(Research Article)

1

IJPSR (2014), Vol. 5, Issue 2

INTERNATIONAL JOURNAL

Received on 11 September, 2013; received in revised form, 26 October, 2013; accepted, 09 January, 2014; published 01 February, 2014

SYNTHESIS, CHARACTERIZATION, THERMAL AND KINETIC STUDIES OF LANTHANUM (III), THORIUM (IV) AND DIOXOURANIUM (VI) CHELATES WITH MULTIDENTATE LIGAND AND ITS *IN VITRO* ANTIBACTERIAL ANALYSIS

K. Aruna¹, Sakina Bootwala^{*2}, Mobashshera Tariq¹, Christopher Fernandes² and Sachin Somasundaran²

Department of Microbiology¹, Department of Chemistry², Wilson College, Mumbai-400007, Maharashtra, India

Keywords:

Thorium, Lanthanum, dioxouranium, Schiff base, Thermogravimetric, Antibacterial

Correspondence to Author:

Dr. Sakina .Z. Bootwala

Associate Professor, Department of Chemistry, Wilson College, Mumbai-400007, Maharashtra, India

Email: szbootwala@gmail.com

ABSTRACT: Metal Complexes of lanthanum (III), Thorium (IV) and dioxouranium (VI) with Schiff base ligand ethyl 2-{[(2E, 3Z)-4-hydroxypent-3-en-2-ylidene] amino}-4, 5, 6, 7-tetrahydro-1-benzothiophene-3-carboxylate were prepared. All synthesized complexes were identified and confirmed by elemental analysis, molar conductance measurements and spectral analysis (UV-visible, IR and ¹H NMR). The conductance measurement suggested the non-electrolyte nature of the complexes and they were isolated in 1:2 (M: L) ratio. The thermal behavior (TGA/DTA) of the complexes was studied and kinetic parameter was determined by Coats-Redfern method. The data from thermo gravimetric analysis clearly indicates that decomposition of the complexes ended with the metal oxide. These metal complexes also showed its potential as an antibacterial agent against pathogenic strains causing urinary tract infections.

INTRODUCTION: Co-ordination chemistry of lanthanides and actinides is one of the active research fields in inorganic chemistry ¹⁻⁴. Lanthanides and actinides ion generally present a high coordination number and the type of polyhedron obtained influences the nature of the coordinating ligands. Lanthanum (III), Thorium (IV) and Uranium (VI) with small atomic radii and a high positive charge fulfills the optimum conditions for formation of complexes with high coordination number ⁵⁻⁷. Although metal complexes of heterocyclic Schiff base with d-block elements have been extensively studied, those of lanthanides and actinides have received less interest so far.

Schiff base ligand with thiophene moiety deserve special important because of the bioisosteric relationship of thiophene to benzene that has led to several biological studies. Both Lanthanide and actinide complexes are known to have antimicrobial properties ^{8, 9}. Generally metal complexes show better antibacterial activity as compared to the metal itself due to various factors like chelation, stability and presence of more than one active site ¹⁰.

With the evolution of super bugs like Extended Spectrum β -lactamase (ESBL) and Metallo- β -lactamase (MBL) producers which secrete enzymes that hydrolyse 3rd generation cephalosporins and Carbapenem antibiotics respectively, there is currently a need for alternate therapeutic agents¹¹.

In this investigation, substituted 2-amino thiophene namely ethyl 2-amino-4, 5, 6, 7 tetrahydrobenzo (b) thiophene 3-carboxylate has been condensed with (3Z)-4-hydroxypent-3-en-2-one to form a

potentially tridentate ligand viz ethyl $2-\{[(2E,3Z)-$ 4-hydroxypent-3-en-2-ylidene]amino}-4, 5, 6, 7tetrahvdro-1-benzothiophene-3-carboxvlate have been synthesized and characterized by their elemental analysis, UV, IR and NMR studies. This ligand was used to synthesize Ln(III), Th(IV) and $UO_2(VI)$ complexes. The complexes were characterized by elemental analysis, Molar conductance, along with electronic, infrared and NMR spectral analysis and further screened for its antimicrobial activity against gram negative ESBL and MBL producing uropathogens.

MATERIALS AND METHODS: All chemical used in the project work were of AR grade and was recrystallised while the solvent were purified and double distilled before use. Metal content was determined by the standard methods¹². Lanthanum, thorium and uranium were estimated by decomposing the complexes with boiling concentrated nitric acid and precipitating the metal hydroxide. The precipitate was filtered on Whatman filter paper and washed with distilled water. It was finally ignited and weighed as La₂O₃, ThO₂ and U₃O₈ respectively.

Molar conductance was measured in DMF (10⁻³ M solution) on an ELICO Digital Conductivity meter Model CM-180. The electronic spectra of the complex in DMF were recorded on UV-Systronic spectrophotometer. The IR spectra of these complexes were recorded in KBr disc on a Perkin Elmer Model 1600 FTIR Spectrophotometer. The ¹H-NMR Spectra was recorded in DMSO on a VXR-300S Varian Supercon NMR Spectrometer using TMS as the internal reference. Thermo gravimetric studies of the complex were done on Netzch-429 Thermoanalyser recording at a rate of 10°C min⁻¹.

Preparation of ligand: Ethyl 2-amino-4, 5, 6, 7 tetrahydrobenzo(b)thiophene 3-carboxylate is prepared according to a reported method¹³. To a solution of this thiophene derivative (0.01mol) **TABLE 1: TEST ORGANISMS USED IN THE STUDY** prepared in ethanol (20ml), a solution of (3Z)-4hydroxypent-3-en-2-one (0.01mol) in ethanol (10ml) was added in small portion with constant stirring. The resulting solution was refluxed on a water bath for about four hours. On cooling the solution, the Schiff base crystallized. It was then filtered, washed and vacuum dried.

Further purification was done by crystallization from ethanol (MP 142°C).

FIGURE 1: ETHYL 2-{[(2E, 3Z)-4-HYDROXYPENT-3-EN-2-YLIDENE]AMINO}-4,5,6,7-TETRAHYDRO-1-BENZOTHIOPHENE-3-CARBOXYLATE

Preparation of metal complexes: The metal complexes were prepared by the following general procedure. To a magnetically stirred and warmed ethanolic solution (20ml) of the ligand (0.02mol) was added an ethanolic solution of metal salts (0.01) dissolved in ethanol (10ml) in small volumes. After complete additions of the metal salt solution, the pH was adjusted to 7.5 by adding ethanolic ammonia. It was then refluxed for six hours in a water bath and the resulting solution was reduced to half the initial volume and allowed to stand overnight. The complex formed was filtered, washed successively with aqueous ethanol and ether. Finally the complex was dried in vacuum over P_4O_{10} .

Test organisms used in the study: 19 MDR (Multi-Drug Resistant) gram negative uropathogens were used in the study including 6 ESBL (Extended spectrum β -lactamase) and 7 MBL (Metallo- β -lactamase) producers (**Table 1**).

TABLE I: TEST OKGANISMS USED IN THE STUDY						
ESBL Producing uropathogens	MBL Producing uropathogens	Non- ESBL and MBL Producing MDR uropathogens				
E. coli strain 1	E. coli strain 1	Proteus vulgaris				
Citrobacter diversus strain 1	E. coli strain 2	Proteus mirabilis				
E. coli strain 2	Pseudomonas aeruginosa	E. coli				
Pseudomonas aeruginosa	E. coli strain 3	Morganella morganii				
Citrobacter diversus strain 2	Klebsiella pneumonia strain 1	C. diversus				
Proteusvulgaris	Klebsiella pneumonia strain 2	Pseudomonas aeruginosa				
	C. diversus					

International Journal of Pharmaceutical Sciences and Research

Antimicrobial susceptibility of uropathogens: Antibiotic sensitivity test of the pathogens was carried out using Kirby Bauer method so as to obtain Antibiogram pattern¹¹.

Antibacterial activity: Antibacterial activity of the metal complexes was determined by Agar cup method. The metal complexes were dissolved in HPLC grade ethanol to obtain final concentration of 200 μ g/ μ l. A loopful of the test isolates were inoculated in 10 ml of Brain Heart infusion (BHI) broth and incubated at 37°C for 24 hours in order to obtain actively growing log phase isolates. Sterile 20 ml of Luria Bertani agar was melted cooled to around 40°C and 0.4 ml test strain (0.1 O.D. at 530nm) was seeded and poured into a 9cm diameter aneubra Petri plates.

Using a sterile cork borer (8 mm in diameter), wells was punched in each plate after solidification of the medium. 50 μ l of the test sample (metal complex) was then added to the wells and incubated at 37°C for 24 hours to observe the zones of inhibition against each metal complex. Control wells were also set up using 50 μ l of ethanol (solvent) for each isolate. The mean value obtained for three individual replicates was used to calculate the zone of inhibition for each isolate ^{14, 15}.

RESULTS AND DISCUSSION: Analytical data indicated that ethyl 2-amino-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate condensed with (3Z)-4-hydroxypent-3-en-2-one in 1:1 molar ratio and the product formed well defined complexes with the metal salts. Formation of the complexes can be symbolized as follows:

 $\begin{array}{rll} \text{La}(\text{CH}_3\text{COO})_3 &+& 2\text{HL} \rightarrow & \left[\text{La}(\text{L})_2(\text{CH}_3\text{COO})\right] &+\\ 2\text{CH}_3\text{COOH}. \end{array}$

 $Th(NO_3)_4 + 2HL \rightarrow [Th(L)_2(NO_3)_2] + 2HNO_3$

 $UO_2(NO_3)_2 + 2HL \rightarrow [UO_2(L)_2] + 2HNO_3$

HL= ethyl 2-{[(2E,3Z)-4-hydroxypent-3-en-2-ylidene]amino}-4,5,6,7-tetrahydro-1-benzothio-phene-3-carboxylate

Formulation of the complexes has been based on their elemental analytical data, molar conductance values and thermogravimetric data. All complexes are brightly colored, stable and non- hygroscopic in nature. The complexes are insoluble in common organic solvent but soluble in DMF and DMSO and decomposed above 180°C.The molar conductance values support the non-electrolyte nature of the metal complexes ¹⁶ as shown in **Table 2**.

 TABLE 2: PHYSICO-CHEMICAL CHARACTERISTICSOF SCHIFF BASELIGAND AND ITS METAL

 COMPLEXES

Compound	Color E Wt		Elemental analysis (%) Found (calcd)				Molor Cond $(O^{-1}om^2mol^{-1})$
Compound	Color	F. VVL -	С	Ν	S	Μ	Wolar Cond. (22 cm mor)
н	Vallow	307 /1	62.51	4.56	10.43		
IL Tellow	TCHOW	507.41	(63.02)	(3.86)	(9.56)	-	
	Off white	Off white 811.75	49.43	2.83	8.18	15.85	20.52
$[La(L)_2(CH_3COO)]$	On white		(50.31)	(3.45)	(7.90)	(17.11)	20.33
$[\mathbf{T}_{\mathbf{h}}(\mathbf{I}) (\mathbf{N}_{\mathbf{O}})]$	Doual arourn	069 95	37.92	4.97	6.55	22.90	15 69
$[111(L)_2(100_3)_2]$	Koyai ciowii	900.05	(39.67)	(5.78)	(6.62)	(23.95)	15.08
$[UO_2(L)_2]$	Manaadaa nad	002 02	42.65	2.98	6.60	25.74	17.96
	Mercedes red 882.83	(43.54)	(3.17)	(7.26)	(26.96)	17.80	

Infrared spectra: The important infrared frequency along with their assignments of ligands and their complexes are systematically given in **Table 3.** In the metal complexes, the v(C=N) is displaced to lower wave number by about 20-30 cm⁻¹ on bond stabilization of the azomethine moiety upon coordination. The bond corresponding to the ester v(C=O) has been shifted to lower frequency by about 30-35cm⁻¹ in the metal complexes indicating coordination by ester function ¹⁷. A broad band at 3200cm-1 which is assigned to the enolic OH group of the (3Z)-4-

hydroxypent-3-en-2-one moiety, this band disappears in the complexes indicates deprotonaton enolic group, which lead to a six-membered of ring structure around metal ions. A strong band around 2930 cm⁻¹ due to v(C-H) of cyclohexane did not show any appreciable change in metal complexes. The IR spectra of lanthanum complex display frequency band at 1425cm⁻¹ and 1234cm⁻¹ attributed to v_a and v_s respectively of acetate ion. This indicative of the coordination of the carboxylates ion whose free v_a and v_s display at around 1414 and 1100cm⁻¹ respectively.

The position of these bands in the complexes reveals the mode of coordination. The difference in the v_a and v_s in the complex which is 191cm⁻¹ indicates a bridging coordination mode ¹⁸. The nitrato complex of thorium show six NO stretching frequency bands, this is expected for its C_{2V} symmetry. A comparison of six infrared bands in Th⁺⁴ complex which occurs at 1520 (v_4), 1280 (v_1), 1038 (v_2), 800 (v_6), 736 (v_3) and 680 (v_5) with the known band of Th (NO₃)₄.5H₂O ¹⁹ in which bidentate character of the nitrato group has been established by X-ray diffraction²⁰ and Neutron diffraction studies ²¹.

The magnitude of v_4 - v_1 (240cm⁻¹) and v_3 - v_5 (56cm⁻¹) further indicates the coordination of nitrato group

in bidentate fashion. The presence of nitrato ion on the coordination sphere in Th (IV) complexes has also been supported by non-electrolyte nature of complex in DMF. The uranyl complex exhibit a strong band at 950 cm⁻¹ and the medium intensity band at 840 cm⁻¹ assignable to $v_{as}(O=U=O)$ and $v_s(O=U=O)$ mode respectively ²². Infra spectra of the complexes also showed non-ligand band in the region 430-460cm⁻¹ and 510-520cm⁻¹, which could be assigned to v(M-O) and v(M-N) modes respectively ¹⁸. Absence of v(M-S) band in the far infrared spectra of the metal complexes gives direct evidence to non-involvement of ring sulphur in bond formation (**Table 3**).

TABLE 3: IMPORTANT IR SPECTRAL BANDS	S OF SCHIFF BASE AND ITS METAL COMPLEXES

Compound	υ(O-H)	υ(C=O)	υ(C=N)	v(C=S)	υ(M-O)	υ(M←O)	υ(M←N)	υ(O=U=O)
HL	3200br	1700s	1658s	608s				
$[La(L)_2(CH_3COO)]$		1670s	1635s	608s	548m	514m	478m	
$[Th(L)_2(NO_3)_2]$		1668s	1628s	610s	552m	519m	487m	
$[UO_2(L)_2]$		1675s	1643s	609s	570m	510m	467m	950s, 840m

 $HL= ethyl 2-\{[(2E, 3Z)-4-hydroxypent-3-en-2-ylidene]amino\}-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate$

Proton NMR spectral data of the ligand supported the conclusion drawn on the basis of UV and IR spectral data. The absence of NH₂ proton signal in the NMR spectrum of ligand in DMSO-d⁶ indicates successful Schiff base formation by replacement of the C=O group of (3Z)-4-hydroxypent-3-en-2one. A signal at 13.2 δ indicates the enolic proton and therefore the weakest shielded proton in the molecule. The disappearance of the signal at 13.2δ was confirmed to the fact that the ligand underwent deprotonation of the enolic OH group during complexation with the metal ions. The signal at 1.50 δ (d) and 4.30 δ (m) can be assigned for methyl and methylene proton respectively of the ester group. Two multiplets centered at 2.6-2.7 δ and doublet at 1.2 δ in the ligand and metal complexes are due to different hydrogen atom of the tetrahydrobenzothiophene ring. A signal at 5.8 δ and 2.0 δ is due to methine and two methyl group proton respectively.

The electronic absorption spectrum of the ligand in alcohol shows an intense band at 285nm may be assigned to intraligand $\pi \rightarrow \pi^*$ transition which is nearly unchanged on complexation, a broad band at 340 and 360nm may be assigned to the $n \rightarrow \pi^*$ and charge transfer transition of the azomethine and ester C=O group ^{23, 24}.

It is found that these bands were shifted to lower energy on complexation, indicating participation of these groups in coordination with the metal ions. In addition, the spectra of the complexes showed new bands observed in the 420-440nm range which may be attributed to the charge transfer transitions.

The electronic spectra of UO₂(IV) complexes display mainly one weak band at 420 nm and a highly intense band at 320 nm, which may be due to ${}^{1}\Sigma^{+}{}_{g} \rightarrow {}^{3}\pi_{\mu}$ transition and change transfer transition respectively 25 .

The first one of the transition is typical of the O = U = O symmetric stretching frequency of the first excited state. It may be noted that the band occurring at 350 nm due to uranyl moiety because of apical \rightarrow f^o (u) transition ²⁶ is being merged with the ligand band due to n – π * transition as evident from broadness and intensity.

The electronic spectra of La(III) and Th(IV) complex exhibit only highly intensive additional band in the region 410 - 410 nm, which may be due to charge transfer besides the ligand bands. However, the electronic spectra could not provide structural details of these complexes.

Thermal decomposition of the complexes was studied by TG technique in nitrogen atmosphere. There is no weight loss up to 450K and this ruled out the presence of any water molecule in the complexes. The thermogram of La (III) complex indicated that it was stable up to453K. Thermal decomposition took place in the temperature range of 453-883K.First TG loss was observed in 453-593K with the loss of CH₃COO ,2C₂H₅ ,2C₄H₅ and 2(O) (theo.31.57%.exp.,32.44%) followed by an exotherm at 523K.

Second TG loss was in the temperature range of 593-723Kwith a loss of tetrahydrobenzothiophene ring $2C_7H_{10}OS$ (theo.35.04%.exp., 34.78%) followed by an exotherm at 663K. Third TG loss for La(III) complex occurred in the temperature range of 723-883K with a loss of remaining ligand moiety $2C_3Nand$ (O)(theo.13.32%.exp.,13.96%) followed by an exotherm793K, the residue left was of weight correspond to 1/2 La₂O₃(theo.20.07%. exp., 18.82%).

The thermogram of Th(IV) complex indicated that it was stable upto463K Thermal decomposition took place in the temperature range of 463-923K.First TG loss was observed in 463-573K with the loss of $2C_4H_{12}O(\text{theo.}15.71\%.\text{exp.} 15.62\%)$ followed by an exotherm at 533K. Second TG loss was in the temperature range of 573-683K with a loss of NO₃ and 2C₃O moeity (theo.23.54%. exp., 21.96 %) followed by an exotherm at 663K. Third TG loss for Th (IV) complex occurred in the temperature range of 683-793Kwith a loss of $2C_6H_8S$ (tetrahydrobenzothiophene ring) (theo.23.16%.exp., 22.48%) followed by an exotherm at 713K.

Fourth TG loss for Th(IV) complex occurred in the temperature range of 793-923Kwith a loss of $2C_3N$ (theo.10.34%.exp.10.94%)followed by an exotherm at 813K. The residue left was of weight correspond to ThO₂(theo.27.25%.exp. 28.00%). The thermogram of U(VI) complex indicated that it was stable upto468K. Thermal decomposition took place in the temperature range of 468-883K. First TG loss was observed in 468-573K (Figure 1) with the loss of $2CH_3$, $2C_2H_5$ and 2O (theo.17.24%.exp., 17.62%) followed by an exotherm at 523K.

Second TG loss was in the temperature range of 573-718K (Figure 2) with a loss of $2C_6H_8S$ (tetrahydrobenzothiophene ring) (theo.25.41%. exp., 26.26%) followed by an exotherm at 663K. Third TG loss for U(VI) complex occurred in the temperature range of 718-883Kwith a loss of $2C_6N$ and 3(O) of the ligand moiety (theo.25.55%.exp., 25.24%)followed by an exotherm at 753K. The residue left was of weight correspond 1/3 U3O8 (theo.31.78%. exp., 30.88%). The TGA/DTA data of complexes are given in **Table 4**.

TABLE 4: THERMOGRAVIMETRIC AND DIFFERENTIAL THERMAL ANALYSIS (TGA/DTA) OF COMPLEXI
--

Complexes	Temperature Range (K)	Weight loss (%) Exp. (Theo)	Decomposition Product	DTA peak (°C)
	453-593	32.44(31.57)	$C_{14}H_{24}O_4$	523(exo)
$\begin{bmatrix} La(L)_2(CH_3COO) \end{bmatrix}$	593-723	34.78(35.04)	$C_{14}H_{20}O_2S_2$	663(exo)
$C_{34}\Pi_{44}\Pi_{2}O_{8}O_{2}La$	723-883	13.96(13.32)	$C_6 N_2 O_{1/2}$	793(exo)
	>883(Residue)	18.82 (20.07)	$1/2La_2O_3$	
$\begin{array}{l} [Th(L)_2(NO_3)_2] \\ C_{32}H_{40}N_4O_{12}S_2Th \end{array}$	463-573	15.62(15.71)	$C_8H_{24}O_2$	522(ava)
	573-683	21.96(23.54)	$C_6N_2O_8$	555(ex0)
	683-793	23.48(23.16)	$C_{12}H_{16}S_2$	712(axa)
	793-923	10.94(10.34)	C_6N_2	713(ex0) 812(exc)
	> 923(Residue)	28.00(27.25)	ThO ₂	815(ex0)
	468-573	17.62(17.24)	$C_8H_{24}O_2$	5 22(arro)
$\begin{matrix} [UO_2(L)_2] \\ C_{32}H_{40}N_2O_8S_2U \end{matrix}$	573-718	26.26(25.41)	$C_{12}H_{16}S_2$	525(ex0)
	718-883	25.24 (25.55)	$C_{12}N_2O_{3.33}$	752(avo)
	>883 (Residue)	30.88 (31.79)	$1/3U_{3}O_{8}$	755(ex0)

International Journal of Pharmaceutical Sciences and Research

The kinetic parameters such as activation energies (E^*) , enthalpy (ΔH^*) , entropy (ΔS^*) and free energy change of decomposition (ΔG^*) were evaluated graphically by employing the Coats-Redfern relation ²¹:

$$Log\left[\frac{log\{W_f/(W_f - W)\}}{T^2}\right] = log\left[\frac{AR}{\theta E^*}\left(1 - \frac{2RT}{E^*}\right)\right] - \frac{E^*}{2.303RT}$$
(1)

Where *Wf* is the mass lossat the completion of the reaction, *W* is the mass loss up to the temperature T, R is the gas constant, E^* is the activation energy in kJmol⁻¹, θ is the heating rate and $(1-(2RT/E^*)) \approx 1$. A plot of the left-hand side of Eq. (1) against 1/T gives a slope from which E^* was calculated and *A*

TABLE 5: KINETIC DATA ON COMPLEXES

(Arrhenius constant) was determined from the intercept. The entropy of activation (ΔS^*), enthalpy of activation (ΔH^*) and the free energy of activation (ΔG^*) were calculated using the following equation:

$$\Delta S^{*} = 2.303 R \log (A h/kT)$$
 (2)

$$\Delta H^* = E^* RT \tag{3}$$

$$\Delta G^* = \varDelta H^* - T \varDelta S^* \tag{4}$$

Where, k and h are the Boltzmann and Plank constants respectively. The calculated values E^* , A, ΔS^* , ΔH^* and ΔG^* for the decomposition steps are given in **Table 5**.

Commlemen	Temp	E^*	A (a ⁻¹)	ΔS^*	ΔH^*	ΔG^*	D
Complexes	Range(K)	(kJmol ⁻¹)	$A(\mathbf{s})$	(JK ⁻¹ mol ⁻¹)	(kJmol ⁻¹)	(kJmol ⁻¹)	ĸ
	453-593	104.45	1.23×10^{10}	-56.54	100.09	133.97	0.849
$[La(L)_2(CH_3COO)]$	593-723	94.49	3.89×10^{6}	-125.41	88.98	172.13	0.988
	723-803	100.81	2.10×10^5	-151.19	94.22	1214.11	0.974
[Th(L) ₂ (NO ₃) ₂]	463-573	70.91	8.53x10 ⁵	-136.23	66.47	139.08	0.914
	573-683	185.73	3.97×10^{14}	28.34	180.46	162.54	0.964
	683-823	208.36	2.56×10^{14}	23.66	202.43	185.56	0.977
	823-923	204.43	$2.57 \text{ x} 10^{12}$	-15.69	197.67	210.43	0.976
[UO ₂ (L) ₂]	468-573	138.32	1.44×10^{13}	2.31	133.97	132.76	0.967
	573-718	119.57	4.92×10^{8}	-84.66	114.06	170.19	0.975
	718-883	95.75	$1.63 \text{ x} 10^5$	-152.88	89.49	204.61	0.890

In the present studies, the numerical values of activation energy, frequency factor and entropy of activation indicates about smoothness of the feasibility and reaction rate of the initial reactants intermolecular compounds. and stage The calculated values of the activation energy of the relatively indicating complexes low are autocatalytic effect of the metal ions on the thermal decomposition of the complexes 28 .

The correlation coefficient of the Arrhenius plots of the thermal decomposition steps were found to lie in the range 0.849-0.988, showing a good fit with the linear function. The negative values for entropy of activated complexes (except second and third decomposition step of Th(IV) complex and first decomposition step of UO₂(VI) complex) have more ordered or more rigid structure than the reactants or intermediate and the reaction are slower than normal ²⁹. The order of stability of complexes on the basis of activation energy is $[UO_2(L)_2]>[La(L)_2(CH_3COO)]>[Th(L)_2(NO_3)_2]$ (on the basis of first decomposition stage) and $[Th(L)_2(NO_3)_2] > [UO_2(L)_2] > [La(L)_2(CH_3COO)]$ (on the basis of second decomposition stage).

Antimicrobial susceptibility testing using Kirby Bauer method of gram negative uropathogens was carried out and it was found that these uropathogens were resistant to most of the antibiotics as shown in **Table 6**. All isolates were found to be Multiple Drug Resistant (Resistant to more than 3 antibiotics) including 3rd generation Cephalosporins (Ceftazidime, Cefotaxime and Ceftriaxone).

The effect of metal complexes on these test isolates are shown in **table 7** below. Ethanol (solvent) did not show any zone of inhibition against the test organisms. However metal complexes showed considerable zones of inhibition in its complex form as compared to ligand. The activity of metal complexes is enhanced due to chelation. The chelation reduces considerably the polarity of the metal ions in the complexes, which in turn increases the hydrophobic character of the chelate and thus enables its permeation through the lipid layer of microorganisms ³¹. As the positive charges of the metal are partially shared with the donor atoms present in the ligands and there is possible π -

electron delocalization over the metal complex formed, the lipophilic character of the metal chelate increases and favors its permeation more efficiently through the lipid layer of the microorganism, thus destroying them more forcefully ³¹.

TABLE 6: ANTIBIOTIC RESISTANCE PROFILE OF THE UROPATHOGENS

Isolates	Antibiotic resistance profile							
	ESBL P	roducing uropathoge	ns					
	Sensitive Intermediate Resistant							
E.coli strain 1	AS, AK, GF		BA, C RP,	CF, PC, CH,RC, CI, TE, ZN, GM, TT, OX, ZX, CB, NA, NX, AG, CU, CP, FG, PB				
Citrobacterdiversus strain 1	AS, BA, CH		CF, P RP,	C,RC, CI, TE, ZN, GM, AK, GF, TT, OX, ZX, CB, NA, NX, AG, CU, CP, FG, PB				
E.coli strain 2	AS, CH, AK, GF	ZN	BA, C	CF, PC, RC, CI, TE, GM, TT, OX, RP, ZX, CB, NA, NX, AG, CU, CP, FG, PB				
Pseudomonas aeruginosa	CH, AK, GF		AS, B RP,	A, CF, PC, RC, CI, TE, ZN, GM, TT, OX, ZX, CB, NA, NX, AG, CU, CP, FG, PB				
Citrobacterdiversus strain 2	ZN, AK, GF	NX, CU, CP, PB, AS, CF, RC, GM	BA, P	C, CH, CI, TE, TT, OX, RP, ZX, CB, NA, AG, FG				
Proteusvulgaris	NX, AS, GM, AK	TT, RP, PC, RC, GF	BA,	, CF, CH, CI, TE, ZN, OX, ZX, CB, NA, AG, CU, CP, FG, PB				
	Non- ESBL and	MBL Producing uro	pathog	ens				
Proteus vulgaris	AK, LOM, SPX, NET, CAZ, CIP, CPX, GEN, A/S, CZX, OF, PF, NX, CTR, CPZ, CTR, CFM, CPO, CPM			NA				
Proteus mirabilis	CI, CF, BA, PB, CU, NA, NX, OX	TT, AG, CP, TE, AK		GF,GM, ZN, RC, CH, PC, AS, FG, CB, ZX, RP				
E.coli	AG, CU, PB, PC	CB, CI		GF, AK, GM, ZN, TE, RC, CH, CF, BA, AS, FG, CP, CU, NX, NA, ZX, RP, OX, TT				
Morganellamorganii	RC, CI, TE, PC, PB, AG, CU, OX	AK, GM, CH, C	Р	TT, RP, ZX, CB, NA, NX, FG, AS, BA, CF, ZN, GF				
C.diversus	AS, BA, CF, PC, CH,RC, CI, TE, ZN, GM, AK, GF, TT, OX, RP, ZX, CB, NA, NX, AG, CU, CP, FG, PB							
Pseudomonas aeruginosa	TT, RP, AG, CU, FG, AS, CF, CH, CI, TE,	OX, CB, PB, ZN,	PC	BA, RC, GM, AK, GF, ZX, NA, NX, CP				
	MBL PI	roducing uropathoge	ns					
E.coli strain 1	СН	PC		AS, BA, CF, RC, CI, TE, ZN, GM, AK, GF, TT, OX, RP, ZX, CB, NA, NX, AG, CU, CP, FG, PB				
E.coli strain 2	СН	AK		AS, BA, CF, PC, RC, CI, TE, ZN, GM, GF, TT, OX, RP, ZX, CB, NA, NX, AG, CU, CP, FG, PB				
Pseudomonas aeruginosa				AS, BA, CF, PC, CH, CI, TE, ZN, GM, AK, GF, TT, OX, RP, ZX, CB, NA, NX, AG, CU, CP, FG, PB				
E.coli strain 3	RC			AS, BA, CF, PC, CH, CI, TE, ZN, GM, AK, GF, TT, OX, RP, ZX, CB, NA, NX, AG, CU, CP, FG, PB				

Klebsiella pneumonia strain 1			AS, BA, CF, PC, CH,RC, CI, TE, ZN, GM, AK, GF, TT, OX, RP, ZX, CB, NA, NX, AG, CU, CP, FG, PB
Klebsiella pneumonia strain 2	СН	AK	AS, BA, CF, PC, CH,RC, CI, TE, ZN, GM, AK, GF, TT, OX, RP, ZX, CB, NA, NX, AG, CU, CP, FG, PB
C.diversus	OX, BA, CH, GM	TE, AK, GF	AS, CF, PC, CH,RC, CI, ZN, GM, TT, RP, ZX, CB, NA, NX, AG, CU, CP, FG, PB

Key:

TT -Ticarcillin/clavulanic acid, OX- Oxytetracycline, RP – Ceftriaxone, ZX – Cefepime,

CB - Cefuroxime, NA - Naladixic acid, NX- Norfloxacin, AG - Amoxycillin/clavulanic acid,

CU – Cefadroxil, CP - Cefoperazone, FG- Ceftazidime, PB - Polymixin B, AS – Ampicillin,

BA - Co-trimaxazole, CF - Cefotaxime, PC- Pipperacillin, CH - Chloramphenicol,

RC - Ciprofloxacin, CI - Ceftizoxime, TE - Tetracycline, ZN - Ofloxacin, GM - Gentamicin, AK - Amikacin, GF - Gatifoxacin

TABLE 7: ANTIBACTERIAL ACTIVITY OF SCHIFF BASE METAL COMPLEXES AGAINST DRUG RESISTANT UROPATHOGENS

Inclotes	Metal complexes (200µg/µl)					
Isolates	[La(L) ₂ (CH ₃ COO)]	[Th(L) ₂ (NO ₃) ₂]	$[UO_2(L)_2]$			
ESBL Producing uropathogens showing zones of inhibition in mm						
E. coli strain 1	13	13	-			
Citrobacter diversus strain 1	14	-	-			
E. coli strain 2	-	-	-			
Pseudomonas aeruginosa	-	-	-			
Citrobacter diversus strain 2	-	14	11			
Proteus vulgaris	-	16	13			
Non- ESBL Pro	ducing uropathogens sho	wing zones of inhibition in	mm			
Proteus vulgaris	12	16	19			
Proteus mirabilis	18	-	20			
E. coli	-	-	-			
Morganella morganii	-	17	-			
C. diversus	12	14	15			
Pseudomonas aeruginosa	17	16	20			
MBL Produ	cing uropathogens showi	ng zones of inhibition in mi	m			
E. coli strain 1	-		12			
E. coli strain 2	-	15	14			
Pseudomonas aeruginosa	12	-	13			
E. coli strain 3	15	12	-			
Klebsiella pneumonia strain 1	13	13	13			
Klebsiella pneumonia strain 2	13	16	-			
C. diversus	-	-	-			

CONCLUSIONS: From the present investigation it has been observed that a ligand ethyl 2-{[(1E, 2E)-2-(hydroxyimino)-1-phenyl ethylidene] amino}-4, 5, 6, 7 tetrahydro-1-benzothiophene-3carboxylate form a complex in 2:1 (ligand: metal) ratio. The data explain 10-coordinate complex of Th(IV), 8-coordinate complex of UO₂(VI) and La(III). The proposed structures of metal complexes are presented in **Figure 3-5**. The complexes also exhibited antimicrobial activity against MDR uropathogens producing ESBL and MBL enzymes.

FIGURE 3: PROPOSED STRUCTURE OF Th (IV) COMPLEX

FIGURE 4: PROPOSED STRUCTURE OF UO (VI) COMPLEX

FIGURE 5: PROPOSED STRUCTURE OF La (III) COMPLEX

REFERENCES:

- Sindhu B, Rijulal G and Mohanan K: Microwave Assisted Synthesis; Spectroscopic, Thermal and Biological Studies of Some Lanthanide (III) Chloride Complexes with a Heterocyclic Schiff Base. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 2008; 39: 24-30.
- Dash DC, Naik P, Naik SK, Mohapatra RK and Ghosh S: Synthesis and characterization of UO₂(VI), ZrO(IV) and Th(IV) complexes with 3-(pyridyl/thienyl-2¢ methylene/furfurylidene)imino -2-thiohydantoin. Journal of Indian Chemical Society 2009; 86: 969-972.
- 3. Narayanchar, Dhumwad SD, Mutalik VK and Raj PV: Synthesis, spectral characterization, antimicrobial and cytotoxicity studies of some lanthanide (III) complexes of quinoline derivatives. Journal of Chemical and Pharmaceutical Research 2012; 4: 3446-3453.
- Bootwala SZ: Synthesis and Characterization of Binuclear Complexes of Oxovanadium(IV), Oxozirconium(IV), Dioxouranium(VI) and Thorium(IV) with N,N'bis[(1E,2E)-2-(Hydroxyimino)-1phenylethylidine]biphenyl-4,4'-diamine. Asian Journal of Chemistry 2011; 23: 5466-5470.
- 5. Agarwal RK, Arora K, Garga P, Chakraborti I: Some high coordination compounds of thorium (IV) and

dioxouranium (VI) with Schiff bases derived from 4aminoantipyrine Polish Journal of Chemistry 1993; 67: 1913.

- Singh L, Tyagi N, Dhaka NP: Synthesis and Physico-Chemical Characteristics of Some Dioxouranium(VI) Complexes of N-isonicotinamido-3-Methoxy-4-hydroxy Benzalaldimine and N-isonicotinamidocinnamalaldimine. Asian Journal of Chemistry 1998; 10: 915-921.
- Agarwal RK, Rajeev G, Sindhu SK: Synthesis, Spectral and thermal properties of some high coordinated complexes of Thorium (IV) and Dioxouranium (VI) derived from 4[n-(2\'-hydroxy-1\'-naphthalidene) amino] antipyrinethiosemicarbazone. Bulletin of the Chemical Society of Ethiopia 2005; 19: 185-195.
- Ansary AE and Kader NA: Synthesis, Characterization of La(III), Nd(III), and Er(III) Complexes with Schiff Bases Derived from Benzopyran-4-One and Their Fluorescence Study. International Journal of Inorganic Chemistry 2012; 2012 13 pages.
- Chaudhary PR and Sen DJ: Complexation: Effect of Metal on Microbiological Activity of Sulfanilamide Derivatives. American Journal of Advanced Drug 2013; 1: 149-156.
- Bajju GD, Sharma P, Kapahi A, Bhagat M, Kundan S and D. Gupta: Oxovanadium (IV) Complexes with Nitrogen Donors: Synthesis, Characterisation, and Biological Activities. Journal of Inorganic Chemistry 2013; 2013, Article ID 982965, 11 pages.
- 11. Aruna K and Mobashshera T: Prevalence of extended spectrum beta-lactamase production among uropathogens in south Mumbai and its antibiogram pattern. EXCLI Journal 2012; 11: 363-372.
- 12. Vogel AI: A Textbook of Quantitative Inorganic Analysis.., Longman ELBS, 4th edition 1978.
- Gouda TS, Jagadish, Salahuddin M and Shantakumar SM: Synthesis and Antiinflammatory Activity of Some Novel Benzo(b)thiophene Substituted Thiazolidinones, Asian Journal of Chemistry 2009; 21: 5171-5178.
- Patil SS and Shaikh MM: Synthesis, characterization and antibacterial activity of mixed ligand dioxouranium complexes of 8-hydroxyquinoline and some amino acid. Acta Poloniae Pharmaceutical Drug Research 2012; 69: 679-686.
- 15. Ndahi NP and Nasir YP: Complexes of Cobalt (II), Nickel (II) and Zinc (II) with Schiff bases derived from 4-anisaldehyde. International journal of pharmaceutical sciences and research 2012; 3: 5116-5120.
- Geary WJ: The use of conductivity measurements in organic solvents for the characterization of co-ordination compounds. Coordination Chemistry Reviews 1971 7; 81-122.
- Angoso A, Martin JM, Manzano JL, Martin M, Martin R, Rodriquez E and Sona J: Preparation and study of amino acid (DL-leucine, L-isoleucine, L-histidine) Schiff bases with ethyl-α-ketocyclopentylcarboxylate and the corresponding copper(II) complexes. Inorganica Chimica Acta 1992; 195: 45-49.
- Nakamoto K: Infrared and Raman spectra of inorganic and coordination compounds, John Wiley and Sons Inc, 5th edition 1997.
- Ferraro JR, Walker A: Journal of chemical physics 1966;
 45: 552-.
- Ueki T, Zalkin A, Templeton D: Crystal structure of thorium nitrate pentahydrate by X-ray diffraction. ActaCrstallography 1966; 20: 836-841.
- 21. Taylor JC, Mueller MH, Hitterman RL: Crystal structure of thorium nitrate pentahydrate by neutron diffraction. Acta Crstallography 1966; 20: 842-851.

- Gudani KB, Goudar TR, Kulkarni MV: Studies on lanthanide(III) complexes with 2-(3-coumarinyl)imidazo[1 2-a] pyridine Indian Journal of Chemistry 2004, 43A,1459-1463.
- 23. Bao SQ, Lin LZ, Li WX and Xiang M: *N*-Ferrocenylcarbonyl-*N*'-benzoylhydrazine and its transition metal (II) complexes. Transition Metal Chemistry 1994; 19: 503-505.
- 24. Sreeja PB, Kurup MR, Kishore A and Jasmine C: Spectral characterization, X-ray structure and biological investigations of copper(II) ternary complexes of 2hydroxyacetophenone 4-hydroxybenzoic acid hydrazone and heterocyclic bases. Polyhedron 2004; 23: 575-581.
- Chandra R: Uranyl(VI) Complexes of Pyridine-Based Pentadentate Acyclic and Macrocyclic Ligands. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry 1990; 20: 645-659.
- 26. Mohapatra RK ,Ghosh S, Naik P and Dash D. C: Dinuclear UO2(VI), Th(IV), ZrO(IV) and VO(IV)

How to cite this article:

Aruna K, Bootwala S, Tariq M, Fernandes C and Somasundaran S: Synthesis, characterization, thermal and kinetic studies of Lanthanum (III), Thorium (IV) and Dioxouranium (VI) chelates with multidentate ligand and its *in vitro* antibacterial analysis. *Int J Pharm Sci Res* 2014; 5(2): 400-09.doi: 10.13040/JJPSR.0975-8232.5(2).400-09

All © 2013 are reserved by International Journal of Pharmaceutical Sciences and Research. This Journal licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

This article can be downloaded to **ANDROID OS** based mobile. Scan QR Code using Code/Bar Scanner from your mobile. (Scanners are available on Google Playstore)

complexes based on some Schiff-base ligands: Synthesis and structural elucidation

Journal of Advances in Chemistry 2013; 2: 50-56.

- 27. Coats AW and Redfern JP: Kinetic Parameters from Thermogravimetric Data. Nature 1964; 201: 68-69.
- El-Awad A M. Catalytic Effect of Some Chromites on the Thermal Decomposition of KClO₄.Mechanistic and nonisothermal kinetic studies: J.Therm.Anal. Calorim. ,(2000). 61,197
- 29. Impura A, Inoue Y and Yasumon I: Catalysis by Copper Chromite: The Effect of Hydrogen Reduction on the Composition, Structure, and Catalytic Activity for Methanol Decomposition. Bulletin of the chemical society of japan 1983; 56: 2203-2207.
- 30. Tumer M, Koksal H, Sener MK, Serin S: Antimicrobial activity studies of the binuclear metal complexes derived from tridentate Schiff base ligands. Transition Metal Chemistry 1999; 24:414-420.