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ABSTRACT 

The synthesis of gold nanoparticles has received considerable attention and 
has been a focus of research due to their high chemical and thermal stability, 
fascinating optical, electronic properties, and promising applications such as 
nanoelectronics, biomedicine, sensing, and catalysis. Different physical and 
chemical methods for gold nanoparticles synthesis are known but these 
methods are either expensive or are not eco-friendly due to use of hazardous 
chemicals, stringent protocol used during the process. These drawbacks 
necessitate the development of nonhazardous and greener methods for gold 
nanoparticles synthesis. Therefore, there has been tremendous excitement 
in the study of gold nanoparticles synthesis by using natural biological 
system. Microorganisms thus play a very important role in the eco-friendly 
and green synthesis of metal nanoparticles. The inherent, clean, nontoxic 
and environment friendly ability of eukaryotic and prokaryotic 
microorganisms, plants system to form the metal nanoparticles is particularly 
important in the development of nanobiotechnology. This review contains a 
brief outlook of the biosynthesis of gold nanoparticles using various 
biological resources, characterization and their potential application in 
various fields. 

INTRODUCTION: The field of nanotechnology is an 
immensely developing field as a result of its wide-
ranging applications in different areas of science and 
technology. The word, nanoparticle (10-9m) can be 
defined in nanotechnology as a small object that acts 
as a whole unit in terms of its transport and properties. 
The word “nano” is derived from a Greek word 
meaning dwarf or extremely small 1.  

Nanotechnology has a wide variety of applications in 
various fields like optics, electronics, catalysis, bio-
medicine, magnetics, mechanics, energy science, etc. 
Nanobiotechnology is a multidisciplinary field involving 
research and development of technology in different 
fields of science like biotechnology, nanotechnology, 

physics, chemistry, and material science 1-2. It deals 
with bio-fabrication of nano-objects or bi-functional 
macromolecules usable as tools to construct or 
manipulate nano-objects. Since, microbial cells offer 
many advantages like wide physiological diversity, 
small size, genetic manipulability and controlled 
culturability, they are thus regarded as ideal producers 
for the synthesis of diversity of nanostructures, 
materials and instruments for nanosciences 3.  

The methods of biosynthesis can employ either 
microbial cells or plant extract for production of 
nanoparticles. Biosynthesis of nanoparticles is an 
exciting recent area to the large repertoire of various 
methods of nanoparticles synthesis and now, 
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nanoparticles have entered a commercial exploration 
period. Gold nanoparticles (GNPs) are presently under 
intensive study for applications in optoelectronic 
devices, ultrasensitive chemical and biological sensors 
and as catalysts 3.  Nanoparticles are metal particles 
and exhibit different shapes like spherical, triangular, 
rod, etc. Research on synthesis of nanoparticles is the 
current area of interest due to the unique visible 
properties (chemical, physical, optical, etc.) of 
nanoparticles compared with the bulk material 4-5.  

GNPs are some of the most extensively studied 
material. These can be easily synthesized, exhibit 
intense surface plasmon resonance and display high 
chemical as well as thermal stability 6. A variety of gold 
structures including rods, triangles, hexagons, 
octagons, cubes and nanowires can be synthesized by 
using different techniques 7-10. In biomedicine, GNPs 
are used in several purposes such as leukemia therapy 
11, biomolecular immobilization 12 and biosensor 
design. The use of GNPs as anti-angiogenesis, anti-
malaria and anti-arthritic agents is also reported by 13. 
Because of the increased demand of gold in many 
industrial applications, there is a growing need for cost 
effectiveness as well as to implement green chemistry 
in the development of new nanoparticles 14.  

Advanced synthesis of Metallic Nanoparticles: The 
nanoparticles can be synthesized using the top-down 
(physical) approach which deals with methods such as 
thermal decomposition, diffusion, irradiation, arc 
discharge, etc., and bottom-up (chemical and 
biological) approach which involves seeded growth 
method, polyol synthesis method, electrochemical 
synthesis, chemical reduction, and biological entities 
for fabrication of nanoparticles.   

In the top-down approach, the bulk materials are 
gradually broken down to nano-sized materials by 
machining and etching techniques. In contrast, the 
atoms or molecules are assembled into molecular 
structures in the nanometer range in the bottom-up 
approach, which is commonly applied for chemical and 
biological synthesis of nanoparticles 14.  Generally, the 
methods used for nanoparticles synthesis employing 
chemical routes involves conditions such as high 
temperature and high pressure and also incorporates 
the use of strong and weak chemical reducing agents 
along with protective agents (sodium borohydride, 

sodium citrate and alcohols). These agents are mostly 
toxic, flammable and they cannot be easily released in 
environmental and also show a low production rate 15-

16. Moreover, these are capital intensive and are 
inefficient in materials and energy use 17-18. 

Furthermore, the use of toxic chemicals and organic 
solvents during nanoparticles synthesis and their 
occurrence on the surface of nanoparticles limit their 
applications. Such drawbacks necessitate the 
development of clean, biocompatible, nonhazardous, 
and eco-friendly methods for GNPs synthesis. 
Consequently, biological systems have been focused 
on and exploited for the synthesis of nanoparticles 19 
providing a safer alternative to physical and chemical 
methods.   

The biological method for the synthesis of 
nanoparticles employs use of biological agents like 
bacteria, fungi, actinomycetes, yeast, algae and plants 
20-21 thereby providing a wide range of resources for 
the synthesis of nanoparticles. The rate of reduction of 
metal ions using biological agents is found to be much 
faster and also at ambient temperature and pressure 
conditions. It is well known that microbes such as 
bacteria 22, yeast 23, fungi 24 and alga 25-26 are capable of 
adsorbing and accumulating metals. The biological 
agents secrete a large amount of enzymes, which are 
capable of hydrolyzing metals and thus bring about 
enzymatic reduction of metals ions 27.  

In case of fungi, the enzyme nitrate reductase is found 
to be responsible for the synthesis of nanoparticles 28-

29. The biomass used for the synthesis of nanoparticles 
is simpler to handle, gets easily disposed of in the 
environment and also the downstream processing of 
the biomass is much easier. Synthesis of nanoparticles 
can be carried out at ambient temperature and 
pressure conditions that require lesser amounts of 
chemical 17. The synthesizing process is less labor-
intensive, low-cost technique, nontoxic and is more of 
a greener approach.  

Thus, considering the above points the biological 
method employed for the synthesis of nanoparticles 
proves to be superior compared with the physical and 
chemical methods of synthesis due to its environment 
friendly approach and also as a low cost technique 30.  
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Therefore, based on their enormous biotechnological 
applications, microorganisms such as bacteria, fungi, 
and yeast are regarded as possible eco-friendly “nano-
factories” for nanoparticles synthesis. 

Mechanism of Biosynthesis of Nanoparticles:  
Biosynthesis is the phenomena which takes place by 
means of biological processes or enzymatic reactions. 
These eco-friendly processes are referred as green and 
clean technology, and can be used for better synthesis 
of metal nanoparticles from microbial cells 31. 
Microorganisms can survive and grow in high 
concentration of metal ion due to their ability to fight 
against stress 32. The exact mechanism for the 
synthesis of nanoparticles using biological agents has 
not been devised yet as different biological agents 
react differently with metal ions and also there are 
different biomolecules responsible for the synthesis of 
nanoparticles. In addition, the mechanism for intra- 
and extracellular synthesis of nanoparticles is different 
in various biological agents 30.  

According to Beveridge (1997), the mechanisms which 
are considered for the biosynthesis of nanoparticles 
includes efflux systems, alteration of solubility and 
toxicity via reduction or oxidation, bioabsorption, 
bioaccumulation, extracellular complexation or 
precipitation of metals, and lack of specific metal 
transport systems 33. The cell wall of the 
microorganisms also plays a major role in the 
intracellular synthesis of nanoparticles. The cell wall 
being negatively charged interacts electrostatically 
with the positively charged metal ions. The enzymes 
present within the cell wall bioreduce the metal ions to 
nanoparticles, and finally the smaller sized 
nanoparticles get diffused of through the cell wall 34.  

Mukherjee et al., (2001) reported stepwise mechanism 
for intracellular synthesis of nanoparticles using 
Verticillium species. The mechanism of synthesis of 
nanoparticles was divided into trapping, bioreduction 
and synthesis. Similar mechanism was also found in 
fungus for the synthesis of nanoparticles.  Moreover, in 
the case of bacteria Lactobacillus sp, Nair and Pradeep 
(2002) observed that during the initial step of synthesis 
of nanoparticles, nucleation of clusters of metal ions 
takes place, and hence there is an electrostatic 
interaction between the bacterial cell and metal 
clusters which leads to the formation of nanoclusters 

35. Lastly, the smaller sized nanoclusters get diffused 
through the bacterial cell wall. In actinomycetes also, 
the reduction of metal ions occur on the surface of 
mycelia along with cytoplasmic membrane leading to 
the formation of nanoparticles 36-37. 

The mechanism of extracellular synthesis of 
nanoparticles using microbes is basically found to be 
nitrate reductase-mediated synthesis. The enzyme 
nitrate reductase secreted by the fungi helps in the 
bioreduction of metal ions and synthesis of 
nanoparticles. A number of researchers supported 
nitrate reductase for extracellular synthesis of 
nanoparticles 17, 28-29, 38-40. A similar mechanism was 
also reported in the case of extracellular synthesis of 
GNPs using Rhodopseudomonas capsulata 39.  

The bacterium R. capsulata is known to secrete 
cofactor NADH and NADH-dependent enzymes. The 
bioreduction of gold ions was found to be initiated by 
the electron transfer from the NADH by NADH-
dependent reductase as electron carrier. Next, the 
gold ions (Au3+) obtain electrons and are reduced to 
elemental gold (Au0) and hence result in the formation 
of GNPs. Nangia et al., (2009) proposed the synthesis 
of GNPs by bacterium Stenotrophomonas maltophilia 
and suggested that the biosynthesis of GNPs and their 
stabilization via charge capping in S. maltophilia 
involved NADPH-dependent reductase enzyme which 
converts Au3+ to Au0 through electron shuttle 
enzymatic metal reduction process as shown in Fig. 1 
40. 

 
FIG. 1: PROPOSED MECHANISM OF GOLD IONS BIOREDUCTION 
VIA NADPH-DEPENDANT REDUCTASES 
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General Chemistry of Gold: Gold can occur in one of 
the six oxidation states, from -1 to +5, which can be 
related to its relatively high electronegativity. The most 
common form of gold complexes is in aurous [Au (I)] 
and auric [Au (III)] oxidation states 41. The dissolution 
of gold in aqueous solution is a combination process of 
oxidation and complexation. Au (I) and Au (III) can 
form stable complexes in the presence of a complexing 
ligand, otherwise they can be reduced in solution to 
metallic gold 42. The stability of gold complexes is 
related not only to the properties of the complexing 
ligand, but also more specifically to the donor atom of 
the ligand that is bonded directly to the gold atom.  

According to Nicol et al., (1987), the first rule is that 
the stability of gold complexes tends to decrease when 
the electronegativity of the donor atom increases. For 
example, the stability of gold halide complexes in 
solution follows the order I-> Br-> Cl-> F-. The second 
rule is that Au (III) is generally favored over Au (I) with 
hard ligands and Au (I) over Au (III) with soft ligands. 
The preferred co-ordination number of Au (I) is 2, 
tending to form linear complexes, and that of Au (III) is 
4, tending to form square planar complexes. The two 
precursors which are used for the synthesis of GNPs 
are gold (III)–chloride complex and gold (I) thiosulfate, 
in that also, gold (III)–chloride complex is widely used 
as a precursor in most of the GNPs biosynthesis 
process. 

Biosynthesis of Gold Nanoparticles: The use of 
microbial cells is now emerging as a novel and green 
approach for the synthesis of metal nanoparticles. 
Basic steps for metal nanoparticles biosynthesis 
includes growth of microorganism in culture media, 
harvesting biomass from medium and finally 
incubation of biomass with sub-inhibitory 
concentration of target metal salts. During the 
different phases of microbial growth, the metal 
reduction process may take place by intercellular or 
extracellular bioreductant ingredients 38. The reaction 
condition can be optimized by changing experimental 
factors such as pH, incubation time, presence of light 
source, temperature, the composition of the culture 
medium, etc. This optimization will improve the 
chemical composition, shape and size of the particles 
synthesized 43. 

In general, GNPs precipitate intracellularly and/or 
extracellularly depending on the species as in Fig. 2 
and reaction condition. The shape of GNPs precipitated 
by bacteria, cyanobacteria, algae, fungi, plants includes 
spherical, oval, irregular, triangular, tetragonal, 
hexagonal, octahedral, rod, cubicl, icosahedral, coil or 
wire, plate, and thin foil, with size ranging from 1 nm 
to several mm as discussed in Fig. 3. 

 
FIG. 2(a): A TEM MICROGRAPH OF A THIN SECTION OF 
CYANOBACTERIA CELL WITH THE GOLD NANOPARTICLES INSIDE 
THE CELL, 2(b): A SEM MICROGRAPH OF GOLD NANOPARTICLES 
ON THE SURFACE OF SULFATE-REDUCING BACTERIA 
(DESULFOVIBRIO SP). SCALE BARS IN (a) AND (b) ARE 0.5 AND 
1.5 mm, RESPECTIVELY 

14 

 
FIG. 3: TEM AND SEM MICROGRAPHS OF SELECTED GOLD 
NANOPARTICLES FORMED BY CYANOBACTERIAL INTERACTIONS 
WITH GOLD (III) CHLORIDE AND GOLD (I) THIOSULFATE 
COMPLEXES. SCALE BARS IN (a), (b), (c), and (d) are 0.5, 2, 1, 
AND 0.1 mm, RESPECTIVELY 

14
 

Synthesis of Gold Nanoparticles by Bacterial System: 
Ahmad et al., (2003a) demonstrated bacterial 
synthesis of monodispersed GNPs with extremophilic 
Thermomonospora sp. biomass via reduction of auric 
chloride ions (AuCl4

- ) through enzymatic processes 36. 
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Konishi et al., (2004) reported GNPs synthesis using the 
mesophilic bacterium Shewanella, where H2 is acting as 
an electron donor 44.  Shiying et al., (2007) showed that 
the bacterium Rhodopseudomonas capsulata 
produced spherical GNPs in the range of 10-20 nm, 
upon incubation of bacterial biomass with aqueous 
chlorauric acid (HAuCl4) solution at a pH range of 4.0-
7.0 upon 48 h of incubation 45. Further, also discussed 
that solution pH is an important factor in controlling 
the morphology of biogenic GNPs and location of gold 
deposition in cells 39. Alkalotolerant Rhodococcus sp. 
produced more intracellular monodispersed GNPs on 
the cytoplasmic membrane than on the cell wall due to 
reduction of the metal ions by enzymes present in the 
cell wall and on the cytoplasmic membrane, but not in 
the cytosol 37.  

Bacterial cell supernatants of Pseudomonas aeruginosa 
have been used for reduction of gold ions and for 
extracellular biosynthesis of GNPs 46.  Bacillus subtilis 
168 has been reported to reduce water-soluble Au3+ 
ions to Au0 and produce nanoparticles of octahedral 
morphology and dimensions of 5-25 nm inside cell 
walls 22. 

Heterotrophic sulfate-reducing bacterial enrichment 
from a gold mine has been exploited to reduce gold (I)-
thiosulfate complex Au(S2O3)2 to elemental gold of 10 
nm size in the bacterial cell envelope, releasing H2S as 
an end product of metabolism 36, 47. E. coli DH5α-
mediated bioreduction of chloroauric acid to Au0 
resulted in accumulation of nanoparticles, mostly 
spherical and some triangles and quasi-hexagons, on 
the cell surface. These cell-bound nanoparticles offer 
promising applications in electrochemistry of 
hemoglobin and other proteins 48.  

Bioreduction of trivalent aurum has also been reported 
in the photosynthetic bacterium Rhodobacter 
capsulatus, which has a higher biosorption capacity for 
HAuCl4 per gram dry weight in the logarithmic phase of 
growth. The carotenoids and NADPH-dependent 
enzymes embedded in the plasma membrane and/or 
secreted extracellularly have been found to be 
involved in the biosorption and bioreduction of Au3+ to 
Au0 on the plasma membrane and also outside the cell 
49. Konishi et al., 2004 found intracellular synthesis of 
gold by microbial reduction of AuCl4

- ions using the 
anaerobic bacterium Shewanella 44.  

The synthesis of stable gold nanocubes by the 
reduction of aqueous AuCl4

- by Bacillus licheniformis 
has been described by Kalishwaralal (2009) 50. The size 
of gold nanocubes (10–100 nm) in aqueous solution 
has been calculated using UV–Vis spectroscopy, X-ray 
diffraction (XRD) and scanning electron microscope 
(SEM) measurements.  

Synthesis of Gold Nanoparticles by Fungal System: 
The fungi are one of the good biological agents in the 
synthesis of metal nanoparticles. Biosynthesis of metal 
nanoparticles using fungi such as F. oxysporum 51-53, 
Colletotrichum sp. 54,  Trichothecium sp., Trichoderma 
asperellum, T. viride, 55-57, Phaenerochaete chryso 
sporium 58, Fusarium semitectum 59,  Aspergillus 
fumigates 60, Coriolus versicolor 61, Phoma glomerata 
62, Penicillium brevicompactum 63,  Cladosporium 
cladosporioides 64,  Penicillium fellutanum 65 and 
Volvariella volvacea 66 has been extensively studied. 
Indeed, fungi are regarded as more advantageous for 
GNPs biosynthesis as compared to other 
microorganisms because; 

(1) fungal mycelial mesh can withstand flow 
pressure, agitation, and other conditions in 
bioreactors compared to bacteria,  

(2) they are fastidious to grow and easy to handle, 
and; 

(3) they produce more extracellular secretions of 
reductive proteins and can easily undergo 
downstream processing 19.  

Absar and coworkers (2005) reported extra- and 
intracellular biosynthesis of GNPs by fungus 
Trichothecium sp 67. It was observed that when the 
gold ions reacted with the Trichothecium sp. fungal 
biomass under stationary condition, it resulted in the 
rapid extracellular formation of GNPs of spherical rod-
like and triangular morphology whereas reaction of the 
biomass under shaking conditions resulted in 
intracellular growth of the GNPs. The synthesis of 
GNPs by the reduction of gold ions using Chinese 
herbal extract Barbated Skullcup has also been 
reported 68. It has been observed that the 
extremophilic actinomycete, Thermomonospora sp. 
when exposed to gold ions reduced the metal ions 
extracellularly, yielding GNPs with a much improved 
polydispersity 69.  
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Ahmad et al., (2003a) carried out the reduction of 
AuCl4

- ions by using an extremophilic 
Thermomonospora sp. biomass that has resulted in 
efficient synthesis of monodisperse GNPs 36. The 
reduction of metal ions and stabilization of the GNPs 
were believed to occur by an enzymatic process 37-38. 

Synthesis of Gold Nanoparticles by Cyanobacteria: In 
the cyanobacterial system, the mechanisms of gold 
reduction by Plectonema boryanum UTEX 485 from 
gold(III)–chloride solutions have been studied at 
several gold concentrations (0.8-7.6 mmol/L) and at 
25-80oC, using both fixed time laboratory and real-time 
synchrotron radiation XAS experiments 70-71. The X-ray 
absorption spectroscopy (XAS) results showed that Au 
(III) was reduced to Au (I) in a very fast reaction (within 
minutes), and Au (I) was immediately coordinated with 
sulfur atoms from cyanobacteria forming gold (I)–
sulfide for all gold concentrations and temperatures. 
The reduction of gold (I)–sulfide to elemental gold was 
found to be slower at 25oC than at 60 oC and 80oC. The 
steps of mechanism of gold reduction and precipitation 
by cyanobacteria are deduced: 

Gold (III) – Chloride (AuCl4
-)                  Gold (I) – Sulfide 

(Au2S)                  Gold (Au) 

Synthesis of Gold Nanoparticles By Algae: In the algae 
system, the mechanisms of gold reduction by Chlorella 
vulgaris biomass from gold (III) chloride solutions have 
been studied using XAS 72. The XAS results showed that 
Au (III) was partly reduced to Au (I) and Au (I) was 
coordinated with sulfur atoms from free sulfhydryl 
residues and also to a light-atom element, probably 
nitrogen. Kuyucak and Volesky (1989b) showed that 
elemental gold was mostly precipitated on the cell wall 
of Sargassum natans biomass and suggested that the 
carbonyl (C≡O) groups of the cellulosic materials were 
the main functional group in the gold binding with N-
containing groups involved in a lesser degree 73.  

Lin et al., (2005) suggested that the hydroxyl group of 
saccharides, the carboxylate anion of amino-acid 
residues, from the peptidoglycan layer on the cell wall 
appeared to be the sites for gold binding 74. However, 
in case of algal biomass, gold uptake was increased 
after esterification, suggesting that carboxyl groups 
played a minor role in gold binding 75.  

Romero-Gonza˜lez et al. (2003) studied the 
mechanisms of gold biosorption by dealginated 
seaweed biomass using fourier transform infrared 
spectroscopy (FT-IR) and XAS 76. FT-IR showed the 
presence of carboxylate groups on the surface of the 
biomass and XAS showed that the reduction of gold 
species occurred on the biomass surfaces to form 
GNPs and was followed by retention of Au (I) at the 
sulfur containing sites. Therefore, it was found that the 
steps of mechanism of gold reduction and precipitation 
by algae are similar to cyanobacteria (as per above 
reaction) 14 .  

The biosynthesis of GNPs using marine alga Sargassum 
wightii has also been investigated 77. The stable GNPs 
in size range of 8 nm to 12 nm were obtained by 
reduction of aqueous AuCl4

- ions by extract of marine 
algae and 95 % of the gold recovery occurred after 12 
h of reaction.  

Synthesis of Gold Nanoparticles by Plant System: One 
of the important approaches for biosynthesis of 
nanoparticles is employing the use of plant extract for 
biosynthesis reaction. In the case of Azadirachta indica 
leaf extract a competition bioreduction of Au3+ and Ag+ 

ions presented simultaneously in solution was 
observed. A bimetallic Au core-Ag shell nanoparticles 
synthesis occurred in solution 78. Aloe vera leaf extract 
has been used for gold nanotriangle and spherical 
silver nanoparticles synthesis 79. The kinetics of GNPs 
formation was monitored by UV-vis absorption 
spectroscopy and transmission electron microscopy 
(TEM).  

It was found that after about 5 h of addition of Aloe 
vera extract to 10-3 M aqueous solution of HAuCl4 led 
to the appearance of a red color in solution. An 
analysis of the percentage of triangles formed in the 
reaction medium as a function of varying amounts of 
the Aloe vera extract showed that more spherical 
particles were formed with increasing in amount of 
Aloe vera leaf extract. Leaf extracts of two plants 
Magnolia kobus and Diopyros kaki were investigated 
for extracellular synthesis of GNPs 80. The GNPs were 
formed by treating an aqueous HAuCl4 solution by the 
plant extract. More than 90% recovery of GNPs was 
observed in a few minute of reaction at a reaction 
temperature of 90oC.  
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With the use of Emblica Officinalis fruit extract as 
reducing agent, the extracellular synthesis of highly 
stable Ag and Au nanoparticles has also been achieved 
81. Adding to the list of plants which are showing 
potential for nanoparticles production for example 
Cinnamomum camphora leaf extract has been 
identified very recently for the production of gold as 
well silver nanoparticles 2. There was a marked 
difference of shape control between gold and silver 

nanoparticles which was attributed to the comparative 
advantage of protective biomolecules and reductive 
biomolecules. In this case, the polyol components and 
the water soluble heterocyclic components were 
mainly found to be responsible for the reduction of 
silver ions or chloroaurate ions and the stabilization of 
the nanoparticles, respectively. An overview of some 
of the reported biological agent synthesizing gold 
nanoparticles is focused in Table 1. 

TABLE 1: BIOLOGICAL AGENTS USED FOR GOLD NANOPARTICLES BIOSYNTHESIS 

Biological entity Extracellular/Intracellular Size Reference 

Bacteria    

Pyrobaculum Islandicum (DSM 4184) Extracellular few nm 82 

Lactobacillus sp. Extracellular and intracellular 20–50 nm and >100 nm 35 

Shewanella algae ATCC 51181 Intracellular 10–20 nm 44 

Escherichia coli Extracellular and intracellular 
<10 nm(intracellular), 20–50 

nm(extracellular) 
83 

Rhodopseudomonas capsulata Extracellular 10–50 nm 39 

Pseudomonas aeruginosa Extracellular 15 - 5 nm 46 

Stenotrophomonas maltophilia Intracellular 40 nm 40 

Fungus    

Colletotrichum sp. Extracellular 20–40 nm 54 

Verticillium Intracellular 20 nm 34 

V. luteoalbum Intracellular Few to 100 nm 84 

Thermomonospora sp. (Actinomycetes) Extracellular 8 nm 37 

Rhodococcus sp.(Actinomycete) Intracellular 5–15 nm 36 

Cyanobcteria    

Plectonema boryanumUTEX 485 At the cell wall 6 µm to 10 nm 47, 85 

Plectonema terebrans Extracellular and intracellular - 86 

Algae    

Dealginated seaweed waste Extracellular 20 nm to 5 mm 79 

Saccharomyces cerevisiae Extracellular --- 74 

Sargassum wightii Extracellular 8–12 nm 77 

Fucus vesiculosus Extracellular  87 

Plant    

Avena sativa Intracellular 5–20 nm 88 

Azadirachta indica Extracellular 50–100 nm 78 

Emblica Officinalis Extracellular 15–25 nm 81 

Cinnamomum camphora Extracellular 55–80 nm 2 

Tamarind Leaf Extract Extracellular 20–40 nm 89 

 
Scope and application of Gold Nanoparticles: 
Production of inorganic and metal-based 
nanomaterials has stimulated the development of a 
new field that links many disciplines of sciences for the 
quest for different types of nanoparticles with unique 
properties. Designing and development of novel and 
affordable techniques for scale-up production of 
nanomaterials have not only provided an interesting 
area of study but in future will also address the 
expanding human requirements including health safety 
and environmental issues etc.  

In industry, the application of nanomaterials is 
increasing day by day, and they will soon replace the 
harmful or toxic chemicals conventionally used as 
antimicrobial agents 90. Application of nanoparticles 
and their nanocomposites also offers a sound and 
relatively safer alternative 91-92 and, therefore, open up 
new opportunities for development of antimicrobials. 
Gold is a nobel metal and has been used by many 
ancient cultures (Egypt, India, and China) to treat 
diseases such as smallpox, skin ulcers, syphilis, and 
measles 93-96.  
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Gold is currently used for medical devices like 
pacemaker and gold plated stents 97-98 are used for the 
management of heart disease, middle ear gold 
implants, and gold alloys areused in dental restoration 
98. Organogold compounds are widely used for the 
treatment of rheumatoid arthritis but side effects such 
as proteinuria and skin reactions has been observed at 
high doses  91, 99. 

The properties of GNPs remarkably differ from the bulk 
gold because of quantum size confinement imposed by 
nano-size regimen. The electronic, magnetic, and 
catalytic properties of GNPs depend mainly on their 
size and shape 100. For example, spherical GNPs show a 
strong absorption band in the visible region of 
electromagnetic field (~520 nm) but is absent for very 
small particles (≤ 2 nm) as well as in the bulk gold. With 
a variety of unique properties, when GNPs are 
manipulated effectively, it can be applied to many 
different applications across the field of biology and 
medicine, environment, and technology 101. 

Medical Application: GNPs are excellent labels and 
have been primarily used for labeling and bioimaging 
applications for biosensors because they can be 
detected by numerous techniques, such as optic 
absorption fluorescence and electric conductivity. 
GNPs are a very attractive contrast agent 96, 102.The 
GNPs are directed and enriched at the region of 
interest, where it provides contrast for observation 
and visualization. With the characteristic of strongly 
absorption and scattering visible light, the light energy 
excites the free electrons in the GNPs to a collective 
oscillation, known as surface plasmon.  

The excited electron gas relaxes thermally by 
transferring the energy to the gold lattice, and finally 
the light absorption leads to heating of the GNPs. The 
interaction of GNPs with light can be used for the 
visualization of particles using optical microscopy, 
fluorescence microscopy, photothermal, and 
photoacoustic imaging. In addition, the interaction of 
GNPs with both electron waves and X-rays can also be 
used for visualization using transmission electron 
microscopy 14. Gold nanoparticles have been used for a 
long time for delivery of drug molecules into cells 96, 

102. The molecules are adsorbed on the surface of GNPs 
and then are introduced into the cells using gene guns 
or particle ingestion.  

Inside the cells, these molecules will eventually detach 
themselves from the GNPs 14. It gives non-toxic routes 
to drug and gene delivery application. GNPs are 
capable of delivering large biomolecules (peptides, 
proteins, or nucleic acids like DNA or RNA) 103.  

GNPs due to its biocompatibility and strong interaction 
with soft bases like thiols play a major role in the 
treatment of cancer 104. Epithelial ovarian cancer a 
common malignancy of female genital tract could be 
cured with the use of GNPs. Vascular endothelial 
growth factor (VEGF) performs a vital role in the 
progression of ovarian cancer and also tumor growth 
and GNPs possess the capability to inhibit the 
progression of ovarian growth and metastasis 96-97. 
Also, in case of multiple myeloma (MM), a cancer of 
plasma cells, GNPs are observed to inhibit the function 
of VEGF which induces cell proliferation. This inhibition 
of VEGF further leads to upregulation of cell cycle 
inhibitor proteins like p21 and p27 which inhibit 
proliferation 104, 106. 

Chronic lymphocytic leukemia (CLL), a cancer caused 
due to the overproduction of lymphocytes, starts in 
the bone marrow but could spread to other organs 
also. It was reported that as GNPs possess the ability to 
inhibit the function of heparin-based growth factor, 
GNPs alone can inhibit the function of factors secreted 
by CLL cells and induce apoptosis 104, 106-107. 

Rheumatoid arthritis which is considered as an 
incurable disease, bare GNPs are found to serve as a 
possible cure. Newly functionalized GNPs (dendrimers) 
have been designed for not only targeting and killing 
tumors but also to fight cancer 108-109. GNPs is 
engineered not only to identify, target, and kill tumors 
but also to carry the additional drug to slow down the 
growth of cancer cells or kill the cancer cells. 
Dendrimers acts as an arm to the GNPs so that 
different molecules are attached to the arms. 

Once the cancer cells are surrounded by GNPs, lasers 
or infrared light heats the gold particles and the 
dendrimers release the various molecules to kill the 
tumors 14. GNPs surface plasmon resonance scattering 
is predicted in the Mie equations and is found to 
increase as the size of the nanoparticles increases. By 
conjugating GNPs to anti-EGFR antibody, it gave the 
ability to distinguish between cancer and non-cancer 
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cells from the strong scattering images of the GNPs 
conjugated to antibodies that binds only to the cancer, 
but not to the non-cancer cells 110. This scattering is 
observed from a simple optical microscope. They 
obtain a 600% greater binding ratio to the cancerous 
cells than to non-cancerous cells, enabling detection of 
cancerous cells by observing the scattered light on a 
dark field microscope.  

Fig. 4 shows the scattering obtained with GNPs 
nonspecifically adsorbed on the surface (a–c) and GNPs 
with anti-EGFR (d–f) antibodies specifically bound to 
the cancerous cells but not to the non-cancerous cells. 
Because of this difference, the band shape and the 
surface plasmon absorption maximum are found to be 
different and therefore it can be used in medical field 
to differentiate cancerous cells. These results show 
that GNPs have enormous power as a diagnostic tool.  

 
FIG. 4: LIGHT SCATTERING OF CELL LABELED WITH (a–c) GOLD 
NANOPARTICLES AND (d–f) anti-EGFR COATED GOLD 
NANOPARTICLES. THE anti-EGFR COATED GOLD NANOPARTICLES 
BIND SPECIFICALLY TO THE CANCEROUS CELLS, WHILE ALL 
OTHER GOLD NANOPARTICLES ARE NON-SPECIFICALLY BOUND. 
(a & d) NONMALIGNANT EPITHELIAL CELL LINE HaCaT (HUMAN 
KERATINOCYTES), (b & e) MALIGNANT EPITHELIAL CELL LINES 
HOC 313 CLONE 8 (HUMAN ORAL SQUAMOUS CELL 
CARCINOMA) (c & f) MALIGNANT EPITHELIAL CELL LINES HSC 3 
(HUMAN ORAL SQUAMOUS CELL CARCINOMA)  

GNPs can also be used for active sensor applications to 
determine the presence of analyte and to provide its 
concentration 102. The plasmon resonance frequency is 
a reliable feature of GNPs that can be used for sensing. 
The binding of molecules to the particle surface can 
change the plasmon frequency directly.  

On the other hand, the plasmon resonance frequency 
is changed when the average distance among GNPs is 
reduced by forming small aggregates. The effect of 
plasmon coupling can be used for colorimetric 
detection of the analyte, known as a gold-based 
sensor. Raman scattering is enhanced if the analyte is 
close to a gold surface, called as surface-enhanced 
Raman scattering.  

GNPs modified with Raman-active reporter molecules 
have been used for the detection of DNA 111, protein 
112, and two-photon excitation 113. GNPs can also be 
used for the transfer of electrons in redox reactions 114. 
The enzyme is conjugated to the surface of the gold 
particles and is immobilized on the surface of an 
electrode 115.  An electrode covered with a layer of 
GNPs has a much higher surface roughness and larger 
surface area which lead to higher currents. Another 
application of gold compounds is as an anti-
inflammatory agent due to their ability to inhibit 
expression of NF-kappa B and subsequent 
inflammatory reactions 116-118.  

One of the major drawbacks of ionic gold is that they 
easily get inactivated by complexation and 
precipitation that limits their desired functions in 
human system. Here zerovalent GNPs can be a 
valuable alternative replacing the potential of metallic 
gold 50. GNPs, an emerging nanomedicine is renowned 
for its promising therapeutic possibilities, due to its 
significant properties such as biocompatibility, high 
surface reactivity, resistance to oxidation and Plasmon 
resonance 119. The inhibitory activity of GNPs against 
VPF/VEGF165 induced proliferation of endothelial cells 
provides clear evidence over their therapeutic 
potential in the treatment of diseases like chronic 
infiammation, pathological neo-vascularization, 
rheumatoid arthritis, and neoplastic disorders 120. 

Thus, gold nanoparticles have so many advantages in 
meadiacal field as they are in nanometer-size systems 
that can get easily into the bloodstream and around 
cells. Also, the multi-functional gold nanoparticles have 
been demonstrated to be highly stable and versatile 
scaffolds for drug delivery due to their properties like 
unique size, along with their chemical and physical 
properties. Their ability to tune the surface of the 
particle provides access to cell-specific targeting and 
thus controlled drug release 121. 
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Technological application: GNPs have been designed 
to improve computer memory 11. A three-dimensional 
computer memory device composed of layers of GNPs 
has been developed to increase the memory capacity 
of a single chip. Another development of computer 
memory using GNPs is an organic nonvolatile bistable 
memory, which is a mixture of plastic and gold 49. 

Environmental application: Technologies based on 
GNPs are currently being developed for the 
environmental applications for pollution control and 
water purification 115.  It has been investigated that 
bimetallic gold–palladium nanoparticles provides an 
active catalyst which can be used to  degrade 
trichloroethene (TCE), which is one of the major 
pollutants in groundwater, into a non-toxic form 116. 
GNPs incorporated in a water purification device can 
effectively capture and remove halocarbon-based 
pesticides from drinking water 115 and can also 
enhance the oxidation of mercury generated from coal 
power plants  122. 

The use of GNPs as a catalyst has a major role to play 
in green chemistry 123-124. Most industrial oxidation 
processes tend to use chlorine or organic peroxides 
which generates large amounts of chloride salts and 
chlorinated organic byproducts. GNPs supported on 
carbon active molecular oxygen are found to be able 
convert alkenes to partial oxidation products such as 
epoxides at atmospheric pressure and at 60oC-80oC 125.  

GNPs have been developed for selective oxidation of 
the biomass-derived chemicals, furfural and 
hydroxymethyl furfural, to form methyl esters as well 
as for oxidation of carbon monoxide (CO) and 
trimethylamine. These chemicals are used for flavor 
and fragrance applications, in plastics and industrial 
solvents 126. Gas sensors based on Au nanoparticles 
have been developed for detecting a number of gases, 
including CO and nitrogen oxides (NOx) 127. 

CONCLUSION: Nanoparticles synthesis from biological 
route serves as an important alternative in the 
development of clean, nontoxic, economical and 
environmentally friendly procedures for the synthesis 
and assembly of GNPs and has tremendous advantages 
in comparison to conventional methods for 
nanoparticles synthesis.  

In general, many biological agents have the ability to 
produce GNPs intracellular as well as extracellular 
environment. The work on the biosynthesis of GNPs is 
still largely in the discovery phase. Given the 
anticipated wide application of GNPs for commercial 
applications, continuing work is recommended to focus 
on the mechanisms of the biosynthesis of GNPs and 
the development of GNPs of well-defined size and 
shape. Changing properties simply by changing the size 
or shape of the GNPs is attractive and will continue to 
be employed in new applications in the future.  

GNPs have a number of applications from electronics 
and catalysis to biology, pharmaceutical and medical 
diagnosis and therapy. However more research needs 
to be focused on the mechanistics and kinetics of GNPs 
formation which may lead to fine tuning of the process 
ultimately leading to the synthesis of GNPs with a strict 
control over the size, shape and large scale production 
of GNPs.  
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