(Research Article)

1

IJPSR (2014), Vol. 5, Issue 8

INTERNATIONAL JOURNAL

DEVELOPMENT, ESTIMATION AND VALIDATION OF GLIMEPIRIDE IN PHARMACEUTICAL FORMULATION BY HPLC METHOD

Vania Maslarska

Medical University-Sofia, Faculty of Pharmacy, Department of Chemistry, Sofia, Bulgaria

Keywords: HPLC, Glimepiride (GLM), Tablets, Method Validation

Correspondence to Author:

Vania Maslarska

Assistant Professor, Medical University–Sofia, Faculty of Pharmacy, Department of Chemistry, Sofia, Bulgaria

E-mail: vmaslarska@mail.bg

ABSTRACT: The study is focused on developing a simple, rapid, validated High Performance Liquid Chromatographic (HPLC) method for Glimepiride Tablets from their dosage forms. The detection was carried out at 230 nm using Shimadzu UV - Visible detector HPLC system. The accuracy and precision were determined and validated statistically. The linearity was observed in the range of 15-120 µg/mL with a correlation coefficient of 0.999. The limit of detection and the limit of quantification were found to be 4 ng and 10 ng respectively. A Lichrosorb[®] (RP-18 column with a mobile phase consisting of acetonitrile – water – glacial acetic acid (550:450:0.6 v/v)) was used. The flow rate was 1 mL/min. The HPLC method is selective, precise and accurate and can be used for routine analysis of preparations in pharmaceutical industry quality control laboratories.

INTRODUCTION: Glimepiride 1-[[4-[2-(3-Ethyl-4-methyl-2-oxo-3-pyrroline-1-carboxamido) sulphonyl]-3ethyl] phenyl] trans-(4methylcyclohexyl) urea is a Sulfonyl Urea derivative. It is widely used in type-2 diabetes. It is an oral Anti Diabetic with prolonged effect and it maintains a more physiological regulation of insulin secretion during physical exercise, which suggests that there may be less risk of hypoglycemia¹. Glimepiride is one of the third generation sulfonylurea, antidiabetic drug which stimulates insulin release². The drug shows low, pH dependent solubility. In acidic and neutral aqueous media, Glimepiride exhibits very poor solubility at 37°C (<0.004 mg/mL).

In media pH>7, solubility of drug is slightly increased to 0.02 mg/mL. This poor solubility may poor dissolution and unpredicted cause bioavailability ²⁻⁴. Glimepiride is a white powder insoluble soluble and is in water. in dimethylformamide, and slightly soluble in methylene chloride and methanol⁵. The chemical structure of the molecule is presented in Figure 1. revealed HPLC methods Literature survey developed for the estimation of glimepiride in tablets and biological fluids ⁶⁻¹¹.

Capillary electrophoresis ¹², spectrophotometry ¹³, polarography ¹⁴, liquid chromatography-electrospray ionization tandem mass spectrometry¹⁵ methods were also developed for the estimation of glimepiride in biological fluids. The aim of the present study was to develop a simple, economical and accurate analytical method for the estimation of Glimepiride in pharmaceutical dosage forms. Because analytical methods must be validated before use by the pharmaceutical industry, the proposed HPLC-UV method was validated in

accordance with the International Conference on Harmonization (ICH) guidelines ¹⁶, by assessing its selectivity, linearity, accuracy, precision, and limits of detection and quantitation.

FIGURE 1: CHEMICAL STRUCTURE OF GLIMEPIRIDE

MATERIALS AND METHODS:

Reagents and Chemicals: All chemicals and reagents used were HPLC grade. Glimepiride standard was obtained from Sigma Aldrich. Tablet formulation containing 1, 2, 3 and 4 mg Glimepiride was obtained commercially. HPLC grade Acetonitrile was procured from Merck Ltd. All other chemical reagents were of analytical grade.

Instrumentation and Chromatographic Conditions: A Shimadzu HPLC system was utilized, consisting of the following components: quaternary pump LC - 20 AD, vacuum degasser unit DGU - 20 A₅ and a UV/VIS variable detector SPD - 20 A. Separation was carried out on a LiChrosorb C 18 column (125 x 4 mm, particle size reversed $5\mu m$) under phase partition chromatographic conditions. The mobile phase consisted of an aqueous solution containing acetonitrile: water: glacial acetic acid in ratio (550:450:0.6). The mobile phase was filtered through 0.45 µm membrane filter and degassed by using sonicator for about 10 min before use. The sample solutions were also filtered using 0.45 µm membrane filters. The mobile phase was delivered isocratically at a flow rate 1 mL/min. The column was maintained at 25°C temperature. The injection volume was a 20 μ L and the total run time was 7 minutes. The detection was carried out at 230 nm.

Preparation of the Standard Solution: About 30 mg of Glimepiride were accurately weighed and transferred into 200 mL volumetric flask and dissolved in mobile phase.

The final drug concentration of 30 μ g/mL was obtained by dissolving the appropriate amount from this standard stock solution in the above said mixture. Calibration standards of Glimepiride were prepared by making serial dilutions of the stock solution at concentrations of 15.0, 30.0, 60.0, 90.0, 120.0 μ g/mL.

Sample Preparation: Twenty tablets were accurately weighed (to obtain the average mass of one tablet) then finely powdered. Weight equivalent to 3 mg of Glimepiride (one tablet) was weighed, transferred into a 100 mL volumetric flask and dissolved with about 50 mL mobile phase. The contents were sonicated for 10 minutes. The mixture was made up to 100 mL with the same.

The solution was filtered through a membrane syringe filter (pore size $0.45 \ \mu m$). The sample solution was injected and the peak area was measured for determination of Glimepiride in a tablet formulation.

RESULTS AND DISCUSSION: After equilibration of column with the mobile phase indicated by a stable baseline, aliquots of sample $(20 \ \mu\text{L})$ were injected. The typical chromatogram is shown in **Figure 2**. The amount of Glimepiride present in the tablets was calculated using single point analysis method and results are shown in **Table 1**.

Drug	Label claim (mg/1 tabl)	Mean amount found (mg/1 tabl) (n=6)	Mean % Assay RSD
Glimepiride	1	0.980	99.41±1.799
	2	2.01	100.5 ± 1.141
	3	2.98	99.67±0.521
	4	3.99	99.89±0.539

TABLE 1: RESULTS OF ASSAY OF GLIMEPIRIDE TABLETS

The method was developed and validated by using the ICH guideline ¹⁶. The selectivity, limits of detection and quantification, linearity, precision, and accuracy were determined. Determination was carried out using a tablet formulation 3 mg. The presented RP-HPLC method has been proved to be rapid and was successfully used for determination of Glimepiride.

Linearity: The linearity for Glimepiride was determined by plotting a calibration graph of the ratio of drug's peak area to concentration. The linearity of this method was found to be in the concentration range $15 - 120 \ \mu g/mL$ for Glimepiride. Y=6.9687E7x +50926.5 which is linear regression equation with correlation

coefficients of 0.999 was determined from linearity curve (**Table 2**).

Limit of detection and limit of quantification: In order to estimate the limit of detection and limit of quantification, mobile phase was injected six times, and the noise level was determined. The limit of detection was calculated to be three times the noise value and ten times the noise, which gave limit of quantification, and was also cross-checked, by formulas given below (Table 2).

 $LOD = 3.3\sigma/S$ and $LOQ = 10\sigma/S$

Where σ is the standard deviation of the lowest standard concentration and *S* is the slope of the standard curve.

TABLE: 2. LINEARITY RESULTS, LIMIT OF DETECTION (LOD) AND LIMIT OF QUANTIFICATION (LOQ)

Compound	\mathbf{r}^2	Calibration curve equation	LOQ ng	LOD ng
Glimepiride	0.999	Y=6.9687E7x +50926.5	10	4

Accuracy/Recovery: Accuracy of the developed method was confirmed by performing a recovery study as per ICH norms at three different concentration levels (50%, 100%, 150%) by

replicate analysis (n = 3). The results obtained (**Table 3**) indicate that recovery is good, not less than 98% and percentage relative standard deviation is less than 2%.

TABLE 3: RECOVERY STUDIES OF GLIMEPIRIDE

Drug	Taken (mg/1 tabl)	Found (mg/1 tabl)	Recovery (%)
Glimepiride		1.49	99.34
	1.50	1.48	98.66
		1.50	100.0
		3.01	100.3
	3.00	2.98	99.33
		2.99	99.67
		4.48	99.55
	4.50	4.51	100.2
		4.50	100.0
Mean			99.67
SD			0.519
% RSD			0.521
% Error			±0.399

Precision: The precision of the method was determined by repeatability, intermediate precision (intra-day, inter-day) and was expressed as % relative standard deviation (% RSD). Intra-day precision was determined by performing analysis of triplicate injections of two different concentrations

of Glimepiride on the same day at different time intervals and on two different days for inter-day precision. The % RSD of the study was found to be less than 2% as shown in **Table 4**.

TABLE 4: RESULTS OF PRECISION

Sample #	Concentration (µg/mL)	RSD (%) Intra-day (n=3)	RSD (%) Inter-day (n=3)
	30	1.0385	1.4123
Glimepiride	60	0.7543	1.6638
	90	0.6934	1.2371

CONCLUSION: The aim of the present research work was to achieve highest precision in quantitative estimation of Glimepiride in tablet dosage form. The method was validated in terms of linearity, precision, accuracy, limit of detection and limit of quantification. The developed method has a simple procedure for the preparation of the samples and shorter run time for chromatographic analysis (less than 6 min). Hence the proposed RP-HPLC method can be considered as simple, rapid, suitable and easy to apply for routine analysis of Glimepiride in pharmaceutical dosage form.

REFERENCES:

- Tripathi KD: Essentials of Medical Pharmacology. Jaypee Brothers Medical, 6th Edition New Delhi, India, 2013: 276–283.
- 2. Du B, Shen G, Wang D, Pang L, Chen Z and Liu Z: Development and characterization of glimepiride nanocrystal formulation and evaluation of its pharmacokinetic in rats. Drug Delivery 2013; 20 (1):25-33.
- 3. Taupitz T, Dressman JB and Klein S: New formulation approaches to improve solubility and drug release from fixed dose combinations: case examples pioglitazone/glimepiride and ezetimibe/simvastatin. European Journal of Pharmaceutics and Biopharmaceutics 2013; 84 (1):208-218.
- Ramana BV, Spandana Anand P DS, Triveni C, Pavan Kumar V, Venkateshwar Reddy P and Chandra Sekhar U: Comparative in vitro drug release studies of Glimepiride solid dispersions & Metphormin microcapsules. International Journal of Pharmaceutical Sciences and Research 2013; 4 (11):4329-4335.
- 5. British Pharmacopoeia Commission: British Pharmacopoeia. General Notices and Monographs, Stationary Office, London, Edition 2012; 1: 1001-1002.
- 6. Samala S, Tatipamula SR and Veeresham C: Determination of Glimepiride in Rat Serum by RP-HPLC Method. American Journal of Analytical Chemistry 2011; 2(2):152-157.
- 7. Sakuntala MSV, Prasad SVUM, Sri Devi S, Kishore Yadav S and Srinivas Reddy K: A RP- HPLC method

development and validation for the simultaneous estimation of glimepiride and pioglitazone HCl in tablet dosage forms. Journal of Chemical and Pharmaceutical Research 2012; 4(1):154-159.

- El-Enany NM, Abdelal AA, Belal FF, Itoh YI and Nakamura MN: Development and validation of a repharsed phase - HPLC method for simultaneous determination of rosiglitazone and glimepiride in combined dosage forms and human plasma. Chemistry Central Journal 2012; 6 (January):9-14.
- 9. Lakshmi KS, Rajesh T and Sharma S: Determination of pioglitazone and glimepiride in pharmaceutical formulations and rat plasma by RP-LC. International Journal Pharm Tech Research 2009; 1(3):496-499.
- 10. Galani VJ and Vyas M: In Vivo and in Vitro Drug Interactions Study of Glimepiride with Atorvastatin and Rosuvastatin. Journal of Young Pharmacists 2010; 2(2):196-200.
- Jain D, Jain S, Jain D and Amin M: Simultaneous estimation of metformin hydrochloride, pioglitazone hydrochloride, and glimepiride by RP-HPLC in tablet formulation. Journal of Chromatographic Science 2008; 46(6):501-504.
- 12. Hefnawy MM, Sultan MA, Al-Johar HI, Kassem MG and Aboul-Enein HY: Multi-objective optimization strategy based on desirability functions used for electrophoretic separation and quantification of rosiglitazone and glimepiride in plasma and formulations. Drug Testing and Analysis 2012; 4(1):39–47.
- Bhargavi S, Suryasagar G, Sowmya DK, Ashok K and Nama S: UV Spectrophotometric Method for Determination of Glimepiride in Pharmaceutical Dosage Forms. International Journal of Pharmaceutical Sciences Review and Research 2013; 21(2):131-133.
- 14. Bonfilio R, de Araujo MB and Salgado HR: A review of analytical techniques for determination of glimepiride: present and perspectives. Therapeutic Drug Monitoring 2010; 32 (5):550-559.
- 15. Srinivasa RP, Nageswara RP, Ramakrishna G and Venkateswarlu G: Simultaneous determination of atorvastatin, metformin and glimepiride in human plasma by LC–MS/MS and its application to a human pharmacokinetic study. Journal of Pharmaceutical Analysis 2013; 3(1):9–19.
- 16. ICH, Q2 (R1) Validation of analytical procedures: Test and methodology, International Conference of harmonization, Geneva 2005; 1-13.

How to cite this article:

Maslarska V: Development, estimation and validation of Glimepiride in pharmaceutical formulation by HPLC method. Int J Pharm Sci Res 2014; 5(8): 3195-98.doi: 10.13040/IJPSR.0975-8232.5(8).3195-98

All © 2013 are reserved by International Journal of Pharmaceutical Sciences and Research. This Journal licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

This article can be downloaded to **ANDROID OS** based mobile. Scan QR Code using Code/Bar Scanner from your mobile. (Scanners are available on Google Playstore)