ISSN: 0975-8232

INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES AND RESEARCH

Received on 24 April, 2012; received in revised form 14 May, 2012; accepted 21 July, 2012

SCIENTIFIC VALIDATION OF JAWARISH-E-BISBASA - A UNANI FORMULATION

Rampratap Meena*¹, D Ramasamy ¹, S Mageswari ¹, Syed Jameeluddin Ahmed ¹, Samsul Arifin ², Shamshad Ahmed Khan ² and Syed Shakir Jameel ²

Regional Research Institute of Unani Medicine ¹, Royapuram, Chennai, Tamil Nadu, India Central Council for Research in Unani Medicine ², Janakpuri, New Delhi, India

ABSTRACT

Keywords:

Jawarish-e-Bisbasa, Microscopy, Physicochemical, TLC, WHO parameters

Correspondence to Author:

Rampratap Meena

Research Officer (Chemistry), Regional Research Institute of Unani Medicine (CCRUM), No. 1, West Madha Church Road, Chennai – 600 013, Tamil Nadu, India

E- mail: pratap_meena@sify.com

The compound drug Jawarish-e-Bisbasa is a polyherbal Unani formulation. It is used in the ailments of general weakness of the stomach, flatulence in the stomach, indigestion, blind piles and nausea etc. Therefore the scientific validation for development of SOP, pharmacopoeial standards, TLC studies and safety parameter is very much essential to provide the quality medicine to the needy mass. The drug was prepared in different batches at laboratory scale using authenticated nine raw drugs. The present study was aimed to develop the SOP's for the preparation of drug and to evaluate its pharmacopoeial parameters, estimation of heavy metals, microbial load, aflatoxins and pesticide residues. The obtained physicochemical data will help in laying down SOP's and pharmacopoeial standards for this drug. Thin Layer Chromatographic studies of the drug will provide the finger prints which will help in quality control and detection of adulteration. The result of quality control parameters such as microbial load, aflatoxins, heavy metals and pesticide residue shows that the drug is free from toxic substances.

INTRODUCTION: Herbal drugs constitute a major part in all the traditional system of medicine ¹ and there has been an increasing realization that TSM products are safer and this has lead to the spurt in the use of these plant based products in India.

Jawarish-e-Bisbasa is one of the polyherbal Unani compound formulations available in semisolid form in the market. The herbal formulation is being prescribed by Unani Physician for the treatment of weakness of the stomach, flatulence in the stomach, indigestion, blind piles and nausea ².

The scientific standards like development of SOP's which includes procurement of ingredients, authentication, removal of adulteration if any, powdering the raw drug up to the required fineness,

method of preparation, evaluation of physicochemical data and quality control parameters are essential to provide the quality medicine to the needy mass. The present study was designed to scientifically validate the drug by applying modern parameters such as microscopical, physicochemical, thin layer chromatography, microbial load, aflatoxin, heavy metal and pesticide residue.

MATERIALS AND METHODS: The raw drugs of the formulation were procured from local raw drugs dealers, Chennai with the knowledge of Unani Physician. The raw drugs were identified using pharmacognostical methods³ and evaluated their pharmacopoeial standards. The drug Jawarish-e-Bisbasa was prepared in different batches at laboratory scale as per the formulation composition.

ISSN: 0975-8232

Composition of formulation: Jawarish-e-Bisbasa is a semi-solid preparation made with the following

ingredients in the composition as given in **Table 1**.

TABLE 1: LIST OF INGREDIENTS OF THE JAWARISH-E-BISBASA FORMULATION

S. No.	Unani name	Botanical/ English name	Part used	Quantity taken for SOP
1.	Heel Kalan	Ammomum subulatum Roxb.	Fruit	50 g
2.	Bisbasa	Myristica fragrans Houtt.	Arillus	30 g
3.	Saleekha	Cinnamomum cassia Blume.	Stem bark	30 g
4.	Heel Khurd	Elettaria cardamomum (L) Maton	Fruit	30 g
5.	Zanjabeel	Zingiber officinale Rosc.	Rhizome	30 g
6.	Darchini	Cinnamomum zeylanicum Blume.	Stem bark	30 g
7.	Asaroon	Asarum europaeum Linn.	Rhizome	30 g
8.	Filfil Siyah	Piper nigrum Linn.	Fruit	20 g
9.	Qaranful	Syzygium aromaticum (L.) Merr. L M Perry	Flower bud	15 g
10.	Nabat Safaid	Sugar crystal		200 g
11.	Qand Safaid	Sugar	-	800 g

Method of Preparation: All the ingredients were taken of pharmacopoeial quality. Clean, dried and made the powders of the ingredients number 1 to 9 and sieved through 80 mesh and kept separately. Dissolved the specified quantity of ingredient number 10 and 11 in 1000 ml of water on slow heat and boiled the content, at the boiling stage 0.1% citric acid was added, mixed well and boiled to prepare the 76% consistency of Quiwam. Then the vessel was removed from the fire. While hot condition, the mixed powders of ingredients 1 to 9 were added and mixed thoroughly to prepare the homogenous product. The product was allowed to cool at room temperature and packed in tightly closed containers to protect from light and moisture.

Powder microscopy: The drug sample (5g) was weighed and mixed with 50ml of water in a beaker with gentle warming, till the sample completely dispersed in water. The mixture was centrifuged and decanted the supernatant. The sediment was washed several times with distilled water, centrifuged again and decanted the supernatant. A few mg of the sediment was taken and mounted in glycerin. Then few mg was taken in watch glass and added few drops of phloroglucinol and concentrated hydrochloric acid, mounted in glycerin. The microscopic salient features of the drug were observed in different mounts ⁴.

Chemical analysis: Prepared minimum three batch samples were subjected for chemical analysis. Physicochemical studies like total ash, acid insoluble ash, water soluble ash, alcohol and water solubility, loss on drying at 105°C, microbial load and heavy metal

were carried out as per the WHO guidelines ⁵. Aflatoxin, pesticide residues were carried out by standard methods ⁶. The bulk density, sugar estimation and *pH* values for 1% and 10% aqueous solution were also carried out ⁷.

Thin layer chromatography:

- Preparation of extracts for TLC: Drug samples (2g) were soaked in chloroform and alcohol separately for 18 hours, refluxed for ten minutes on water bath and filtered. The filtrates were concentrated on water bath and made up to 5ml in a standard flask separately.
- Method of developing for TLC: Chloroform and alcohol extracts were applied on precoated silica gel 60 F₂₅₄ TLC plate (E. Merck) as absorbent and developed the plate using solvent systems, toluene: ethyl acetate 9:1 and 1: 1 respectively. After developing, the plates were dried and observed the color spots at UV-254, UV-366nm and vanillin-sulphuric acid spraying reagent⁸.

RESULTS AND DISCUSSION: Jawarish-e-Bisbasa is blackish brown in color, semi-solid, characteristic of its own odor and sweetish bitter in taste. Drug samples were spreaded in a petridish and observed. The samples did not show any filth, fungus or objectionable extraneous matter.

Microscopical Observation: The salient features of raw drugs used in Jawarish-e-Bisbasa are observed and the microscopical diagrams are shown in **Fig. 1**.

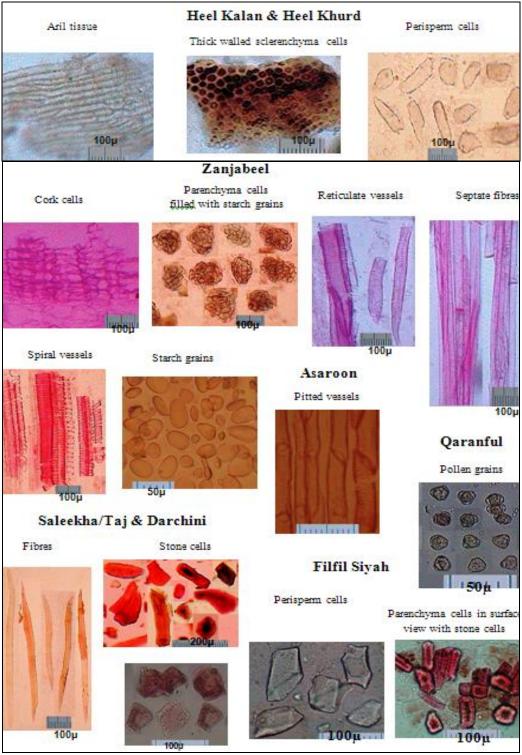


FIG. 1: POWDER MICROSCOPY OF JAWARISH-E-BISBASA

Perisperm cells with bulbous projections packed with starch grains and a few tiny prismatic crystal of calcium oxalate; fragments of aril tissue from testa; orange coloured sclerenchyma cells in surface view (Heel Kalan & Heel Khurd); large stone cells upto 300μ, stone cells with horse shoe shaped thickenings upto 100μ, numerous fibres with thick walled and very narrow lumen (Saleekha/Taj & Darchini); stone cells

polygonal upto 75μ interspersed among parenchyma cells with circular lumen, perisperm cells with angular walls isolated or in groups filled with starch grains (Filfil Siyah); isolated starch grains, simple oval to round shaped measuring upto 70μ , hilum eccentric, lamellae distinct; non-lignified septate fibres upto 50μ , reticulate vessels and fragments of reticulate vessels upto 70μ ; spiral vessels upto 70μ ; cork cells in surface

view; parenchyma cells filled with abundant starch grains (**Zanjabeel**); vessels with pitted thickening of length upto 200μ and breadth upto 35μ with oblique end walls and simple perforation plate (**Asaroon**); pollen grains tetrahedral, spherical, biconvex measuring upto 20μ (**Qaranful**).

Chemical analysis: Moisture content of the drug shows 17.75%. Alcohol soluble extractive (58.38%) might be due to the extraction of polar chemicals constituents and the water soluble extractives 63.88% indicate the presence of inorganic constituents. The physicochemical data of the drug are shown in Table 4. The microbial load is found within the permissible limit Table 5. The heavy metals such as lead, cadmium, arsenic and mercury are present within the permissible limit Table 6. The studies on other parameters, aflatoxins such as B₁, B₂, G₁ and G₂ and pesticide organo-chlorine residues like group, phosphorus group, alachlor, aldrin, chlordane, DDT, endosulfan, heptachlor, lindane and malathion shows that they are not detected in the drug samples Table 7 & 8.

Thin Layer Chromatography Analysis: Thin layer chromatography studies of chloroform and alcohol extract of all the three batch samples showed identical spots in various detector ranges. The R_f values of the chloroform and alcohol extracts are shown in Table 2 and 3. The plates were developed using vanillinsulphuric acid and heated at 105° till appears colored spots in Fig. 2 and 3.

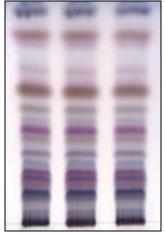


FIG. 2: THIN LAYER CHROMATOGRAPHY FOR CHLOROFORM EXTRACT

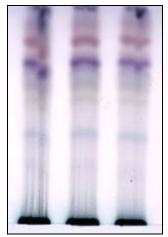


FIG. 3: THIN LAYER CHROMATOGRAPHY FOR ETHANOL EXTRACT Detector: V. S. Reagent, Track 1: Batch – I, Track 2: Batch – II, Track 3: Batch – III

TABLE 2: Rf VALUES OF CHLOROFORM EXTRACT

Solvent system	Rf Values			
	UV 254nm	UV 366nm	V. S. Reagent	
	0.90 Light pink	0.93 Light blue	0.93 Grey	
	0.82 Light pink	0.54 Blue	0.84 Pink	
	0.78 Pink	0.40 Fluorescent blue	0.78 Violet	
	0.66 Pink	0.28 Violet	0.66 Light blue	
	0.57 Light pink	0.16 Yellow	0.58 Brown	
Toluene: Ethyl acetate	0.49 Light pink	0.12 Yellow	0.50 Pink	
(9 : 1)	0.40 Pink		0.44 Blue	
(9.1)	0.28 Pink		0.40 Violet	
	0.21 Pink		0.37 Brown	
	0.13 Pink		0.29 Pink	
			0.25 Blue	
			0.22 Pink	
			0.18 Pink	
			0.13 Blue	

TABLE 3: Rf VALUES OF ALCOHOL EXTRACT

Solvent system	em Rf Values		
	UV 254nm	UV 366nm	V. S. Reagent
	0.96 Light pink	0.85 Fluorescent blue	0.97 Grey
	0.88 Light pink	0.64 Violet	0.93 Pink
Talwaya . Ethyl a satata	0.81 Pink	0.54 Light blue	0.82 Brown
Toluene : Ethyl acetate	0.72 Light pink	0.42 Light blue	0.72 Violet
(1:1)	0.60 Pink	0.36 Light blue	0.62 Blue
	0.52 Pink		0.54 Yellow
	0.33 Light pink		0.40 Blue
			0.24 Grey

TABLE 4: PHYSICOCHEMICAL PARAMETERS

	Batch Number					
Parameters	1	Mean value	II	Mean value	III	Mean value
Alcohol soluble matter	E0 20 E0 26		58.72		57.88	
	58.28 58.36	58.36	58.80	58.81	57.96	57.97
(% W/W)	58.44		58.92		58.08	
Water soluble matter	63.56 63.60		63.84		64.08	
(% W/W)	63.72	63.62	63.88	63.89	64.12	64.13
(% VV/VV)	05.72		63.96		64.20	
Total ash	0.81 0.83	2.24	0.91 0.95	0.04	0.78 0.82	0.01
(% W/W)	0.88	0.84	0.98	0.94	0.85	0.81
Acid insoluble ash	0.15 0.18	0.17	0.22 0.25	0.25	0.12 0.17	0.16
(%W/W)	0.20	0.17	0.28	0.25	0.19	0.10
pH values	5.52 5.57		5.49 5.51		5.59 5.63	
1% Aqueous solution	5.61	5.56	5.65	5.55	5.68	5.63
pH values	4.72 4.76	4 77	4.55 4.60	4.60	4.42 4.50	4.40
10% Aqueous solution	4.83	4.77	4.65	4.60	4.57	4.49
Sugar estimation	43.45 43.49		43.47		43.60	
Reducing sugar (% W/W)	43.43 43.49	43.49	43.52	43.52	43.76	43.72
Reducing Sugar (% VV/VV)	45.55		43.58		43.82	
Non reducing sugar	3.42 3.51	3.52	3.60 3.72	3.71	3.97 4.09	4.08
(% W/W)	3.65	3.32	3.81		4.18	4.08
Moisture	17.23 17.38		17.68		18.09	
(% W/W)	17.25 17.36	17.35	17.74	17.74	18.18	18.17
(/0 00/00)			17.80		18.28	
	1.3788		1.3994		1.3796	
Bulk Density	1.3809	1.3817	1.4009	1.4020	1.3895	1.3892
	1.3856		1.4058	1.4020	1.3987	1.3032

TABLE 5: ANALYSIS OF MICROBIAL LOAD

S. No.	Parameter Analyzed	Results	WHO Limits
1	Total Bacterial Count	3,000 CFU / gm	10 ⁵ CFU / gm
2	Total Fungal Count	Nil/gm	10 ³ CFU / gm
3	Enterobacteriaceae	Absent / gm	10 ³ CFU / gm
4	Salmonella	Absent / gm	Nil
5	Staphylococcus aureus	Absent / gm	Nil

TABLE 6: ESTIMATION OF HEAVY METALS

S. No.	Parameter Analyzed	Results	WHO & FDA Limits
1	Arsenic	Nil	10 ppm
2	Cadmium	Nil	0.30 ppm
3	Lead	Nil	10 ppm
4	Mercury	Nil	1.0 ppm

TABLE 7: ESTIMATION OF AFLATOXINS

S. No.	Aflatoxins	Results
1	B ₁	Nil
2	B_2	Nil
3	G_1	Nil
4	G_2	Nil

TABLE 8: ANALYSIS OF PESTICIDE RESIDUES

S. No.	Pesticide Residues	Results
1	Organo Chlorine Group	ND
2	Organo Phosphorus Group	ND
3	Acephate	ND
4	Chlordane	ND
5	Dimethoate	ND
6	Endosulphan	ND
7	Endosulfan	ND
8	Endosulfon	ND
9	Ethion	ND
10	Endosufon sulphate	ND
11	Fenthion	ND
12	Heptachlor	ND
13	Lindane	ND
14	Methoxychlor	ND
15	Phorate sulfoxide	ND
16	Phorate sulfone	ND
	ND – Not detected	

ACKNOWLEDGEMENT: The authors are extremely thankful to The Director General, CCRUM, New Delhi, for his valuable guidance, encouragement and providing necessary research facilities to carry out the studies.

ISSN: 0975-8232

REFERENCE:

- Pulok K Mukherjee. Quality control herbal drugs An Approach to evaluation of Botanicals, Business Horizon, New Delhi, 2008: 13
- 2. Anonymous. National Formulary of Unani Medicine, Part I (English Edition), Govt. of India, Min. of Health & Family Welfare, New Delhi, 2006 (Reprint): 98 99.
- 3. Wallis RE. Text Book of Pharmacognosy, 5th Edition, CBS Publishers & Distributors, Delhi, 1997: 494 496.
- 4. Johansen DA. Plant Microtechnique McGraw Hill Book Company Inc. New York and London, 1940:181-186.
- 5. Anonymous. Quality Control Methods for Medicinal Plant Materials. World Health Organization, Geneva, 1998: 25-28.
- Anonymous. Association of Official Analytical Chemists (AOAC), 17th Edition. 2000.
- Anonymous. Physicochemical standards of Unani Formulations Part – II, CCRUM, Min. of Health & Family Welfare, New Delhi, 1987: 300-317.
- 8. Wagner H, Bladt S, EM Zgainski. Plant Drug Analysis, A Thin Layer Chromatography Atlas (2nd Edition). Springer-Verlag, Germany, 1984.

How to cite this article:

Meena R, Ramasamy D, Mageswari S, Ahmed SJ, Arifin S, Khan SA and Jameel SS. Scientific Validation of Jawarish-E-Bisbasa - A Unani Formulation. *Int J Pharm Sci Res* 2012; Vol. 3(8): 2809-2814.