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ABSTRACT:  Carbonic anhydrases (CAs, EC 4.2.1.1), are a 

superfamily of metalloenzymes in higher vertebrates, including 

humans. Sixteen distinct isoenzymes of CA are known to exist in 

mammals and most of these isoenzymes have been extensively 

investigated in terms of their biochemical properties, tissue 

distribution, and genetic control. There are cytosolic isozymes (CA I, 

CA II, CA III, CA VII and CA XIII), membrane bound examples (CA 

IV, CA IX, CA XII and CA XIV), and mitochondrial (CA VA and CA 

VB) and secreted (CA VI) isoforms. It was proposed that hCA IX is a 

multidomain protein consisting of an N-terminal proteoglycan like 

(PG) domain, a CA catalytic domain, a transmembrane segment (TM), 

and an intracytoplasmic (IC) portion. Carbonic anhydrase IX and XII 

inhibitors can prove to be effective in treatment of hypoxic tumours. 

Moreover the side effects with these drugs will be less than those 

caused by other anticancer drugs as these enzymes are present 

constitutively in only a few tissues. 

INTRODUCTION: Carbonic anhydrases (CAs, 

EC 4.2.1.1), are a superfamily of metalloenzymes 

in higher vertebrates, including humans.
1, 2

 Most 

CAs are involved in only one physiological 

reaction and they act as efficient catalysts for the 

reversible hydration of carbon dioxide to 

bicarbonate and protons (CO2 + H2O ↔ HCO3
-
 + 

H
+
).

1
 Sixteen distinct isoenzymes of CA are known 

to exist in mammals and most of these isoenzymes 

have been extensively investigated in terms of their 

biochemical properties, tissue distribution, and 

genetic control. 
3, 4  
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The enzyme is found in many tissues such as the 

gastrointestinal tract (GI), the reproductive tract, 

the nervous system, kidneys, lungs, skin and eyes, 

wherein it plays key roles in a number of 

physiological and pathological processes, such as 

pH regulation, ions and gas exchanges, 

calcification, photosynthesis, tonic modulation of 

brain excitability through modulation of amino acid 

receptors, and biosynthetic reactions (such as 

gluconeogenesis, lipogenesis, and ureagenesis) 
1, 2, 

5-10
 

 

Carbonic anhydrases- catalytic and acatalytic types 

There are cytosolic isozymes (CA I, CA II, CA III, 

CA VII and CA XIII), membrane bound examples 

(CA IV, CA IX, CA XII and CA XIV), and 

mitochondrial (CA VA and CA VB) and secreted 

(CA VI) isoforms.
11–17

 Three acatalytic forms, 

called CA-related proteins (CARPs) (CARP VIII, 

CARP X and CARP XI) are also known.
1
The 
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expression of CA I and CA II has been most 

frequently investigated in a variety of tumor cells, 

cell lines and some carcinoma patients 
9,
 
18-20

, but it 

has been difficult to find a clear-cut relationship 

between the expression  of such CA isozymes in 

normal and malignant cells. However, no evidence 

of a direct relationship between malignant 

transformation and CA expression has been 

presented for CA isoforms I - VII. It appears that 

only the expression of the above-mentioned 

isoforms CA IX and CA XII is strongly associated 

with tumorigenesis 
21

. 

 

Carbonic anhydrase IX and XII: 

In 1994, carbonic anhydrase isozyme was 

discovered to be present in many types of tumors, 

later it was denominated as CA IX. 
17 

Over 

expression of two CA isozymes (CA IX and CA 

XII) are predominantly associated with many 

tumors and it is being postulated that they are 

involved in critical processes connected with 

cancer progression.
1, 22, 23

 The presence of CA IX in 

various tumor types has been found to correlate 

with poor prognosis.
24

 CA IX is confined to few 

normal tissues (stomach and body cavity lining), 

but it is ectopically induced and highly 

overexpressed in many solid tumor types, through 

the strong transcriptional activation by hypoxia, 

accomplished via the hypoxia inducible factor-1 

(HIF-1) transcription factor 
1, 12, 23

 which 

accumulates in tissue under the hypoxic condition 

that is often present in growing tumors.  

 

That, in turn, is an outcome of poorly organized 

and insufficient vasculature in uncontrollably 

growing malignant tissue.
24

 CA IX has effects on 

cell adhesion, too, and it has been suggested to play 

a role in tumor invasion through weakening of cell-

cell adhesion as E-cadherin is competing for β-

catenin 
25

. However, the effect of CA IX on tumor 

cell invasion is still under debate as some recent 

results have suggested that there is no evidence of 

such a correlation.
26

 In some cancer cells, the VHL 

(von Hippel-Lindau) gene is mutated leading to the 

strong upregulation of CA IX (up to 150-fold) as a 

consequence of constitutive HIF activation. 
27-29 

FIG. 1: SCHEMATIC REPRESENTATION OF THE ROLE OF HYPOXIA INDUCED ACCUMULATION OF HIF-1 

IN HUMAN CANCERS ADAPTED FROM VAUPEL ET AL.
30

 

As CA IX is confined to few normal tissues such as 

the gastric mucosa (where it seems to be in a 

catalytically inactive state), CA IX inhibitors may  

show less side effects compared to other anticancer 

drugs which interact with their target both in the 
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normal and cancerous tissues and hence cause an 

array of side effects.
31 

 

Overall structure and active site of CAs: 

Structural studies on isozymes I, II, III, IV, V, XII, 

XIII, and XIV have revealed that all these isoforms 

present a considerable degree of three-dimensional 

similarity and a typical fold characterized by a 

central antiparallel β-sheet surrounding a 

Zn
2+

critical for catalysis. The active site is located 

in a large, cone-shaped cavity that reaches the 

center of the protein molecule. The zinc ion is close 

to the bottom of the cavity and is coordinated by 

three conserved His residues in a tetrahedral 

geometry with H2O or OH
- 
as the fourth ligand.

32-40 

 

A cDNA coding for the human Carbonic anhydrase 

(hCA) IX protein was first cloned and investigated 

by Pastorek et al.
17

, and the CA IX gene was 

further characterized by the same group. 
41

 On the 

basis of the sequence similarity, It was proposed 

that hCA IX is a multidomain protein consisting of 

an N-terminal proteoglycan like (PG) domain, a 

CA catalytic domain, a transmembrane segment 

(TM), and an intracytoplasmic (IC) portion.
17 

 

According to recent biochemical reports, the CA IX 

protein is dimeric, and the dimerization is mediated 

by the formation of an intermolecular disulfide 

bond between the same Cys residue located on two 

CA catalytic domains.
42

According to recent 

biochemical reports, the CA IX protein is dimeric, 

and the dimerization is mediated by the formation 

of an intermolecular disulfide bond between the 

same Cys residue located on two CA catalytic 

domains.
42

 

 

In vitro methods to study the activity of carbonic 

anhydrase modulators: 

Caki-1, A-498 (human renal carcinoma cell lines), 

Hep G2 (human hepatocellular carcinoma cell line) 

can be cultured in Dubecco’s modified Eagle 

medium (DMEM) supplemented with 10%(v/v) 

FBS, 2mM L-glutamine, 100units/ml penicillin, 

and 100µg/ml streptomycin. MCF-7 (human breast 

adenocarcinoma cell line) can be cultured in 

DMEM supplemented with 10% FBS, 1mM 

sodium purvate, 1% non essential amino acid, 

10µg/ml insulin. 

HeLa (human cervical carcinoma cell line) can be 

cultured in RPMI-1640 medium, 10% FBS, 2mM 

L-glutamine 

U373 (human glioblastoma cell line) Alpha MEM, 

10% FBS, 2mM L-glutamine, 100units/ml 

penicillin, 100 µg/ml streptomycin 

HUVEC (normal human umbilical vein endothelial 

cell line) endothelial cell basal medium-2 

supplemented with EGM-2 single quots kit. 

 

The cell cultures can be grown in 75-cm
2
 flasks in a 

37°C incubator with humidified 5% CO2/95% air. 

When the cultured cells reach 80-90% of 

confluence, they should be trypsinized and plated 

in 6-well plates (except for the HUVEC cells which 

should be plated in 59-cm
2 

dishes) at appropriate 

densities to obtain a sufficient quantity of cells for 

RNA extraction. After 24 h, the cells should be 

added to fresh serum-free medium with the drugs 

or growth factors being tested.  

 

Only serum-free medium must be added to two 

control wells/dishes. The cells must be incubated 

for 24 h in the presence of the drugs or growth 

factors (modulators). Total RNA from cultured 

cells must be extracted using RNA isolation kit. 

Residual DNA can be removed from samples using 

RNase-free DNase. The RNA concentration and 

purity can be determined by measurement of the 

optical density at 260 and 280 nm. Different 

quantities of RNA (U373, 410 ng; HeLa, 600 ng; 

A- 498, 850 ng; HepG2, 1000 ng; HUVEC and 

MCF-7, 1100 ng; Caki-1, 1400 ng) should then be 

converted into first-strand cDNA using the First 

Strand cDNA synthesis kit using random hexamer 

primers.  

 

The levels of human CA IX and CA XII transcripts 

in the different cell lines can be assessed by 

quantitative real-time PCR using the Lightcycler 

detection system. Real-time PCR primers can be 

designed based on the complete cDNA sequences 

deposited in GenBank (accession numbers: 

NM_001216 for CA9, NM_001218 for CA12, and 

NM_001530 for HIF-1α). The house-keeping 

genes ubiquitin C (UBC) and β -2-microglobulin 

(B2M) can be used as internal controls to normalize 

the cDNA samples for possible differences in 

quality and quantity. The UBC primers can be 
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obtained from RT primer DB database (under the 

identification number 8), and the B2M primers can 

be designed on the basis of the complete B2M 

cDNA sequences (accession number: 

NM_004048). In order to avoid amplification of 

genomic DNA, the primers from each primer pair 

must be located in different exons. Each PCR 

reaction must be performed in a total volume of 

20μl containing 1.0μl of first-strand cDNA, 1× 

QuantiTect SYBR Green PCR Master Mix and 0.5 

μM of each primer.  

 

The amplification and detection can be carried out 

as follows: after an initial 15 min activation step at 

95°C, amplification should be performed in a three-

step cycling procedure for 45 cycles: denaturation 

at 95°C for 15 sec, annealing at a temperature 

determined according to the Tm for each primer 

pair for 20 sec, and elongation at 72°C for 15 sec 

(the ramp rate must be 20°C per sec for all the 

steps), and a final cooling step.  

 

Melting curve analysis should always be performed 

after the amplification to check the specificity of 

the PCR reaction. To quantify the levels of 

transcripts in the cell lines, a standard curve must 

be plotted for each gene using five-fold serial 

dilutions of known concentrations of purified PCR 

products generated with the same primer pairs. 

Every cDNA must be tested in triplicate, and the 

obtained crossing point (Cp) value permitted the 

levels of the starting mRNA must be determined 

using a specific standard curve. The geometric 

mean of the two internal control genes must be 

used as an accurate normalization factor for gene 

expression levels. The final relative mRNA 

expression will indicate the copy number of the 

target gene divided by the corresponding 

normalization factor and multiplied by 10
3
.
43

 

 

CONCLUSION: Carbonic anhydrase IX and XII 

inhibitors can prove to be effective in treatment of 

hypoxic tumours. Moreover the side effects with 

these drugs will be less than those caused by other 

anticancer drugs as these enzymes are present 

constitutively in only a few tissues. The above 

mentioned invitro methods can be used to screen 

potential anticancer drugs and this can prove to be 

a new dimension in the field of anticancer drug 

therapy. 
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