
               Shery Jacob, IJPSR, 2012; Vol. 3(9): 2880-2887                        ISSN: 0975-8232 

                                                                               Available online on www.ijpsr.com                                                                        2880 

IJPSR (2012), Vol. 3, Issue 09                                                                                                                                   (Review Article) 

 
Received on 24 April, 2012; received in revised form 14 May, 2012; accepted 21 August, 2012 

LIPID BASED PARENTERAL DRUG DELIVERY SYSTEM 

Shery Jacob 

College of Pharmacy, Gulf Medical University, Ajman, UAE 

 

 

ABSTRACT 

Lipid-based drug delivery systems in the form of triglyceride emulsions, 
micellar systems and liposomes have been used for parenteral administration 
for the last few decades. Large number of new chemical entities (NCE) 
presents formulation and bioavailability problems because of the dose and 
poor solubility in solvent and co-solvent systems. In addition, high drug 
concentrations can lead to irritation and pain at the site of injection. There is 
an increasing interest to expand the range of targetable lipid based systems 
to solubilize a wide variety of drugs, to improve stability, ease of processing 
and manufacture in a sterile form. New class of parenteral lipid based drug 
delivery system includes Tocol emulsions, solid lipid nanoparticles and 
nanosuspensions, sterically stabilized phospholipid micelles, lipid micro-
bubbles and lipoprotein drug carriers. This review article covers the 
challenges faced by the formulation scientist at each stage of product 
development of lipid based drug delivery system. 

INTRODUCTION 1-14: In the past, surfactant systems as 
well as phospholipids emulsified triglyceride emulsions 
have been used as drug carriers for parenteral 
nutrition. Since many drugs are hydrophobic, they are 
sufficiently soluble in vegetable oils to enable the 
formulations like drug-loaded emulsions e.g. the 
intravenous anaesthetic Propofol. Lipid based drug 
delivery system are described under following titles 
like tocol emulsions, solid lipid nanoparticles and 
nanosuspensions, sterically stabilized phospholipid 
micelles, lipid microbubbles and lipoprotein drug 
carriers respectively. 

Tocols: Tocols represent a family of tocopherols, 
tocotrienols, and their derivatives. They are 
fundamentally derived from the simplest tocopherol, 
6-hydroxy-2-methyl-2-phytylchroman, which is also 
referred as ‘‘tocol’’. The most common tocol is D-α-
tocopherol, also known as vitamin E.  

Tocols can be an excellent solvents for water insoluble 
drugs and are compatible with other cosolvents, oils 
and surfactants, ‘‘solubility in vitamin E’’ parameter 
(SVE) to predict solubility of a drug in vitamin E.  

SVE can be defined as the solubility in chloroform 
divided by the solubility in methanol, expressed in 
mg/ml. An SVE of greater than 10, preferably greater 
than 100, would indicate solubility in vitamin E. Many 
tocol emulsions have been developed like Paclitaxel 
emulsion, an antineoplastic drug 1. 
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Certain practical considerations and guidelines for the 
solubility studies of tocol emulsions have been 
proposed by Illum et al and given in Table 1 2, 3. 

In conventional injectable formulations, non-aqueous 
solvents, such as ethanol, and solubilizers, such as 
Cremophor, Tween 80 are often added to enable 
adequate solubilization of highly hydrophobic drugs.  

TABLE 1: SOLUBILITY OF DRUGS IN ORGANIC SOLVENTS AND VITAMIN E 

Drug 
Solubility (mg/ml) Parameter 

Water Methanol Chloroform Vitamin E SVE Solubility 

Itraconazole Insoluble Insoluble 500 60 1000 10.6 

Paclitaxel Insoluble 0.03 6 11 200 11.9 

Cyclosporine Slightly soluble 0.71 313 100 520 10.7 

Ergosterol Insoluble 1.5 32 50 25 9.6 
Cholesterol 0.22 5 200 150 40 9.6 

Prednisolone Insoluble 33 5 Insoluble 0.02 13.6 

 
Manufacturing and packaging conditions are necessary 
due to the ability of these components to leach 
undesirable substances like plasticizers from intra-
venous infusion tubing and bottles. Recent advances in 
the use of α-tocopherol or other tocopherols, 
tocotrienols or derivatives as a solvent to dissolve 
water insoluble drugs have been described in current 
literature 4-5.  

The drugs that have shown increased solubility in tocol 
emulsions include cyclosporine, paclitaxel, few steroids 
and antibiotics. These recent advancement have 
expanded the application of tocopherols and 
tocotrienols as a solvent for delivery of hydrophobic 
drugs, particularly when combined with d-alpha 
tocopheryl polyethylene-glycol succinate (TPGS), 
phospholipids, and certain co-solvents and emulsifiers. 
In addition, vitamin E, tocopherol esters including 
TPGS, were recently found to be useful in 
pharmaceutical formulations as solubilizers and 
cosolvents for the administration of medicaments 6-7. 

The potential disadvantages of tocol based emulsions 
may include: drug solubility limitations; requirement of 
biocompatible surfactants for formulation and stability; 
limited methods for sterilization; and intolerance of 
tocopherol in chronic administration. 

Marketed Formulations: Taxol® is the first marketed 
formulation containing paclitaxel approved by the FDA 
in 1992. It is formulated in a mixture of polyoxy-
ethylated castor oil and ethyl alcohol. Cremophor EL 
has been associated with a wide range of toxicities, 
including bronchospasm, hypotension, and other 
hypersensitivity-type reactions 8, 9.  

TOCOSOL™ paclitaxel tocol emulsion is currently in 
advanced clinical development. It offers several 
advantages over the existing Cremophor: ethanol 
formulation, including a ready-to use product that 
incorporates high drug loading of paclitaxel (10 
mg/ml), smaller dose, and shorter infusion periods.  

The commercially available product, Cordarone® IV is 
currently formulated in a vehicle containing a 10% 
(w/v) polysorbate 80 and 2% (w/v) benzyl alcohol. The 
first parenteral fat emulsion i.e., Intralipid was 
developed for parenteral nutrition in 1960's. A major 
disadvantage is the critical physical stability of the 
emulsions due to a reduction of the zeta potential (ZP) 
which can lead to agglomeration, drug loss and 
breaking of the emulsion 10.  

Solid Lipid Nanoparticles: SLN are particles made from 
solid lipids stabilized by surfactant. The lipids can be 
highly purified triglycerides, complex glyceride 
mixtures or even waxes. The main advantages of SLN 
are the better physical stability, protection from 
degradation, controlled and sustained drug release, 
good tolerability and site specific targeting. Potential 
disadvantages include insufficient loading capacity, 
drug loss after polymorphic transition during storage 
and high water content of the dispersions (80-99%). 

Solid lipid nanoparticles (SLN) formulations by various 
routes of administration have been developed and 
characterized both in vitro and in vivo 11-15.  

Nano lipid carrier (NLN) have been introduced in late 
1990s in order to overcome the potential problems of 
SLN described above 16, 17.  
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The development of a nanoparticulate lipid carrier with 
nanostructure could increase the payload and prevent 
drug expulsion. This could be realized in three ways. In 
the first model, spatially different lipids composed of 
different fatty acids are mixed. This leads to larger 
distances between the fatty acid chains of the 
glycerides and imperfections in the crystal. Thus there 
is more room for the accommodation of guest 
molecules. In ‘‘imperfect type NLC’’ the highest drug 
load could be achieved by mixing solid lipids with small 
amounts of liquid lipids. In LDC nanoparticles, high 
drug loading capacities of up to 40% have been 
developed at the turn of the millennium 18, 19.  

Here, an insoluble drug–lipid conjugate bulk is 
prepared either by salt formation or by covalent linking 
which could be firmly incorporated in the solid lipid 
matrix 20-21. Hot pressure homogenization (HPH) is a 
suitable method for the preparation of SLN, NLC and 
LDC and can be performed at elevated or below room 
temperature 22-23.  

The particle size is decreased by cavitation and 
turbulences. Different methods have been used for the 
production of SLN like precipitation, solvent 
emulsification-evaporation, and spray congealing 
method.  

The physical stability of SLN dispersions has been 
investigated intensively by various particle size 
analyzing techniques like Photon Correlation 
Spectroscopy, Laser Diffraction, Thermal Analysis by 
Differential Scanning Calorimetry and surface charge 
by zeta potentiometer. The influence of lipid and 
carbohydrate types and its concentration, redispersion 
and spraying medium have been investigated by 
Freitas and coworkers 24.  

SLN may be injected intravenously due to smaller 
particle size and can be used for targeted drug delivery 
to specific organs. These particles are cleared from the 
circulation by the reticuloendothelial system of liver 
and spleen. Reticuloendothelial system stealth facility 
was also used for tumor targeting using poly-
oxyethylene functional groups. Few examples of drugs 
meant for parenteral application incorporated into SLN 
are given in Table 2. 

 
 

TABLE 2: DRUGS INCORPORATED INTO SLN FOR PARENTERAL 
APPLICATION 

Drugs References 

AZT-P& derivatives, Camptothecin 25, 26, 27 
Camptothecin 28 

Clobetasol propionate 29 
Cyclosporine-A 30 

Mifepristine 31 
Paclitaxel 32, 33 

Tobramycin 34 
Thymopentin 35 

Polymeric Micelle: The use of micelles prepared from 
amphiphilic copolymers combining hydrophilic and 
hydrophobic characteristics for solubilization of poorly 
soluble drugs has attracted much attention recently 36-

38. If the drug target is located inside the cell, it must 
have a certain degree of hydrophobicity in order to 
cross the cell membrane 39-40.  

Polymeric micelles are particles with diameters 
typically smaller than 100 nm formed by amphiphilic 
polymers dispersed in aqueous media. Within the 
structure of an amphiphilic polymer, monomer units 
with different hydrophobicity can be combined 
randomly, represented by two conjugated blocks each 
consisting of monomers of the same, or be made from 
alternating blocks with different hydrophobicity.  

Alternatively, the hydrophilic backbone chain of a 
polymer can be grafted with hydrophobic blocks. 
Polymeric micelles solubilize poorly water-soluble 
drugs by incorporating them into their hydrophobic 
core thus allowing for an increased bioavailability. The 
use of polymeric micelles often allows for high physical 
stability, extended circulation time, significant bio-
distribution and lower toxicity of a drug. In some cases, 
targeting is achieved through the enhanced 
permeability and retention (EPR) effect 41. 

The most convenient and simplified technique for the 
preparation of drug-loaded PEG–PE micelles involves 
simple dispersing a dry PEG–PE–drug mixture in an 
aqueous buffer. Solutions of PEG–PE and a drug of 
interest in miscible volatile organic solvents are mixed, 
and organic solvents are evaporated to form a PEG–
PE–drug film. The film obtained is then hydrated in the 
presence of an aqueous buffer and the micelles are 
formed by intensive shaking.  
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The targeted drug-delivery system using polymeric 
micelles could be further enhanced by attaching 
ligands to the micelle surface, which include antibodies 
against specific receptors in tissues and organs 42-45. 
The antibody was attached to the micellar surface 
using a procedure recently developed for the 
attachment of specific ligands to liposomes 46-47. One 
of the polymers that have gained popularity as a 
hydrophilic polymer component of drug-delivery 
systems is highly biocompatible polyvinyl alcohol (PVP) 
37.  

PVP was used in formulations of such particulate drug 
carriers as liposomes 49, nanoparticles 50, microsphere 
51 and diblock polymer micelles 52, 53. These micelles 
can be loaded with a variety of hydrophobic drugs, and 
are very stable both in terms of the ability to retain 
their morphology and encapsulated material upon 
conditions modeling parenteral administration.  

The attachment of anticancer antibody to the micelle 
surface (immunomicelles) could further enhance 
tumor targeting. Anticancer drugs encapsulated into 
micelles prepared from polymer-lipid conjugates 

demonstrate an increased antitumor efficiency in vitro 
and in vivo compared to free drugs. Pharmaceutical 
polymer-lipid conjugate-based micelles and immuno-
micelles can be used for the solubilization and 
enhanced delivery of poorly soluble drugs to tumors.  

Microbubbles: Microbubbles are comprised of 
spherical voids or cavities filled by a gas and stabilized 
by coating materials such as phospholipid, surfactant, 
denatured human serum albumin or synthetic 
polymer. Since gas is less dense than liquids or solids, 
microbubbles have a number of potentially important 
medical applications like site-specific delivery, 
treatment of thrombosis and pulmonary delivery. One 
way of exploiting the diagnostic and therapeutic 
applications of microbubbles is with ultrasound.  

In order to use microbubbles for intravascular 
applications, they must be smaller than erythrocytes. 
The microbubbles must be sufficiently stable, that 
after injection into the blood, they will circulate for a 
long enough period of time to reach the target site. 
Significant applications of lipid coated microbubbles 
are given in Table 3.  

TABLE 3: IMPORTANT APPLICATIONS OF LIPID-COATED MICROBUBBLES 

Application Notes References 

Therapeutic imaging Microbubbles enable visualization of blood flow. 54-58 

Sonothrombolysis Microbubbles accelerate clot lysis with ultrasound. 59-64 

Drug delivery to brain 

Transcranial application of therapeutic ultrasound with IV delivery of bubbles leads to 

reversible opening of blood–brain barrier potential to deliver macromolecules and 

low molecular weight therapeutics to CNS. 

65-67 

Gene delivery 
Co-administration of microbubbles with plasmid DNA, antisense oligonucleotides, or 

other gene medicines. 
68, 69 

Targeted microbubbles 
Incorporation of ligands onto surface of microbubbles enables targeting to cell-

specific receptors. 
70 

Perflourocarbon 

nanoemulsions 

Sub-micron-sized particles using liquid PFCs have enhanced fusogenic properties for 

gene and drug delivery. 
71-73 

Pulmonary delivery oxygen 

delivery 

Low-density drug carrying microbubbles have good properties for delivery of 

materials deep into lung. 
74 

 

Marketed Formulations: An IV injectable ultrasound 
contrast agent, Perflutren (phospholipid- coated 
perfluoropropane filled microbubbles), is approved by 
the US FDA. In the US, "Definity" is approved for 
echocardiography and in Canada for both radiology 
and cardiology indications. The phospholipid coating in 
Definity is designed to stabilize bubbles of defined size. 
The lipid coating in Definity is composed of three 
different phospholipids, Dipalmitoylphosphatidyl 

choline (DPPC), Dipalmitoylphosphatidic acid (DPPA), 
and dipalmitolyphosphatidylethanolamine–PEG5000 
(DPPE–PEG5000). 

Lipoproteins: Lipoproteins are a class of complex 
macromolecules consisting of both lipid and protein 
subgroups. Its responsibility is to transport a number 
of hydrophobic nutrients throughout the systemic 
circulation, mainly lipids in an aqueous environment. 
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They are characterized by an insoluble core made of 
cholesteryl ester-triglyceride surrounded by a shell of 
amphipathic phospholipids and specialized proteins 
called apolipoproteins 75-76.  

Plasma lipoproteins are primarily involved in the 
transport of lipids and proteins throughout systemic 
circulation. Lipoprotein’s biological significance 
extends beyond transport of lipids and hydrophobic 
drugs. 

Drugs such as halofantrine (Hf) amphotericin B (AmpB) 
and cyclosporine A (CsA) are specifically bound with 
lipoproteins. By understanding the mechanism of 
action of these lipoprotein bound drugs, which is taken 
up intracellularly may provide novel methods in drug 
targeting. There have been a number of studies 
suggesting that the LDL receptor and members of its 
super-family may be playing a role in cellular drug 
uptake, specifically, aminoglycosides, type-I ribosome-
inactivating proteins (RIP), anionic liposomes and 
cyclosporine Administration of drugs such as CsA, Hf 
and amphotericin B lipid complex usually results in 
abnormal lipid levels secondary to the disease state.  

Therefore, by understanding the mechanisms in which 
lipoproteins can bind to hydrophobic drugs, it can 
predict their therapeutic effects and/or their toxicities 
leading to improved administration and patient 
treatment of these drugs. An enhanced 
antiproliferative effect of CsA was observed when the 
drug was bound to LDL but was not evident when the 
drug was bound to either VLDL or HDL 77-78. 

In addition, modification of the lipoprotein surface 
charge with an increased negative charge resulted in 
greater percentage of CsA recovered within the LDL 
subfraction after incubation in phosphatidylinositol 
treated rabbit plasma than control plasma79. 
Halofantrine is a therapeutic agent used in the 
effective treatment of malaria, particularly against 
Plasmodium falciparum and other multi-resistant 
strains 80-81. 

The distribution of Hf between plasma lipoproteins is 
highly correlated with 0a0 polar core lipid of individual 
plasma lipoprotein fractions and binding of the Hf 
enantiomers to different plasma lipoprotein subclasses 
is stereoselective and species specific 82-83.  

Taken together, these studies suggest that the 
bioavailability and clearance of Hf could be affected by 
its association to lipids 84. Plasma distribution of free 
and liposomal nystatin in human plasma of various 
lipoprotein compositions revealed a majority of these 
formulations recovered in the HDL fraction. This 
preferential distribution of nystatin may be a function 
of the protein composition of the HDL particle 85-86. 

Thus, lipoproteins can act as a natural drug delivery 
system for hydrophobic drugs or lipid-based 
formulations. By understanding the uptake mechanisms 
of these specific drug delivery systems, it can provide 
better therapeutic treatments and administration to 
patients who experience side effects or low efficacy.  

CONCLUSION: Novel nanoparticulate carrier systems 
based on lipids could make an important impact on 
clinical practice for critical drugs such as in cancer 
chemotherapy, for diagnostic agents, DNA, and 
vaccines. In light of their physical chemical diversity 
and biocompatibility, lipid formulations are attractive 
candidates for improving drug solubility and for 
targeting specific tissues.  
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