the management of the Human drugs Immunodeficiency Virus (HIV) infection. Nevirapine exhibits a decent initial release, while Zidovudine and Lamivudine demonstrate sustained release in the produced trilayer and bilayer tablets. The outcome demonstrates that the release profile is not affected by layer separation and is highly dependent on the drug to polymer ratio. The results show that the release can be effectively controlled for up to 12 hours using a 1:1 ratio of zidovudine and HPMC and a 1:1 ratio of lamivudine and ethyl cellulose. It is clear that formulation F1, out of all formulations, has the best sustained release, drug content, and highest regression values. Nevirapine fits best in first order release of Zidovudine in all of the F1-F6 formulations.

INTRODUCTION: The outbreak of acquired immune deficiency syndrome is one of the biggest problems the medical profession is now confronting combinations of three medications that are frequently prescribed to treat HIV infections^{1, 2}. Nevirapine is the first non-nucleoside reverse transcriptase inhibitor and a strong inhibitor of HIV-1 replication. Nevirapine has a long first-pass metabolism and а about 45-hour relative elimination half-life. With its wide range of applications in treating AIDS, Zidovudine (AZT), the first anti-HIV compound approved for clinical use, is soluble in water, soluble at all pH values, and absorbs throughout the gastrointestinal tract.

For these reasons, sustained release tablets³ are a better option than conventional dosage forms. A strong antiviral medication called lamivudine is used to treat AIDS⁴. A strong nucleoside analogue reverse transcriptase inhibitor is lamivudine. After oral consumption, lamivudine is quickly absorbed and has a bioavailability of more than 80%. Because lamivudine ⁵ has a moderate half-life of five to seven hours, it is delivered numerous times a day. Hydroxypropyl Methylcellulose is frequently utilised in controlled drug delivery systems that are hydrophilic. In controlled-release dosage formulations, ethyl cellulose has been widely employed as a release retardant because to its hydrophobic properties ⁶.

METHODS:

Preparation of Standard Curve: Nevirapine obeys Beer-Lambert's law, its spectrophotometric estimate of 312 nm can be obtained using 0.1 N HCL as a medium and falls between 5 and 25

 μ g/ml. Since zidovudine obeys Beer's-Lambert's law, its spectrophotometric estimate of 267 nm can be obtained using 0.1 N HCL as a medium ⁷ and a range of 5–25 μ g/ml. Since lamivudine obeys Beer's-Lambert's law, its spectrophotometric estimation at 270 nm falls between 5 and 25 μ g/ml when 0.1 N HCL is used as the medium.

Preparation of the Trilayer Tablets: The composition of Tri layer tablets of the different formulations was given in the **Table 1.**

Preparation of Nevirapine Immediate Release Layer: Nevirapine, super disintegrant, and excipients make up the instant release layer. One super disintegrant that was used was sodium starch glycolate. Excipients, super disintegrant, and the necessary quantity of medication were taken and mixed. Zidovudine sustained release layer preparation ². The polymer HPMC K100M was utilised to prepare the zidovudine sustained release layer. Zidovudine and HPMC E 15 LV are present in the formulations in the following ratios: 1:0.5,1:0.75, and 1:1. Using a 12 mm curved punch and the wet granulation process, the tablets were made.

Preparation of Lamivudine Sustained Release Layer: The polymer ethylene cellulose was used to create the lamivudine sustained release layer. Lamivudine and ethyl cellulose are present in the formulations in the following ratios: 1:0.5,1:0.75, and 1:1. The tablets were made utilising a 12 mm curved punch and the wet granulation process ⁵.

TABLE 1: COMPOSITION OF TRILAYER TABLETS

Composition	F1	F2	F3
	Immedi	ate release layer Qty (mg)/tab	
Nevirapine	200	200	200
Sodium starch glycolate	20	20	20
Micro crystalline cellulose	20	245	132.5
	Sustain	ed release layer Qty (mg)/tab	
Zidovudine	300	300	300
HPMC E 15 LV	300	150	225
	Sustain	ed release layer Qty (mg)/tab	
Lamivudine	150	150	150
Ethyl cellulose	150	75	112.5

Preparation of the Bilayered Tablets: The composition of Bilayer tablets ^{8, 9} of the different formulations was given in the **Table 2**.

Preparation of Nevirapine Immediate Release Layer: Nevirapine, super disintegrant, and excipients make up the instant release layer. One super disintegrant that was used was sodium starch glycolate. Excipients, super disintegrant, and the necessary quantity of medication were taken and mixed. **Preparation of Zidovudine and Lamivudine Sustained Release Layer:** Ethyl cellulose and the polymer HPMC E 15 LV were used to create the sustained release layer for zidovudine ^{3, 10, 11} and lamivudine ^{12, 13}. The formulations include the following ratios: 1:0.5, 1:0.75, and 1:1 for zidovudine and HPMC E 15 LV, and 1:0.5, 1:0.75, and 1:1 for lamivudine and ethyl cellulose. Using a 12 mm curved punch and the wet granulation process, the tablets were made.

TABLE 2: COMPOSITION OF BILAYER TABLETS

Composition	F4	F5	F6		
	Immed	iate release layer Qty(mg)/ta	b		
Nevirapine	200	200	200		
Sodium starch glycolate	20	20	20		
Micro crystalline cellulose	20	245	132.5		
Zidovudine	Sustained release layer Qty(mg)/tab				
	300	300	300		
Lamivudine	150	150	150		
HPMC E 15LV	300	150	225		
Ethyl cellulose	150	75	112.5		

In-vitro Drug Release Studies: Dissolution Parameters:

Medium: 0.1 N HCl (pH 1.2), Phosphate buffer pH 6.8

Apparatus: USP, XXIII-type 2 (Paddle) RPM 50

Temperature: 370 ±0.5°C

Volume: 900 ml

Procedure: Utilizing a USP dissolving paddle assembly at 50 rpm and 37 o ± 0.5 °C, the release of nevirapine, zidovudine, and lamivudine from the trilayer and bilayer tablets was investigated for up to two hours in 900 ml of 0.1 N HCl and 900 ml of phosphate buffer pH 6.8 for up to twelve hours as the dissolution medium. Using a UV Visible spectrophotometer set to 312 nm, 267 nm, and 270 nm, the drug content of nevirapine, zidovudine, and lamivudine was measured after an aliquot (1 ml) was extracted at predetermined intervals and diluted to 10 ml with the dissolving media.

To maintain the dissolution volume, an equivalent volume of new dissolving medium was added. For duration of 12 hours, three dissolution investigations were conducted, and the mean value was determined ^{14, 15}.

Statistical Analysis: The Tucky post test and oneway analysis of variance (ANOVA) were used to statistically evaluate the various attributes of the formulations. Version 3.0.1 of the GraphPad Instat programme was used for this. The threshold for statistical significance was set at p < 0.05.

Kinetic Analysis of *In-vitro* **Release Rates of Formulations:** The results of *in-vitro* release profile obtained for all the formulations were plotted in modes of data treatment as follows:

- **1.** Zero-order kinetic model-cumulative percentage drug release versus time.
- **2.** First- order kinetic model-log cumulative percentage drug release remaining versus time.
- **3.** Higuchi's model-cumulative percentage drug released versus square root of time.
- **4.** Korsmeyer's equation/peppa's model-log cumulative percentage drug released versus log time.

TABLE 3: MECHANISM OF DRUG RELEASE AS PERKORSEMEYER EQUATION/PEPPA'S MODEL

S. no.	n Value	Drug release
1.	n < 0.5	Fickian release
2.	0.5 <n<1< td=""><td>Non- Fickian release</td></n<1<>	Non- Fickian release
3.	n>1	Case II transport

RESULTS: Nevirapine dissolves in two hours in all formulations because sodium starch glycolate, a super disintegrant, is present. In contrast, Zidovudine and Lamivudine showed drug release for up to twelve hours in Formulations F1 and F4, ten hours in Formulations F2 and F5, and eight hours in Formulations F3 and F6. The findings imply that the ratio of medication to polymer has a more significant impact on zidovudine and lamivudine release patterns. Compared to formulations generated with ratios of 1:0.75 and 1:0.5, it was noted that the formulation developed with the drug and polymer ratio of 1:1 could control the release for up to 12 hours. The release data is not significantly affected by the layer separation; that is, the release patterns of formulations with trilayer and billayers do not differ significantly. Nevirapine fits best in first order release in all six formulations, while Lamivudine and Zidovudine fit best in zero order models. Every formulation follows a non-fickian release process, depending on the values of 'n'.

 TABLE 4: COMPARATIVE IN-VITRO DRUG RELEASE OF ALL TABLET FORMULATIONS OF NEVIRAPINE

Time (min)	Cumulative % drug release*							
	Trilayer tablets			Bilayer tablets				
	F1	F2	F3	F4	F5	F6		
0	0	0	0	0	0	0		
5	15.8±0.503	15.7±0.381	15.7±0.506	15.8±0.247	16.2±0.384	14.9±0.276		
10	22.6±0.452	24.03±0.457	23.98±0.478	22.6±0.368	25.4±0.353	21.7±0.358		
15	31.8±0.635	32.1±0.483	32.2±0.354	31.8±0.542	33.6±0.471	30.2±0.471		
20	36.5±0.709	38.2±0.741	38.02±0.627	36.5±0.471	37.7±0.236	37.8±0.337		
25	50.9±0.298	51.3±0.693	51.75±0.581	50.9±0.352	50.9±0.308	50.6±0.219		
30	63.2±0.364	63.9±0.634	64.4 ± 0.568	63.2±0.624	64.4±0.516	63.9±0.541		
60	89.8±0.578	91.8±0.563	91.5±0.298	89.8±0.293	88.9±0.483	90.2±0.493		
120	96.2±0.681	98.5 ± 0.492	98.1±0.386	96.2±0.558	96.6±0.425	97.7±0.338		

International Journal of Pharmaceutical Sciences and Research

FIG. 1: COMPARATIVE IN-VITRO DRUG RELEASE OF NEVIRAPINE IN ALL FORMULATION

TABLE 5: COMPARATIVE IN-VITRO DRUG RELEASE OF ALL TABLET FORMULATIONS ZIDOVUDINE

Time (min)	Cumulative % drug release*							
-	Trilayer tablets		Trilayer tablets Bilayer tablets			Trilayer tablets		
	F1	F2	F3	F4	F5	F6		
0	0	0	0	0	0	0		
30	9.75±0.324	24.7±0.458	19.2±0.483	8.3±0.568	19.3±0.365	18.9 ± 0.412		
60	14.7±0.275	29.2±0.412	26.3±0.524	12.6±0.625	28.4 ± 0.427	25.6±0.353		
120	22.8±0.549	38.4±0.397	34.4±0.611	19.4±0.422	36.6±0.526	33.2±0.473		
180	25.23±0.693	46.9±0.648	43.9±0.435	22.1±0.584	44.7±0.378	42.4±0.246		
240	35.1±0.334	57.3±0.593	49.8±0.371	30.4±0.345	55.9 ± 0.609	48.5±0.546		
300	41.4±0.451	68.2 ± 0.486	57.2±0.374	38.9±0.298	67.4 ± 0.458	56.6±0.492		
360	49.95±0.634	79.1±0.651	65.5±0.528	43.16±0.414	75.6±0.381	64.9 ± 0.587		
420	59.4±0.368	91.5±0.495	74.9 ± 0.487	54.4±0.526	87.2 ± 0.435	73.8±0.237		
480	63.0±0.695	98.6±0.527	86.8±0.249	61.3±0.418	95.9±0.548	84.3±0.534		
540	72.6±0.582	-	94.9±0.584	69.1±.352	-	92.6±0.341		
600	88.9±0.483	-	99.2±0.499	82.2±0.715	-	97.1±0.468		
720	97.8±0.327	-	-	93.4±0.341	-	-		

FIG. 2: COMPARATIVE IN-VITRO DRUG RELEASE OF ZIDOVUDINE IN ALL FORMULATIONS

TABLE 6: COMPARATIVE IN-VITRO DRUG RELEASE OF ALL TABLET FORMULATIONS OF LAMIVUDINE

Time (min)	Cumulative % drug release*							
	Trilayer tablets			Bilayer tablets				
	F1	F2	F3	F4	F5	F6		
0	0	0	0	0	0	0		
30	9.42±0.523	19.1±0.608	16.5±0.654	8.63±0.482	17.7±0.512	14.7±0.356		
60	16.02±0.435	26.4±0.522	24.4 ± 0.598	14.5±0.367	24.9±0.385	22.5±0.415		
120	21.48±0.655	37.5±0.443	35.2 ± 0.556	19.3±0.571	35.6±0.426	31.2±0.289		
180	30.54±0.543	48.2±0.652	44.1±0.485	26.6±0.384	46.8±0.605	42.4±0.368		
240	33.12±0.364	59.3±0.418	56.4±0.394	30.15±0.626	57.3±0.391	54.4±0.347		
300	44.4±0.705	66.4±0.396	63.8 ± 0.582	38.2±0.384	64.6±0.545	62.6±0.536		

International Journal of Pharmaceutical Sciences and Research

Natarajan and Kumar, IJPSR, 2024; Vol. 15(9): 2852-2857.

E-ISSN: 0975-8232; P-ISSN: 2320-5148

360	48.6±0.234	78.9±0.354	69.2±0.478	46.4±0.275	77.1±0.264	68.3±0.604
420	64.2±0.421	90.3±0.451	77.4±0.346	59.1±0.537	88.4±0.453	76.5 ± 0.528
480	72.0±0.554	98.1±0.624	86.8 ± 0.482	68.3±0.498	96.9±0.492	85.9 ± 0.409
540	81.0±0.604	-	93.2±0.634	78.9±0.476	-	92.7±0.391
600	92.4±0.452	-	98.9±0.621	89.2±0.348	-	96.9±0.452
720	99.0±0.414	-	-	96.2±0.417	-	

FIG. 3: COMPARATIVE IN-VITRO DRUG RELEASE OF LAMIVUDINE IN ALL FORMULATIONS

TABLE 7: KINETIC VALUES OF NEVIRAPINE IN ALL FORMULATIONS

Formulation Code	Zero order plot	First order plot
	R ²	R ²
F1	0.797	0.993
F2	0.792	0.985
F3	0.792	0.991
F4	0.786	0.962
F5	0.785	0.976
F6	0.791	0.982

TABLE 8: KINETIC VALUES OF ZIDOVUDINE IN ALL FORMULATIONS

Formulation Code	Zero order plot	First order plot	Higuchi's plot	Koresmeyer- Peppa's plot		Mechanism of drug release
	R ²	R ²	R ²	n	R ²	
F1	0.992	0.770	0.924	0.684	0.991	Non-Fickian release
F2	0.976	0.801	0.970	0.709	0.973	Non-Fickian release
F3	0.977	0.857	0.971	0.687	0.983	Non-Fickian release
F4	0.990	0.849	0.913	0.687	0.979	Non-Fickian release
F5	0.972	0.874	0.974	0.713	0.985	Non-Fickian release
F6	0.979	0.882	0.972	0.684	0.983	Non-Fickian release

TABLE 9: KINETIC VALUES OF LAMIVUDINE IN ALL FORMULATIONS

Formulation code	Zero order plot	First order plot	Higuchi's plot	Koresmeyer- Peppa's plot		Mechanism of drug release
	R ²	R ²	R ²	n	R ²	-
F1	0.988	0.773	0.927	0.696	0.990	Non-Fickian release
F2	0.979	0.827	0.978	0.721	0.989	Non-Fickian release
F3	0.971	0.821	0.992	0.701	0.992	Non-Fickian release
F4	0.987	0.847	0.910	0.691	0.984	Non-Fickian release
F5	0.983	0.855	0.974	0.720	0.992	Non-Fickian release
F6	0.976	0.905	0.983	0.705	0.996	Non-Fickian release

CONCLUSION: Nevirapine exhibits a decent initial release, while Zidovudine and Lamivudine demonstrate sustained release in the produced trilayer and bilayer tablets. The drug to polymer ratio has a significant impact on the release profile, which is not affected by layer separation. This suggests that the release can be effectively controlled for up to 12 hours using a 1:1 ratio of zidovudine and HPMC and a 1:1 ratio of lamivudine and ethyl cellulose. It is clear that Formulation F1 is the best formulation out of all of them due to its higher regression values, higher drug content, and better sustained release. It is clear that the bilayer and trilayer tablets containing zidovudine, lamivudine, and nevirapine are a viable alternative to the traditional dose form. Nevirapine fits best in first order release in all of the F1–F6 formulations, while Lamivudine and Zidovudine fit best in the zero order model. Every formulation follows a non-fickian release process based on the values of 'n'.

ACKNOWLEDGEMENT: I would like to thank our Chairman & Secretary, Prof. Dr. M. Karunanithi, B.Pharm, M.S. Ph.D., D.Litt. Vivekanandha Educational Institutions, for providing all the necessary facilities and support for the research work and also I thank our Secretary & Correspondent Thiru. A. Natarajaan, the Erode College of Pharmay.

CONFLICTS OF INTEREST: Nil

REFERENCES:

- Elizabeth Ojewole A, Irene Mackraj B, Panjasaram Naidoo A and Thirumala Govender: Exploring the use of novel drug delivery systems for antiretroviral drugs. European J of Pharma and Biopharma 2008; 70: 697–710.
- 2. Michael J. Mugavero and Charles B: Hicks, HIV resistance and the effectiveness of combination antiretroviral treatment. Drug Discovery Today: Therapeutic Strategies 2004; 1(4): 529-535.
- Himansu Bhusan Samal, S. A. Sreenivas, Suddhasattya Dey and Himanshu Sharma: Formulation and evaluation of sustained release Zidovudine matrix tablets. International J of Pharmacy and Pharma Sciences 2011; 3(2): 32-41.
- Kayitare E, Vervaet C, Ntawukulilyayo JD, Seminega B, Van Bortel and Remon JP: Development of fixed dose combination tablets containing zidovudine and lamivudine for paediatric applications. International Journal of Pharmaceutics 2009; 370: 41–46.
- Abdul S. Althaf, Seshadri T, Sivakranth M and Umal S. Khair: Design and study of lamivudine oral sustained release tablets. Der Pharmacia Sinica 2010; 1(2): 61-76.
- Korsmeyer RW and Gurny R. Peppas: Mechanism of Solute Release from Porous Hydrophilic polymers. International J of Pharmaceutical Sciences 1983; 25-35.
- Agaiah Goud. B and Rajineekar Reddy N: Quantitative estimation of Zidovudine by UV Spectrophotometry. IJPT 2010; 2(4): 1328-1333.

- Bhavesh Shiyani, Surendra Gattan and Sanjay Surana: Formulation and evaluation of bi-layer tablet of metoclopramide hydrochloride and ibuprofen. AAPS Pharm Sci Tech 2008; 9(8): 818- 827.
- 9. Nagaraju R and Rajesh Kaza: Formulation and evaluation of bilayer sustained release tablets of salbutamol and Theophylline. International Journal of Pharmaceutical Sciences and Nanotechnology 2009; 2(3): 638-646.
- Amit. S. Yadav, Ashok Kumar P, Vinod R, Someshwara Rao B and Suresh V. Kulkarni: Design and Evaluation of Guar Gum Based Controlled Release Matrix Tablets of Zidovudine. Journal of Pharmaceutical Science and Technology 2010; 2(3): 156-162.
- 11. Phalguna Y, Venkateshwarlu BS, Ganesh Kumar Gudas and Subal Debnath: HPMC Microspheres of Zidovudine for sustained release. IJPPS 2010; 2(4): 41-43.
- 12. Pranitha Yeluri, Ashok Kumar P, Someshwara Rao B, Kulkarni SV and Ranjit Kumar P: Formulation and *in-vitro* evaluation of controlled release matrix tablets of Lamivudine. JGPT 2010; 2(7): 52-59.
- 13. Pranitha Yeluri, Ashok Kumar P, Someshwara Rao B, Kulkarni SV and Ranjit Kumar P: Formulation and *in-vitro* evaluation of controlled release matrix tablets of Lamivudine. JGPT 2010; 2(7): 52-59.
- 14. Prasada Rao CH, Seshagiri Rao JVLN, Ashok K, Mallikarjuna Reddy K and Lakshmi Aswini G: Simple spectrophotometric estimation of nevirapine in bulk drug and tablet formulation. The J of Pharmacy 2011; 1: 01-03.
- 15. Prasada Rao CH, Seshagiri Rao JVLN, Dhachinamoorthi D, Lakshmi Aswini G and Ashok K: Simple spectrophotometric estimation of lamivudine in bulk drug and tablet formulation. IJCTR 2011; 3(1): 91-93.
- 16. Higuchi T: Mechanism of sustained action medication: theoretical analysis of rate of release of solid drug dispersed in solid matrix. Journal of Pharmaceutical Sciences 1963; 1145-1149.
- 17. Günthard HF, Calvez V, Paredes R, Pillay D, Shafer RW, Wensing AM, Jacobsen DM and Richman DD: Human Immunodeficiency virus drug resistance: 2018 recommendations of the international antiviral society-USA panel. Clin Infect Dis 2019; 68(2): 177-187.
- Saag MS, Gandhi RT and Hoy JF: Antiretroviral drugs for treatment and prevention of HIV infection in adults: 2020 recommendations of the International Antiviral Society-USA Panel. JAMA 2020; 324(16): 1651-1669.
- 19. Pathela P, Jamison K and Braunstein SL: Initiating antiretroviral treatment for newly diagnosed HIV patients in sexual health clinics greatly improves timeliness of viral suppression. AIDS 2021; 35(11): 1805-1812.
- 20. Martin TCS, Abrams M, Anderson C and Little SJ: Rapid antiretroviral therapy among individuals with acute and early HIV. Clin Infect Dis 2021; 73(1): 130-133.
- 21. Paton NI, Musaazi J and Kityo C: NADIA Trial Team. Efficacy and safety of dolutegravir or darunavir in combination with lamivudine plus either zidovudine or tenofovir for second-line treatment of HIV infection (NADIA): week 96 results from a prospective, multicentre, open-label, factorial, randomised, non-inferiority trial. Lancet HIV 2022; 9(6): 381-393.

How to cite this article:

Natarajan R and Kumar SR: Design and evaluation of bilayer & trilayer tablet combination of antiretroviral drugs. Int J Pharm Sci & Res 2024; 15(9): 2852-57. doi: 10.13040/IJPSR.0975-8232.15(9).2852-57.

All © 2024 are reserved by International Journal of Pharmaceutical Sciences and Research. This Journal licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

This article can be downloaded to Android OS based mobile. Scan QR Code using Code/Bar Scanner from your mobile. (Scanners are available on Google Playstore)