
                                                              Shaikh et al., IJPSR, 2012; Vol. 3(12): 4882-4887                               ISSN: 0975-8232 

                                                                               Available online on www.ijpsr.com                                                                        4882 

IJPSR (2012), Vol. 3, Issue 12                                                                                                                              (Research Article) 

 
Received on 01 August, 2012; received in revised form 11 September, 2012; accepted 24 November, 2012 

THE ROLE OF TRANSIENT RECEPTOR POTENTIAL VANILLOID 1 RECEPTOR IN DESIPRAMINE INDUCED ANALGESIC 
EFFECT IN DIABETIC MICE  

Sana Shaikh, Shrikalp Deshpande and Priyanshee Gohil* 

Department of Pharmacology, K.B. Institute of Pharmaceutical Education and Research, Kadi 
Sarvavishvawidyalaya, Gandhinagar, Gujarat, India 
 

 

 

 

 

ABSTRACT 

Hyperalgesia is one of the debilitating complications of diabetes. The thermal 
allodynia and hyperalgesia in diabetic mice may be due to the hyperactivity 
of C-fiber in the spinal cord. Transient receptor potential vanilloid type 1 
(TRPV1) present in spinal cord and activation of C-fibre may involve in 
hyperalgesia in diabetic mice. Desipramine is one of the tricyclic 
antidepressants, effective in diabetic neuropathy. The intravenous 
administration of desipramine depresses the C-fibre reflex that will involve in 
activation of convergent neurons of the spinal cord. Thus, the present study 
was carried out to find out the role of TRPV1 in desipramine induced 
analgesic effect in diabetic hyperalgesia. Mice were administered capsaicin (1 
mg kg-1), capsazepine (15 mg kg-1), desipramine (10 mg kg-1) from day 4 to 
day 11 after induction of diabetes and the nociceptive threshold was 
measured in terms of reaction time, tail flick latency and tail withdrawal 
latency. The nociceptive threshold was significantly (p < 0.05) lower in 
diabetic mice as compared with control group. Capsaicin produced a 
significant (p < 0.05) decrease in reaction time, tail flick latency and tail 
withdrawal latency as compare to diabetic group. Desipramine caused a 
significant (p < 0.05) increase in nociceptive threshold in diabetic group as 
well as capsaicin treated diabetic group. It was concluded that desipramine 
produced analgesic effect in diabetic hyperalgesia and TRPV1 might be 
involved in desipramine induced analgesic effect. 

INTRODUCTION: Antidepressants are widely used in 
chronic pain states including both inflammatory and 
neuropathic pain conditions.  It has been suggested 
that antidepressant drugs have specific analgesic 
properties, and various clinical 1, 2 and experimental 3-5 
types of evidence together demonstrate that the 
analgesic effect may be independent of the 
antidepressant effects. Interactions of antidepressants 
with biogenic amines, opioid systems, excitatory amino 
acid receptors, substance P and calcium and sodium 
channels have been considered to be involved pain 
relieving properties of antidepressants 6.  

Desipramine (Figure 1) is one of the tricyclic 
antidepressants, which block the uptake of amines by 
nerve terminals, by competition for the binding site of 
the amine transporters. Oral desipramine enhances the 
analgesic effects of morphine for post-operative pain 7, 
reduces pain intensity in post-herpetic neuralgia 8, and 
produces pain relief in diabetic neuropathy patients 9.  

Acute administration of desipramine is antinociceptive 
in animal models of inflammatory pain 10 and 
attenuates thermal hyperalgesia in models of 
neuropathic pain 11, 12. 
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FIGURE 1: STRUCTURE OF DESIPRAMINE 

TRPV1 is considered as key molecules of nociception 
and a correlation between TRPV1 expression and 
inflammatory thermal hyperalgesia has been 
established in rats 13. TRPV1 may involve in 
transduction of chemical and thermal hyperalgesia in a 
model of diabetic neuropathy 14. TRPV1 is a non-
selective cation channel of TRP family located on 
sensory neurons. There are seven subfamily of TRP 
channel in which TRPV1 is associated with thermal 
hyperalgesia 15. Hyperalgesia is one of the common 
complications of diabetes mellitus. Streptozotocin 
(STZ) induced diabetes neuropathy also demostrate 
thermal hyperalgesia and mechanical allodynia 16. In 
experimental diabetic neuropathy, the development of 
hyperalgesia is due to increased expression of TRPV1 
on neurons that do not normally express TRPV1 17. 

It was suggested that the thermal allodynia and 
hyperalgesia in diabetic mice may be due to the 
hyperactivity of C-fiber in the spinal cord. The TRPV1 
receptor is expressed predominantly by primary 
sensory neurons in the spinal cord, probably in 
unmyelinated C-fibers and sensitization of TRPV1 
receptors might be involved in the mechanism of 
thermal hyperalgesia and allodynia seen in diabetic 
mice 17, 18. Desipramine, inhibit the spinal processing of 
C inputs by acting directly at the spinal cord level 19. 

In light of above facts, the present study was designed 
to find out the role of TRPV1 in desipramine induced 
analgesic effect in STZ induced diabetic mice model. 

MATERIALS AND METHODS: 

Animals: Healthy albino mice of either sex, weighing 
25–30 g were procured from Zydus Research Centre, 
India. The animals were housed and maintained at 298 
K, 50 ± 15 % RH for 12 hour light-dark cycles, in 
polypropylene cages with free access to food and 
water ad libitum.  

The experimental protocol (KBIPER/2011/247) was 
approved by the Institutional (K.B. Institute of 
Pharmaceutical Education and Research) Animal Ethics 
Committee (IAEC) under the Committee for the 
Purpose of Control and Supervision of Experiments on 
Animals (CPCSEA) guideline, before carrying out the 
project. 

Chemicals: Streptozotocin, desipramine and capsaicin 
were obtained from Sigma-Aldrich, USA while 
capsazepine obtained from Cayman chemical, China.  
Dimethylsulphoxide (DMSO) was purchased from Sujan 
Chemials, India. 

Desipramine was dissolved in saline. Capsaicin and 
capsazepine was dissolved in 30% DMSO to prepare 
stock solution and it was diluted further in saline to 
prepare working solutions. 

Induction of type 1 diabetes: Diabetes mellitus was 
induced in mice using STZ. Streptozotocin was freshly 
prepared by dissolving 1 g STZ in 10 mL 0.1 N cold 
citrate buffer (1.45 g citric acid and 1.05 g sodium 
citrate dissolved in 100 mL distilled water) at a pH of 
4.5. Single dose of STZ (25 mg kg-1, i.p.) was 
administration for induction of diabetes and 10% W/V 
oral glucose was given to all animals after 6 h of STZ 
administration to prevent the hypoglycemic shock.  
Control animals received an equivalent volume of 
saline. Confirmation of hyperglycemia was made 3 
days later by measurement of the fasting blood glucose 
(FBG) level. Mice with FBG level >14 mmol L-1 were 
considered diabetic and were included for further 
study 20. 

Estimation of blood glucose: Blood glucose levels were 
estimated spectrophotometrically by glucose-oxidase 
methodusing a commercially available enzymatic kit 
(Span Diagnostics Ltd., India) 21. 

Experimental design: 

The mice were divided into the following groups: 

 GROUP I (Non-Diabetic control group) 

 GROUP II (STZ-induced diabetic group) to serve as 
diabetic control animals.  

 GROUP III (Capsaicin treated diabetic group: 1 mg 
kg-1, i.p)  
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 GROUP IV (Capsazepine treated diabetic group:15 
mg kg-1, i.p)   

 GROUP V (Desipramine treated diabetic group: 10 
mg kg-1, i.p) 

 GROUP VI (Capsaicin (1 mg kg-1, i.p) + Desipramine 
(10 mg kg-1, i.p)  

 GROUP VII (Capsaicin (1 mg kg-1, i.p) + Capsazepine 
(15 mg kg-1, i.p) 

Mice of group I were administered normal saline 
solution to serve as a non-diabetic group. Desipramine, 
capsaicin and capsazepine were administered to their 
respected groups, daily for 8 days, starting on day 3 
after STZ administration. In case of group VI and group 
VII, desipramine and capsazepine were administered 
30 min before capsaicin administration. Nociceptive 
threshold was noted on day 4, 8 and 11 in all groups.  

Measurement of Nociceptive Threshold: For the 
measurement of nociceptive threshold, the hot plate, 
tail immersion test and the tail flick test were carried 
out at 0, 30, 60 and 120 minutes intervals. 

1. Hot plate method: The mice were placed 
individually on a hot plate (Max enterprise/ 
HP99M, India) maintained at 328 K and the time 
taken by the animal for the reaction either by 
licking the paw or jumping or raising the limbs 
which ever was observe first taken as the end 
point. Reaction time was note down before and at 
0, 30, 60 and 120 min after the drug or saline 
administration in each animal. Cut off time of 60 s 
was followed to avoid any thermal injury to the 
paws 22.  

2. Radiant heat tail-flick method: Tail-flick latency 
was assessed by the analgesiometer (Instruments 
manufacturing corporation -model/MC-102413, 
India). The strength of the current passing through 
the naked nichrome wire was kept constant at 2 A. 
The distance between heat source and the tail was 
1.5 cm and the application site of the heat on the 
tail was maintained within 2 cm, measured from 
the root of the tail. Cut-off reaction time was 30 s 
to avoid any tissue injury during the process. Tail-
flick latency was measured before and 0, 30, 60 
and 120 min after the drug administration.  

The time taken by mice to withdraw (flick) the tail 
was taken as the reaction time. The animals were 
subjected to the same test procedure at 0, 30, 60, 
120, and 180 min after the administration of drug 
22. 

3. Tail immersion test: Mice were held in position in 
a suitable restrainer with the tail extending out. 3-
4 cm area of the tail was marked and immersed in 
the water bath thermo-statistically maintained at 
328 K. The withdrawal time of the tail from hot 
water was noted as the reaction time or tail flick 
latency. The maximum cut off time for immersion 
was 30 s to avoid the injury of the tissues of tail 22. 

Statistical analysis: All the values were expressed as 
Mean±SEM. The data were analyzed by One-way 
Analysis of Variance (ANOVA) followed by Tukey's 
multiple range test. The level of significance was 
expressed at p < 0.05. 

RESULTS: 

Effect of STZ on Fasting blood glucose level: FBG level 
was significantly (p < 0.05) increase in STZ treated mice 
as compare with control mice (Figure 2). 

 
FIGURE 2: FASTING BLOOD GLUCOSE LEVEL IN CONTROL AND STZ 
TREATED GROUPS Each bar are expressed as mean ± SEM. (n=6); 
* p<0.05 as compared with control group; (One way ANOVA 
followed by Tukey’s Test) 

Measurement of Nociceptive Threshold: The diabetic 
group showed a significant (p < 0.05) decrease in 
reaction time, tail- flick latency, tail withdrawal latency 
as compared to control group on day 11. Reaction 
time, tail- flick latency, tail withdrawal latency was 
significantly (p < 0.05) decrease in capsaicin treated 
group than diabetic mice on day 11.  
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Nociceptive threshold was significantly (p < 0.05) 
increase in desipramine as well as capsazepine treated 
mice than diabetic group at 11 day. In animals 
pretreated with desipramine and capsazepine before 

capsaicin administration, there was a significant (p < 
0.05) increase in reaction time, tail flick latency and tail 
withdrawal latency as compared with capsaicin treated 
diabetic mice (Figure 3). 

 
FIGURE 3: EFFECT OF CAPSAICIN, DESIPRAMINE AND CAPSAZEPINE ON REACTION TIME, TAIL FLICK LATENCY, TAIL WITHDRAWAL 
LATENCY AT 60 MIN ON DAY 11. Each bar are expressed as mean ± SEM. (n=6); * p<0.05 as compared with control group; # p<0.05 as 
compared with diabetic group; @ p<0.05 as compared with Capsaicin group; (One way ANOVA followed by Tukey’s Test) 

DISCUSSION: The present work aimed to study the 
involvement of TRPV1 in analgesic effect of 
desipramine in diabetic hyperalgesic mice. 

The transient receptor potential vanilloid 1 (TRPV1) 
receptor, previously known as the vanilloid receptor 1 
(VR1) or capsaicin receptor, is a ligand-gated, non-
selective cation channel expressed predominately by 
primary nociceptive sensory neurons 14. It activated by 
the pungent component of hot chilli peppers, 
capsaicin, as well as heat, protons and some 
endogenous substances known to be associated with 
tissue inflammation. TRPV1 has, therefore, been 
suggested to be a molecular integrator of chemical and 
physical stimuli that elicit pain 23. It has been shown 
that TRPV1 play a significant role in nociception and in 
the pathogenesis of experimental diabetic hyperalgesia 
and the development of its complications 16.  

Streptozotocin (STZ) is a glucosamine nitrosourea 
compound used for the induction of the diabetes 
mellitus in animals and also used to study the 
associated complications. The induction of diabetes by 
STZ is characterized by initial phase of hyperglycemia, 
then hypoglycemia and then it will cause 
hyperglycemic effect in animal. This effect will cause 
diabetic mellitus after 3 days of STZ administration 24. 

In present study, the STZ treated mice showed 
significantly (p<0.05) increase in FBG level and became 
diabetic. The diabetogenic action of STZ was also 
accompanied by the development of persistent 
hyperalgesia by enhancing expression and function of 
TRPV1 receptor in DRG neurons 25.  

The present study demonstrated that diabetic mice 
induced by a single injection of STZ developed 
significant hyperalgesia. The nociceptive threshold was 
significantly lower in diabetic mice as compared with 
the control group. Hyperalgesia was evident on Day 4 
and the maximum decrease in pain threshold was 
observed on Day 11 after STZ injection. 

The modulation of nociception by antidepressants is 
mainly centrally mediated and involved central 
serotonergic, noradrenergic, and opioidergic systems 
in the modulation of pain threshold caused by 
antidepressants.  

Most pharmacological data so far revealed that 
facilitation of central serotonergic and noradrenergic 
transmission is potentially anti-nociceptive, whereas 
inhibition of serotonergic and noradrenergic activity 
increases the sensitivity to noxious stimuli 26, 27.  
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Tricyclic antidepressants exhibit anti-nociceptive 
properties in neuropathic, nociceptive and 
inflammatory models of pain 28 but this effect through 
the TRPV1 receptor is not clear. It has been 
demonstrated that desipramine is effective in diabetic 
neuropathy and can serve as a relatively selective 
adrenergic probe of analgesic mechanisms 9.  

Desipramine, which is a powerful reuptake inhibitor of 
norepinephrine, has been found to have marked 
antinociceptive properties in some investigations 3, 29.  

Oral desipramine reduces pain intensity in post-
herpetic neuralgia 8 and produces pain relief in diabetic 
neuropathy patients 9. The intravenous administration 
of desipramine depresses the C-fibre reflex that will 
involve in activation of convergent neurons of the 
spinal cord 28, 30, 31. The thermal allodynia and 
hyperalgesia in diabetic mice may be due to the 
hyperactivity of C-fiber in the spinal cord 32, 33.  

TRPV1 present in spinal cord and activation of C-fibre 
activity may involve in hyperalgesia in diabetic mice. 
The anti-nociceptive effect of desipramine was 
measured by hot plate method, tail flick method, tail 
immersion method. In present study, desipramine 
showed significant increase in reaction time, tail flick 
latency and tail withdrawal latency as compare to 
diabetic group. This suggests that desipramine gives 
analgesic effect in diabetes mellitus induced 
hyperalgesia. 

Capsaicin, the active agent found in hot chilli peppers is 
powerful agonist of TRPV1. Capsaicin accomplishes its 
effect by evoking sharp burning pain sensation. 
Capsaicin induces influx of cations in nociceptors. 
Capsaicin activates TRPV1, that produce hyperalgesia 
34. Capsazepine is a powerful antagonist of TRPV1 
receptor. Capsazepine, the competitive capsaicin 
antagonist significantly reduces inflammatory heat 
hyperalgesia 35, 36.  

In present investigation, capsaicin produced a 
significant decrease in reaction time, tail flick latency 
and tail withdrawal latency as compare to diabetic 
group. Capsazepine antagonized the hyperalgesic 
effect of capsaicin. Likewise, desipramine caused a 
significant increase in reaction time, tail flick latency 
and tail withdrawal latency of capsaicin treated group 
compare to diabetic group.  

This suggests the involvement of TRPV1 in desipramine 
induced analgesic effect in diabetic hyperalgesia. 

CONCLUSION: In conclusion, desipramine produced 
analgesic effect in diabetic hyperalgesia and TRPV1 
might be involved in desipramine induced analgesic 
effect. 
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