
(Research Article)

IJPSR (2011), Vol. 2, Issue 12

Received on 17 August, 2011; received in revised form 28 September, 2011; accepted 24 November, 2011

PHARMACOGNOSTIC AND PRELIMINARY PHYTOCHEMICAL EVALUATION OF THE LEAVES OF *CRINUM LATIFOLIUM* L.

J. Solanki*¹, A. Dhiman ¹, A. Nanda ¹ and A. Dhankhar ²

Department of Pharmaceutical Sciences, Maharshi Dayanand University ¹, Rohtak-124001, Haryana, India Suresh Gyan Vihar University ², Jagatpura, Jaipur - 302025, Rajasthan, India

ABSTRACT

Keywords:

Crinum latifolium L., Microscopy, Pharmacognostical, Phytochemical

Correspondence to Author:

J. Solanki

Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, Haryana, India Crinum latifolium L. is a rosette-like herb showing promising results as rubefacient, tonic, for treatment of allergic disorders, benign prostatic hyperplasia, cancer and others. The present study deals with pharmacognostic and preliminary phytochemical evaluation of leaves of Crinum latifolium (Amaryllidaceae). The pharmacognostical studies were carried out as organoleptic, microscopic and physical parameters such as moisture content, ash value, fluorescence analysis and extractive value were determined. For phytochemical evaluation, Crinum latifolium leaves were subjected to successive solvent extraction using petroleum ether, chloroform, hydroalcoholic solution and water. These extracts were then screened for presence of different chemical constituents. Thin layer chromatography (TLC) of the tested extracts was also performed to determine the active principles. These studies are useful in identification and chemical characterization of Crinum latifolium and to explore its phytochemical and pharmacological potential.

INTRODUCTION: *Crinum latifolium* L. (Amaryllidaceae), popularly known as Sudarshan, has been used in Asian folk and traditional medicine ¹ in the treatment of serious health conditions like prostatitis adenoma, benign prostate enlargement ², uterine fibroids, hypoxia, inflammation, detoxification, tissue regeneration, hormone balancing, to enhance cellmediated immunity and an effective T-lymphocyte activator ³.

Leaf juice is used for earache, rheumatic pain, and sprain. These activities are attributed to the presence of different chemical principles such as Amaryllidaceae alkaloids ⁴ lycorine, 2-epilycorine, pyrrolophenanthridine alkaloids, 2-epilycorine and 2-epipancrassidine ⁵, carbohydrates, glycosides, proteins & amino acids etc. and thus imparting significant role

in medicines. But insufficient data is found in literature regarding pharmacognostic and physiochemical characteristics which can further help in betterment of its medicinal activity.

Hence, the present study was designed to evaluate the pharmacognostic aspects of leaves including morphology, histology and quantitative microscopy, determination of various physicochemical parameters, fluorescence analysis, phytochemical screening and TLC of different leaf extracts of *Crinum latifolium* L.

MATERIALS AND METHODS: Collection and authentication of plant material: The leaves of *C. latifolium* L. were collected from herbal garden, Maharshi Dayanand University, Rohtak, Haryana, India in december 2010 and authenticated by Dr. J.P. Yadav, Department of Biosciences, M.D. University, Rohtak

and a voucher specimen was deposited in Herbarium of Pharmaceutical Sciences, M.D.University (voucher specimen number DPS 0016).

Pharmacognostical Investigation:

Morphological Features: The morphological features of leaves such as presence of foreign organic matter, color, odor, size, shape and taste were studied ⁶.

Microscopic features: Microscopic characteristics were studied under the following headings-

- a. Microscopy of intact drug as well as powdered drug characteristics
- b. Quantitative microscopy

Powder Characteristics: The powder microscopy was performed using standard methods and characteristic features were recorded ⁷.

Quantitative Microscopy: Various leaf constants such as stomatal number, stomatal index, palisade ratio, vein islet number and vein termination number were determined followed by official methods ⁸.

Physicochemical Parameters: Physicochemical parameters, i.e., percentage of ash values, extractive values, percentage of moisture content and fluorescence analysis were performed according to recognized methods ⁹.

Determination of Ash Values: The ash of the leaf powder was prepared by incinerating the powder in muffle furnace and ash value was determined ¹⁰.

Determination of Extractive Values: The leaves were shade dried, coarsely powdered and then were extracted successively with petroleum ether, chloroform, hydro alcoholic solution (70:30) and finally with chloroform water using hot extraction technique. The extractive values were determined in percentage w/w ⁹.

Fluorescence Analysis: Fluorescence analysis of crude drug powder was carried out in various solvents and reported.

Preliminary Phytochemical Screening: Different extracts were then screened for the presence of the various organic chemical constituents in the leaves of *C. latifolium* L ¹².

TLC Fingerprint Profile: Thin layer chromatography of different extracts was performed and the R_f values were determined 13 .

RESULTS AND DISCUSSION:

Morphological Characteristics: Crinum latifolium L. is a rosette-like herb that arises from an underground bulb. It is a stout perennial herb 2 m in height. Leaves are long, linear, acute apex, entire margin, ligulate type ¹⁴. Flowers are white in color and arranged in umbel. The morphological characteristics of Crinum latifolium L. are listed in table 1.

TABLE 1: MORPHOLOGICAL CHARACTERISTICS OF FRESH CRINUM LATIFOLIUM L. LEAVES

Color	Green		
Odor	Faint		
Taste	Characteristic		
Shape	Linear		
Туре	Simple		
Margin	Entire		
Venation	Parallel		
Blade length	> 36 inches		

Histological features of Crinum latifolium L. leaves.

Microscopy of Crinum latifolium L. leaves.

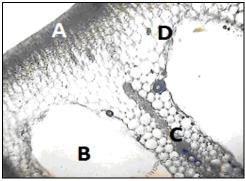


FIG. 1: A: UPPER EPIDERMIS, RECTANGULAR CELLS WITH DISTINCT CUTICLE; B: AIR SPACE; C: VASCULAR BUNDLE, MORE TOWARDS VENTRAL SURFACE; D: PALISADE CELL

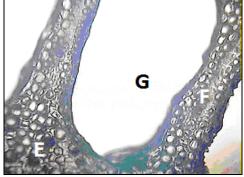


FIG. 2: E: SPONGY PARENCHYMA; F: CRYSTAL SHEATH OF PARENCHYMATOUS LAYER CONTAINING CALCIUM OXALATE PRISM; G: AERENCHYMA

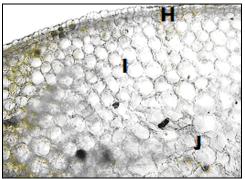


FIG. 3: H: UPPER EPIDERMIS, SINGLE LAYERED, BEADED, COVERED WITH THICK CUTICLE, WAVY AND THICK WALLED CELLS; I: SPONGY PARENCHYMA; J: STARCH GRAINS

Powder characteristics: The powder is green in color and contains diacytic stomata, fibers, epidermal cells with stomata, pitted vessels, acicular calcium oxalate crystals and starch grains (**Figure 4-10**).

FIG. 4: CALCIUM OXALATE PRISM



FIG. 5: XYLEM VESSELS

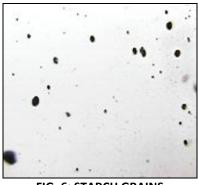


FIG. 6: STARCH GRAINS

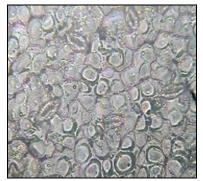


FIG. 7: STOMATA ALONG WITH EPIDERMAL CELLS

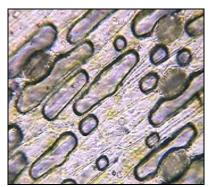


FIG. 8. PALISADE CELLS

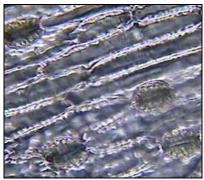


FIG. 9: CYSTOLITHS ALONG WITH EPIDERMAL CELLS AND STOMATA

FIG. 10: FIBERS

Quantitative Microscopy: The leaf constants were determined following the standard methods ⁹ and results have been furnished in **table 2**.

TABLE 2: LEAF CONSTANT VALUES OF *CRINUM LATIFOLIUM* L. LEAVES

Leaf constant	Range	Average
Stomatal Number (upper surface)	3 - 6	4.3
Stomatal Number (lower surface)	4 - 7	5.3
Stomatal index (upper surface)	6.90 - 11.67	9.15
Stomatal index (lower surface)	6.45 - 11.51	8.97
Palisade ratio	3 - 6	4.2
Vein islet number	2 - 4	2.6
Vein termination number	3 - 5	4.3

Physicochemical Parameters: The various physicochemical parameters were determined and are represented in **table 3**.

TABLE 3: PHYSICOCHEMICAL PARAMETERS OF *CRINUM LATIFOLIUM* L. LEAVES

Parameter	%w/w*
Total ash	25.0
Acid insoluble ash	9.0
Water soluble ash	18.0
Sulphated ash	7.5
Petroleum ether soluble extractive	2.5
Chloroform soluble extractive	5.0
Hydroalcoholic extractive	21.75
Water soluble extractive	31.5
Moisture content	89.0

^{*}average of three readings

Fluorescence Analysis: The results of fluorescence analysis are presented in **Table 4**.

TABLE 4: FLUORESCENCE ANALYSIS OF CRINUM LATIFOLIUM L. LEAF POWDER

Treatment	Normal light	Under UV light		
rreatment	Normanight	254 nm	366 nm	
Dry powder	Brownish green	Dark brown	green	
Powder + 5% NaOH	yellowish	Greenish dark brown	Dark brown	
Powder + 5% KOH	Light yellowish	Light greenish brown	Light brown	
Powder + 5% FeCl ₃	Yellowish green	Dark brown	Dark black	
Powder + conc. H ₂ SO ₄	Reddish brown	Dark black	Dark black	
Powder + dil NH ₃	Light orange	Dark brown	Yellow	
Powder + conc. HCl	Dark brown	Dark black	Dark black	
Powder + conc. HNO ₃	Orange	yellow	Dark yellow	
Powder + iodine solution	Greenish brown	Dark black	Dark brown	
Powder + 5% HCl	Yellowish brown	Dark brown	Dark brown	
Powder + 5% H ₂ SO ₄	Yellowish brown	Dark brown	Yellowish green	
Powder + dil HNO ₃	Brownish orange	green	Dark green	
Powder + Na ₂ CO ₃	Yellowish brown	Yellowish brown	yellow	
Powder + alc. KOH	Light yellow	Dark yellow	Yellowish orange	
Powder + NH ₄ OH	Dark orange	Dark brown	yellow	
Powder + 1% KMnO ₄	Dark brown	Dark brown	Dark black	
Powder + AgNO ₃	Yellow	Light yellow	Light yellow	

Preliminary Phytochemical Screening: Preliminary phytochemical screening of different extracts shows the presence of alkaloids, proteins, carbohydrates,

anthraquinone glycosides, cardiac glycosides, gums & mucilages and tannins. The results are depicted in Table 5.

TABLE 5: PRELIMINARY PHYTOCHEMICAL INVESTIGATION OF DIFFERENT EXTRACTS OF CRINUM LATIFOLIUM L. LEAVES

Comment Division and Comment	Extract				
Group of Phytoconstituents	Petroleum ether	Chloroform	Hydroalcoholic	Aqueous	
Alkaloids	+	+	+	+	
Carbohydrates	_	+	+	+	
Cardiac glycosides	+	+	_	_	
Anthraquinone glycosides	+	+	+	+	
Steroids	_	_	_	_	
Gums & mucilages	_	+	+	+	
Fats & oils	_	_	_	_	
Flavonoids	_	_	+	_	
Tannins & phenolics	_	_	+	+	
Saponin glycosides	_	_	_	_	
Proteins & amino acids	+	+	+	+	

ISSN: 0975-8232

TLC Fingerprint Profile: The thin layer chromatography of different extracts was performed using the following mentioned solvent systems and results are shown in

table 6. The detection of developed plates was done under UV at 366 nm.

TABLE 6: THIN LAYER CHROMATOGRAPHY OF DIFFERENT EXTRACTS OF CRINUM LATIFOLIUM L. LEAVES

Extract	Mobile phase	No. of spots	Color of spot	R _f value
Petroleum ether	Toluene : ethyl acetate		a) orange b) orange	0.48 0.77
	(8:1)	3	c) orange	0.95
Chloroform	Toluene : ether : cyclohexane		a) yellow	0.52
	(5 : 2 : 1)	3	b) orange	0.57
		3	c) orange	0.94
Hydro-alcoholic	n-butanol : acetic acid: water (4:1:5)	5	a) light brown b) light yellow c) light blue d) light brown e) very light brown	0.37 0.54 0.72 0.86 0.95
Aqueous	Methanol : chloroform (2 : 3.5)	2	a) yellow F* b) yellow F*	0.27 0.67

^{*}F refers to fluorescence

CONCLUSION: The various morphological, microscopic and physicochemical standards developed in this study will help for botanical identification and standardization of drug in crude form. Further, the authentic plant material can be explored for its pharmacological and phytochemical potential on the basis of its phytochemistry.

REFERENCES;

- 1. Ghosal S, Saini KS, Razdan S, Crinum alkaloids: their chemistry and biology. Phytochem 1985; 24:2141-2156.
- Crinum latifolium: Traditional Vietnamese Herb Shows Great Promise for Prostate & Ovarian Health. Available from: http://www.prostate-helper.com/crinum_article.html. Accessed on 2010 May 12.
- 3. Ghosal S, Saini KS, Frahm AW. Alkaloids of *Crinum latifolium*. Phytochem 1983; 22:2305-2309.
- Ghosal S, Singh SK. Chemical constituents of Amaryllidaceae. J Chem Res 1986; 23; 312-313.
- Ghosal S, Unnikrishnan S, Singh SK. Occurrence of two epimeric alkaloids and metabolism compared with lycorine in *Crinum* latifolium. Phytochem 1989; 28(9):2535-2537.

- Mukerjee P K. Morphological Examinations. In: Quality control of herbal drugs. Business Horizons Pharmaceutical Publishers 2002:132-133.
- Iyengar MA. Pharmacognosy of powdered crude drugs. Fourth edition 1993:21-31.
- 8. Khandelwal KR. Leaf constants. In: Practical Pharmacognosy. 2001(2); 146-148.
- 9. Quality Control Methods for Medicinal Plant Materials. World Health Organization, Geneva 1998; 559:10-24.
- Agarwal SS, Paridhavi M. Standardization of herbal drugs. In: Herbal drug technology. University Press Pvt. Ltd. First edition 2007:631-632.
- 11. Arjun P, Shivesh J, Murthy PN. Pharmacognostical standardization of leaves of *Hygrophila spinosa* T.anders. Phcog J; 2009; 1(2); 82-87. Available from: http://www.phcogj.com. Accessed on 2010 Mar 14.
- 12. Kokate CK. Plant Constituents. In: Practical Pharmacognosy. Vallabh Prakashan. Fourth edition 2007(4):107-111.
- 13. Wagner H and Bladt S. Alkaloidal drugs. In: Plant drug analysis-A thin layer chromatography atlas. Springer-Verlag Berlin Heidelberg New York 2002:5-6.
- 14. *Crinum latifolium*. Available from http://wikipedia.org[serial online]. Dec 2009. Assessed on 2010 Mar 23.
