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ABSTRACT: Inhibition of viral coating protein is an established therapeutic 

strategy for the treatment of many influenza treatment regimes. Although resistance 

to such inhibitors is common phenomena in different influenza treatment, such 

resistance can be averted by targeting coating proteins with phytochemicals. Swine 

Flu neuraminidase protein (H1N1) has been currently focused target for influenza 

inhibitor research. We used computational high throughput screening approach to 

identify novel phytochemical inhibitors from phytochemical knowledgebase. Our 

computational method used in this study is an integration of qualitative models 

obtained from consensus hydrated virtual screening protocols for H1N1 

Neuraminidase 1 (N1) to identify the novel phytochemical inhibitors. Using the 

available N1 crystal structures in protein databank flexibility and hydration states 

were analyzed and validated. The three representative crystal structures with open 

and closed conformations with highly conserved waters were used to screened the 

phytochemical database and identified novel inhibitors, among them a first in class 

alkaloids inhibitor that have shown better affinity against neuraminidase protein over 

marketed drugs. Our studies suggest that this computational screening approach may 

be broadly applicable for identifying inhibitors with potential for treating H1N1. 

INTRODUCTION: Influenza inhibitors have been 

identified for the treatment of various flu virus 

ailments 
1, 2

. However, compensatory mechanisms 

diminish the long-term efficacy of these inhibitors
3
. 

Drug resistance is often observed in the clinic as 

rapidly evolving flu virus cells are able to avoid 

inhibition by a single targeted therapy through a 

variety of mechanisms 
4
. The resistance of flu 

toward inhibitor-directed therapeutics is often 

accompanied by a distinct change in glycoside and 

coating protein network composition through 

adaptive evolution reprogramming, allowing the flu 

to elude effects of the drug and manifest 

resistance
5
.  
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An established strategy to improve the durability of 

clinical responses to targeted therapies is to 

simultaneously inhibit neuraminidase conserved 

region targeting. However, discovering 

neuraminidase inhibitors with an appropriate target 

profile has been challenging and necessitated the 

application of target specific therapies, which can 

pose major clinical development challenges 
6–9

. We 

therefore sought a strategy to identify single agent 

phytochemical compounds with the ability to target 

influenza promoting pathways.  

 

We chose to target neuraminidase (N1) part of the 

H1N1 among the other virulent strains viz: H1N2, 

H1N3, H1N7 etc.
10

 The novel H1N1 strain (swine 

flu strain), first reported in Mexico in 2009, was 

termed so because it mainly infected the swine and 

displayed two main surface antigens, H1 

(Hemagglutinin type 1) and N1 (Neuraminidase 

type1). The H1N1 flu has 8 stranded RNA; among 

them one strand is derived from human flu strains, 

Key words:  

H1N1; Drug Discovery; 

Phytochemical; Ayurveda. 

Correspondence to Author: 

Hemanth Kumar Manikyam  

 

Research Head/ CEO operation 

Patanjali Natural Coloroma Pvt. Ltd., 

Haridwar, Uttarakhand - 249404, 

India 

 
Email: phytochem2@gmail.com 



Acharya et al., IJPSR, 2016; Vol. 7(6): 2699-2719.                                      E-ISSN: 0975-8232; P-ISSN: 2320-5148 

International Journal of Pharmaceutical Sciences and Research                                                                              2700 

two from avian strains, and five from swine strains. 

Lately, neuraminidase inhibitors have been found 

to effectively treat H1N1 virus infection 
11, 12

. 

Phylogenetically, these subtypes are classified into 

two groups: N1, N4, N5, and N8 subtypes (group-

1) and N2, N3, N6, N7, and N9 subtypes (group-2) 
15

. Neuraminidase helps in breaking the linkages 

between sialic acid and cellular glycoproteins, 

glycolipids thereby disrupting the cell wall 
13, 14

 

Neuraminidase has a single polypeptide chain that 

comprises of six conserved polar amino acids, 

followed by hydrophilic, variable amino acids. 

Predominantly β-Sheets are present in secondary 

structure. While the residues involved in the 

catalysis are preserved in subtypes N1–N9, these 

two groups were also found to be structurally 

distinct, as revealed by the X-ray crystal 

structures
15

.  

 

Resistance to known inhibitors arises from 

mutations in or around the enzyme active site. By 

far the most common of these mutations, H274Y, 

restricts the inhibition of oseltamivir by displacing 

the pentyloxy group out of a hydrophobic pocket 

close to the active site 
16-19

 Other mutations, 

particularly E119V, E119G, and R292K can affect 

binding of both oseltamivir and zanamivir but arise 

much less frequently 
20, 21

 Drug resistance and 

environmental influences helped this adaptive 

mutation of the strains to promote its efficacy 

multiple times than normal 
22

. Thus, neuraminidase 

is a promising drug target for the treatment of 

various influenza viruses. Interestingly, along with 

the small molecules some natural compounds have 

ability to be good lead molecules against various 

archetypal seasonal or pandemic ailments.  

 

Ancient concept of Flu Fevers: 

Ayurveda, the oldest Indian traditional and 

alternative medicine has been used for centuries for 

treating various diseases 
44

. However, there is no 

prominent description of swine flu treatment 

available in scriptures but we have made an attempt 

to reread the concept of Ojus and Jwara Chikitsa 

(Treatment of fevers) as swine flu infection shares 

common clinical symptoms 
45-48

. 

 

The present study was carried out tounderstand the 

flexibility of the binding pocket with the help of the 

available crystal structures of N1 protein and to 

evaluate them to select the representative crystals 

for the virtual screening protocol. Water in the 

binding pocket is always the direct competitor of 

the compounds that are binding to them.  

 

Hence to increase the precision of the virtual 

screening, the stable or conserved waters were also 

evaluated. The final objective of our study is 

exhaustive  screening of the phytochemicals mainly 

alkaloids and flavonoids as potent neuraminidase 

inhibitor which leads to the discovery of novel 

H1N1 neuraminidase inhibitors and a first in class 

alkaloid/flavanoid inhibitor using the hydrated 

representative crystal structures of N1.We suggest 

that this virtual screening protocol along with 

different biochemical assay to establish potency of 

those compounds can be helpful to identify and 

generate a large dataset of active phytochemical 

therapeutic compounds for identifying H1N1 

inhibitors. 

 

MATERIAL AND METHODS: 

Molecular activity data and decoy datasets: 

All the modeling studies were carried out using the 

2015- 3 version of Schrodinger software. The 

activity data for the known H1N1 inhibitors was 

extracted from the Pubchemdatabase (January 26, 

2016). 14unique active compounds were selected 

based on their IC50 values. These compounds were 

converted into 3D structures and generated their 

protonation states (biological pH), canonical 

tautomer and corrected their geometric 

configuration using Ligprep tool. Activity of the 

compounds was normalized with to pIC50. These 

compounds were used to validate the computational 

hypothesis by estimating enrichment and also to 

determine thresholds for significant docking 

interactions.  

 

Decoy Set Generation: 

The selected 14 H1N1 inhibitors were submitted 

for generating the decoy sets from the Directory of 

Useful Decoys, Enhanced (DUD-E) (26, 27). This 

generated 50–100 decoy compounds per submitted 

ligand SMILES. The decoys also prepared for their 

proper ionization states (pH of 7.2), tautomeric 

forms, using LigPrepdefault settings. These 

prepared decoys were mixed with 14 actives and 

the resulting 764 compounds were exported as 

structure data files and unique IDs were assigned 
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based on unique canonical structures to facilitate 

post-docking enrichment calculation. 

 

Ensemble docking protocol: 

Receptor Preparation: 

From the large pool of the crystal structures of 

H1N1 available in the protein databank, the 

structures with resolution with less than 2.5 Å, with 

co-crystal inhibitors, without breaks in the binding 

site were selected for further analysis. All the 

structures were superimposed to understand the 

flexibility of the binding site. Based on the 

flexibility of the binding site three H1N1 co-crystal 

structures were selected from the Protein Data 

Bank (PDB). The two crystal structures with 

PDBID 4MJU and 4KS1 having open conformation 

but with unique Arg156 conformation and other 

protein 4KS4 with closed conformation were 

chosen as the representative structures for the 

docking studies. Overall, the selection criteria 

included the atomic resolution of the X-ray crystal 

structure, diversity in the co-crystal ligand scaffold 

and ligand interactions in the binding site. Further 

conserved waters were analyzed by superimposing 

all the high-resolution structures. Using consensus 

water script in Bio Luminate tool conserved waters 

found in/around the ligand binding sites of 70% of 

the superimposed structures (Fig.1). As shown in 

the figure 4water are conserved near the binding 

site but only two waters   HOH 618 and 866 which 

are having hydrogen bonding with ligand and 

receptor were tested in the docking model 

evaluation.  

 

Three crystal structures ofH1N1 protein structures 

were pre-processed using the protein preparation to 

assign bond orders and refine the structure 

including hydrogen bond optimization and 

constrained minimization 
23

. Where needed, 

missing side chains were added using Prime 
24, 25

. 

For each structure, one protein chain with the co-

crystal ligand was kept, and water molecules were 

deleted beyond 5 A
o
 from heteroatom groups. In 

addition, the internal hydrogen bond network was 

optimized, followed by constrained energy 

minimization.  

 

Docking Protocol: 

For the three optimized protein structures grids 

based potentials were generated for the binding 

sites using Glide Grid Generation with default 

settings along with the rotatable bond settings for 

the OH and SH groups of the binding site amino 

acids. Compounds obtained via Lig Prep for all 

(H1N1 known active and decoy) compounds were 

docked against the prepared three crystal structures 

of neuraminidase proteins using Glide extra 

precision (XP) with the default settings, except 

writing out at most 5 poses per ligand 

representation and including 25 poses per ligand 

for post-docking minimization 
28-30

. The docking 

scores were analyzed with default XP-pose viewer 

file on each unique ligand representation structure, 

the scores of all corresponding docking poses were 

aggregated; pose-aggregate scores of unique ligand 

representations (generated in Lig Prep) were 

aggregated by unique (original) compound 

structure (across ionization states and tautomers). 

Based on model evaluation results for all ligand 

representations, for the final results we used the top 

scores obtained across all levels; for each ligand 

structure this corresponds to the best pose for the 

best ligand representation in the best protein-

docking model. 

 

Re-docking of each co-crystal ligand into its 

corresponding structure active site validated our 

docking setup to generate models; in each case the 

co-crystal pose was reproduced with RMSD values 

<1.5 A
0
. Further evaluation of the docking model 

cross docking of the ligands to other neuraminidase 

proteins structures in the presence and absence of 

water. 

 

Evaluation of the virtual screening and 

characterization of predictions: 

The docking method was evaluated by the receiver 

operating characteristic (ROC), enrichment factors 

(EF) and by correlation of aggregate docking 

scores and activity data using the known H1N1 

inhibitors and the decoy dataset for individual and 

consensus models. The aggregate docking scores 

exhibited the best overall relation to reported 

activity. Sensitivity (S) is defined as true positive 

rate (TPR), specificity (SP) is true negative rate 

(TNR) and accuracy is the overall correct 

prediction rate [(TP + TN)/N]. The ROC is [S/(1-

SP)], i.e. TPR over FPR. EF is [TP 

(subset)/n(subset)]/[P(total)/n(total)], i.e. the ratio 

of true positives detected in the subset divided by 
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the fraction of overall (total) positives. The known 

H1N1 inhibitors were clustered by maximum 

common substructure using Clustering script of 

Schrodinger 
31

. Correlation coefficients were 

computed for aggregate docking scores versus 

median activity for all clusters. 

 

Induced Fit Docking: 

Binding sites for the initial Glide 
37-40

 (version 6.1, 

Schrödinger, LLC, New York, NY, 2013) docking 

phases of the Induced Fit Workflow (Induced Fit 

Docking protocol 2015-3, New York, NY, 2013)
 61, 

62 
were calculated on the 4MJUstructure, 

considering the centroid of the co-crystallized 

ligand 27S or (5R,9R,10S)-10-(acetylamino)-2-

2amino-4-oxo-9-(pentan-3-yloxy)-1-thia-3-azapiro-

[4,5]deca-2,6-diene-7 carboxylic acid for 

neuraminidase1, from PDB code (4MJU) for grid 

generation.  

 

In this case, cubic inner boxes with dimensions of 

10 Å were applied to the proteins, and outer boxes 

were automatically detected. Ring conformations of 

the investigated compounds were sampled using an 

energy window of 2.5 kcal/mol; conformations 

featuring non-planar conformations of amide bonds 

were penalized. Side chains of residues close to the 

docking outputs (within 8.0 Å of ligand poses) 

were reoriented using Prime, and ligands were re-

docked into their corresponding low energy protein 

structures (Glide Extra Precision Mode), 

considering inner boxes dimensions of 5.0 Å (outer 

boxes automatically detected), with resulting 

complexes ranked according to Glide Score. 

 

Calculation of binding energies using 

MM/GBSA: 
The binding free energy was calculated according 

to the Generalized Born Model and Solvent 

Accessibility method, using Prime MM/GBSA 
37 

(Prime version 2.1, 2009). Phytochemicals and 

reference ligands-docked neuraminidase structures 

were used for calculation of free energy of the 

ensemble structures. The binding free energy 

ΔGbinding was calculated using the following 

equation: 

 

ΔGbinding = ER: L-(ER+EL) +ΔGSA+ΔGSolv ...................(1) 

    ΔGSolv = G solv.complex – Gsolv. Protein - Gsolv.ligand .......................(2) 

     ΔGSA= GSA.complex – GSA.protein– GSA.ligand ...................................... (3) 

 

Where ER + EL is the sum of energies of unbound 

ligand and receptor, and ER:L is the energy of the 

docked complex. ΔGSA is the difference of surface 

area energy of the protein-ligand complex and the 

sum of surface area energies of protein and ligand 

individually. ΔGSOLV is the difference in the GBSA 

solvation energy of the complex and summation of 

individual salvation energies of protein and ligand. 

Energies of the complex were calculated using the 

OPLS-2005 Atom force field 
35

 and GB/SA 

continuum solvent model. 

 

Molecular dynamics simulations: 

MD simulations of the docked complexes were 

accomplished using Desmond Molecular Dynamics 

system, with Optimized Potentials for Liquid 

Simulations (OPLS) all-atom force field 2005 
35-37

. 

The prepared protein molecules were solvated in 

the presence of explicit solvent on a fully hydrated 

model with TIP4P water model in an orthorhombic 

periodic boundary box (distance  

 

between box wall and protein complex was kept at 

10 Å to avoid the direct interaction with its own 

periodic image) to generate required systems for 

MD simulations. The energy of prepared systems 

for MD simulations was minimized to 5000 steps 

maximum using the steepest descent method until a 

gradient threshold (25 kcal/mol/Å) was reached, 

followed by L-BFGS (Low-memory Broyden-

Fletcher- Goldfarb Shanno quasi-Newtonian 

minimizer) until a convergence threshold of 1 

kcal/mol/Å was met.  

 

The default parameters in Desmond were applied 

for systems equilibration. The so equilibrated 

systems were then used for simulations at 300 K 

temperature and a constant pressure of 1atm, with a 

time step of 2fs. The long range electrostatic 

interactions were handled using Smooth Particle 

Mesh Ewald Method. Cutoff method was selected 

to define the short range electrostatic interactions. 

A cutoff of 9 Å radiuses (default), was used. All 

http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-16-S19-S10#CR35
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atom (OPLS force field) explicit water molecular 

dynamics simulations were performed using the 

Desmond 2015.3software suite via Maestro 9.9 
32-

34
. Molecular dynamics(MD) was run on the 

docked receptor ligand complexes for 50 ns. 

Simulation analysis was performed using the 

Desmond trajectory analysis software. 

 

Hydrogen bond and hydrophobic interaction 

analysis: 
The parameters defining the H-bonds between 

ligand and the protein complexes were as follows: 

acceptor-donor atoms distances less than 3.3 Å, 

hydrogen acceptor atom distances less than 2.7 Å 

and an acceptor-donor angle of 90° or more. 

Ligand-bound protease structures obtained from 

Glide and the MD-stabilized representative 

structures from Desmond were selected for 

carrying out interaction studies. A representative 

structure was prepared by averaging the 

coordinates of various frames extracted from the 

most stable region of the trajectory, which persisted 

until the end of the simulation run. 

 

RESULTS: 

Ensemble docking to predict novel 

Neuraminidase binders: 

In contrast to many viral coating proteins, publicly 

available small molecule inhibition and binding 

data for neuraminidase (H1N1) are limited. 

However, co-crystal structures of N1 are available 

in the Protein Data Bank (PDB) allowing for an 

unbiased structure-based approach to predict 

flexibility neuraminidase active site hydrophobic 

pocket binding.  

 

To understand the flexibility of the binding pocket 

upon binding of various ligands, all the high-

resolution crystal structures with diverse ligands 

were superimposed. These are two distinct 

conformations observed in the neuraminidase-

binding pocket (Fig.2). The large loop starting 

from Gln136and ending with Arg156extends into 

the binding site as a closed conformation that 

results in decrease in volume of the binding site. 

When this loop move away from the pocket as 

open conformation the volume of the pocket 

increase and accommodate the bulkier groups of 

the ligands at this position. Further in the open 

conformation of the binding pocket, the amino acid 

Arg156 side chain exhibiting different 

conformations and changing the pocket size in this 

region. To test our state of art virtual screening 

protocol and to cover conformational flexibility 3 

crystal structures with PDB IDs 4FS1, 4FS4 and 

4MJU were selected. As shown in the figure 3 the 

crystal structures 4FS4 and 4MJU are open 

conformations but having distinct Arg156 side 

chain conformations and 4FS1 is a closed 

conformation.  

 

Analysis of conserved hydration states: 

Desolvation of the guest (ligand) inside the binding 

pocket of the host (protein) at the hydrophobic 

region of the protein makes the complex 

thermodynamically stable and ligand exhibits 

higher affinity. However the water which are 

having strong hydrogen bond interactions with 

protein and ligand are very stable on comparison 

with bulk water and cannot be easily desolated by 

the ligand upon binding. During the docking these 

stable waters should be identified and retained for 

accuracy. To identify the conserved waters the 10 

high-resolution neuraminidase crystal structures 

obtained from the protein databank were 

superimposed. The consensus waters among the 

70% of the crystal structures were identified and 

shown in the Fig.3. As depicted from the figure 

there are five consensus water molecules are very 

close to the ligands. The water molecules are 

labelled for the PDB 4MJU.  

 

The waters HOH 701 and 850 which are near the 

solvent exposer region and little far away from the 

binding site have less influence on the ligand 

binding. The three waters HOH 618, 866 and 868 

are inside the pocket and very close to the bound 

ligand. These waters might be crucial for ligand 

binding and further analyzed the hydrogen bond 

interaction which makes the waters to gain 

enthalpy; the water molecules 618 and 868 were 

showing strong hydrogen interactions with binding 

site amino acids and ligand. Hence during the 

docking model evaluations there waters were 

retained and tested for the docking accuracy and 

enrichment 

 

Docking Method Validation: 

Docking validation was performed not only to 

understand how docking protocol reproduces the 
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co-crystal conformation but also the effect 

flexibility and hydrations states of the binding site 

on docking reproducibility. Seven prepared crystal 

structures with high resolution having open and 

closed conformations were selected for docking 

validation. Docking studies was performed for each 

PDB using Glide extra precision (XP). Glide isa 

semi flexible docking method to predict multiple 

ligand binding poses and allocates a score to each 

pose by appraising binding affinity, incorporating 

several energetic terms and empirical 

parameterization 
28-30

.  

 

Self-docking and cross docking of the co-crystal 

ligands in the absence and presence of the 

important conserved waters molecules. The co-

crystals ligands docked into their corresponding 

crystal structures and also into the remaining 

crystal proteins to reproduce the co-crystal pose. 

The Table 1 shows RMSD values of self-docking 

and cross docking results for the seven crystal 

structures. The PDBIDs with 4MJU, 4KS4 and 

4KS5 are open conformations and 4KS1, 4KS2, 

4KS3 and 3TI3 are closed conformations. The 

RMSD values for all the proteins self-docking 

results (diagonal values) were unacceptable 

(>2.5A
0
) except 4KS3 and 4KS4 that were having 

<2.5 A
0
 RMSD values. The total average of RMSD 

for both the open and closed conformations of the 

self-docking is 2.892A
0
. Moreover the average 

RMSD for cross docking values of each crystal 

structure is very high (>4A
o
).  

 

This clearly illustrates that self-docking and cross 

docking is not showing good reproducibility for the 

proteins without water. The similar studies were 

conducted in the presence of the important 

conserved waters (HOH 618 and 866) in the 

binding site. The RMSD values for the hydrated 

docking results were shown in the table 1. The 

reproducibility of the self- docking was greatly 

improved and the average RMSD is 1.63 A
0
 for all 

the proteins. The reproducibility of the self-docking 

of all the proteins are less than >2.5A
0
 accept for 

the 3TI3 protein.  

 

Even for the cross docking the average RMSD for 

each protein improved significantly. The open 

conformation proteins able to reproduce co-crystals 

of closed conformations accurately not vice versa. 

The protein 4KS5 is showing the highest 

reproducibility (RMSD 2.5 A
0
) followed by 4KS4. 

However the reproducibility of the open 

conformation co-crystal 27S (co-crystal of 4MJU) 

either by 4KS5 and 4KS4 is not precise this is due 

to conformational changes in the side chain of the 

Arg156 of 4MJU protein. Among the closed 

conformation proteins, 4KS3 is showing highest 

reproducibility of average RMSD of 2.945 A
0
 for 

all the proteins and finest reproducibility for the 

closed co-crystal ligands. The results suggest that 

hydrated 4KS5 and 4MJU from the open 

conformation and 4KS3 from closed conformation 

will cover the flexibility of the neuraminidase 1 

protein and selected for the virtual screening 

protocol.  

 

Evaluation of Virtual Screening: 

To maximize accuracy of the virtual screening 

using ensemble docking approach three crystal 

structures 4MJU, 4KS5 and 4KS3 was selected 

based on the docking reproducibility. However the 

success of the virtual screening mainly depends on 

how well the N1 docking protocol selects the 

actives from large database with minimal false 

positives. Hence the ensemble docking protocol 

was evaluated by screening the know database and 

calculated the hit rate using the enrichment and 

receiver operating characteristic (ROC).For the 

validation 14 known actives extracted from Drug 

Bank and 750 corresponding decoy compounds 

obtained from the Directory of Useful Decoys 
26, 27 

were assorted to generated know database (details 

described in Methods).  

 

The known database was screened with three N1 

proteins and pooled and computed sensitivity (true 

positive rate) and specificity, enrichment factors 

and ROC score of the docking model. The docking 

score cutoff of was ≤ − 6, (smaller is better) with 

approximately±2 standard deviations from the 

mean distribution. For enrichment active 

compounds defined as plog P (p Activity) ≥ 6, with 

all others deliberated inactive and predicted active 

docking score ≤ − 6with N1 crystal structures. 

Evaluating the docking model presentation at a 

docking score threshold of ≤ − 6 gave high 

sensitivity indicating that the model was good to 

classify active molecules appropriately, also the 

model was very specific to evaluate the known and 
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decoy compounds at docking score threshold of ≤ − 

6 (Fig 5). Enrichment factors calculated at 0.1 and 

1% of the top docked compounds were high at the 

p Activity ≥ 6 activity thresholds (Table 2). The 

receiver operating characteristic AUC (ROC score) 

was outstanding for this activity cutoff, further 

supporting the models predictive performance 

(Fig.5, Table 3).These statistical cross validation 

results confirm very high quality of the consensus 

docking data model and the applicability for 

computer-generated selection. In addition to ROC 

scores and enrichment factors we also investigated 

how the collective docking scores and reported p 

Activity values relate quantitatively. As can be 

expected, there is not any comprehensive 

correlation, because docking scores appraised for 

relative binding affinity and typically cannot be 

related across diverse binding modes (Fig. 6). 

However, after clustering known N1 actives by 

maximum common substructure and topological 

features, we establish decent correlation for 

preserved chemo types. Pearson correlation 

coefficients (R
2
) in the range of 0.4 to 0.9 were 

observed for active compounds, which include 

some recently marketed compounds(Fig.7). 

 

We applied this N1 ensemble docking protocol to 

score the 30 compounds filtered from Ayurveda 

Shastra using the N1 activity classifiers and 

physicochemical properties. Compounds were then 

selected based on N1 docking score, 

physicochemical properties, chemical diversity and 

manual review. Our docking study of N1 inhibitors 

showed these compounds did extremely well in 

docking scores for further prioritization and testing 

(Table 4, Fig.4A-4I). 

 

IFD result: 

To testify the supposed conformational variations 

of the receptor’s binding site cavity upon ligand 

binding, we employed the Induced Fit docking 

protocol 
41, 42

 (as implemented in the Schrödinger 

software package). Molecular modeling resulted in 

decent ccommodation of the explored alkaloids 

within the hydrophobic binding site of 4MJU, 

mainly packing between the hydrophobic residues 

(Asp 151, Arg118, Arg 371, Lys 430, Glu 432). We 

observed different conformations of compound 

rutin, aloe emodin and reference zanamivir within 

the 4MJU cavity, with the two functions pointing to 

the top of the pocket (Fig.8). Reference compound 

27S was also found in orienting its primary binding 

mode towards the conserved Arg118 and Arg 37 

(Fig. 8). In all cases the ligand poses resulted in 

promising predicted binding energy values (−9.791 

kcal/mol for rutin, −9.168 kcal/mol for aloe 

emodin, and −8.73 kcal/mol for zanamivir). 

Induced fit docking study corroborated with our 

ensemble docking study generated models which 

showed the precision of the data aggregation (Fig 

9). We identified in our calculations, in the case of 

compound rutin and aloe emodin, poses that 

exposed the functional groups towards the solvent 

may be further optimized based on its topology 

within the N1 binding site. To better understand the 

binding mode of the alkaloid scaffold to N1, given 

the multiple docking conformations observed, we 

thought to methodically investigate the topology of 

these fragments employing binding energy assay 

and molecular dynamics. 

 

MMGBSA result: 

In order to validate the accuracy of those docking, 

their binding free energy was correlated with 

docking score. The binding free energy inhibitors 

with N1 were calculated using the Prime/MM-

GBSA post docking scoring protocol. Concisely, 

many energy modules, which contribute to binding 

energy were calculated for the complex 

holoenzyme, apoenzyme and free ligand binding 

energy was intended as the sum of difference 

between energy of complex holoenzyme and sum 

of energy of apoenzyme and free ligand. The 

calculated average free energies (ΔGbind) results 

from different docking models are summarized in 

(Table 5). Interestingly, Prime/MM-GBSA 

predicted binding energy (ΔGbind) could clearly 

distinguish with docking score between docking 

models. 

 

Characterization of neuraminidase inhibitors by 

molecular dynamics:  

To characterize how rutin and aloe emodin binds to 

4MJU at the atomic level and gain insights into 

binding dynamics, we performed a 50 nanosecond 

(ns) molecular dynamics (MD) simulation (see 

Methods). The overall progress of the rutin and 

aloe emodin ligand may be compared via their Cα 

RMSDs versus time (Fig. 10A and 10B).For aloe 

emodin Cα RMSD increased steadily over the first 
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20 ns or so and then plateau achieved around 22ns 

where as rutin Cα RMSD increases steadily over 

the first 20 ns or so and then plateaus up-to 50 ns. 

This suggested that substantial changes in the 

structure of the aloe emodin and rutin over the 

course of the 20ns time frame. In contrast, the Cα 

RMSD for the protein receptor reached a peak 

destabilization around 8 ns for aloe emodin 

complex and around 18 ns for rutin complex then 

in both cases settled between 18 ns to 50 ns. This 

suggested that receptor had substantially smaller 

structural drift in comparison to ligands, thus that 

the complexes were stable structures. The protein 

RMSF (Fig. 11A and 11B) gave us insights on how 

ligand fragments interact with the protein and their 

entropic role in the binding event.  

 

The 'Fit Ligand on Protein' line showed the ligand 

fluctuations (fig 10A and 10B), with respect to the 

protein. The protein-ligand complex is first aligned 

on the protein backbone and then the ligand RMSF 

is measured on the ligand heavy atoms. Protein 

secondary structure elements (SSE) like alpha-

helices and beta-strands were monitored throughout 

the simulation. The plot (Fig. 12A and 12B) 

reported SSE distribution by residue index 

throughout the protein structure for aloe emodin-

neuraminidase and rutin-neuraminidase complexes. 

The plot summarized the SSE composition for each 

trajectory frame over the course of the simulation, 

and the plot (Fig. 13A and 13B) monitored each 

residue and its SSE assignment over time of 

simulation for aloe emodin and rutin complexes 

respectively. 

 

The plot (Fig. 14A and 14B) showed aloe emodin 

and rutin residues interaction with the protein in 

each trajectory frame. Some residues made more 

than one specific contact with the ligand, which 

was represented by a darker shade of orange, 

according to the scale to the right of the plot. 

Protein-ligand interactions (or 'contacts') of aloe 

emodin and rutin (Fig. 15A and 15B) were 

categorized into four types: Hydrogen Bonds, 

Hydrophobic, Ionic and Water Bridges. Each 

interaction type contained more specific subtypes, 

which can be explored through the 'Simulation 

Interactions Diagram' panel. The stacked bar charts 

are normalized over the course of the trajectory: for 

example, a value of 0.7 suggests that 70% of the 

simulation time the specific interaction is 

maintained. Values over 1.0 are possible as some 

protein residue may make multiple contacts of 

same subtype with the ligand. Simulation analysis 

showed a conserved pi cataion interaction between 

aromatic ring of aloe emodin and Arg 118 (the 

conserved hydrophobic binding motif) and 

hydrogen bond with Glu227, and Arg 156 

(Fig.16A). While this primary interaction was 

taking place, protein and ligand RMSD values 

stayed relatively low, indicating a stable binding 

conformation (Fig. 10A). However, from 0 to 22 

ns, an increase in ligand RMSD is observed as the 

ligand switches its primary interaction to Arg 118 

through a romatic stacking connections, 

destabilized the complex.  

 

After 22 ns, the compound returns to its original 

binding con formation and re-established the 

binding connections observed before and remain 

same throughout the remaining time, with 

additional interactions observed with Glu 227 and 

Arg 156 (Fig. 16A). Simulation analysis also 

showed a hydrogen bond with Glu 432, Gly 147, 

Arg 118, Val 149 and Thr 439 (Fig.16B). While 

this primary interaction was taking place, protein 

and ligand RMSD values remained moderately 

low, indicating a stable binding conformation 

(Fig.10B).  However, from 0 to 20 ns, an increase 

in ligand RMSD is observed as the ligand switches 

its primary interaction to Arg 118 through water 

bridge interactions, destabilizing the complex. 

After 20 ns, the compound returns to its original 

binding conformation and re-stabilizes the binding 

interactions observed previously throughout the 

remaining time, with additional interactions 

observed with Glu 432, Gly 147, Val 149 and Thr 

439 (Fig. 16B).Two different crystal structures of 

the N1 from the protein data bank were taken to 

construct docking models (see Methods). The top 

docking score of Alo-emodin and Rutin in the N1 

(− 9.168 kcal/mol and -9.71 kcal/mol) supports its 

observed high affinity. These results are also 

consistent with the MD simulation. 

 

Docking pose and MD results clearly show Rutin 

and aloe emodin as a type I neuraminidase inhibitor 

due to its binding contacts with Arg118 in the 

active conformation of the N1 hydrophobic pocket 

domain activation loop. MD results show stable 
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RMSD values of Rutin and Aloe-emodin 

throughout the entire 50ns simulation. Throughout 

the time series Rutin and Aloe emodin interacted 

with all residues associated with hydrophobic 

pocket on average more than 75% of the time. Aloe 

emodin and Rutin molecule torsion angle panel 

showed the 2d schematic of a ligand with color-

coded rotatable bonds. Dial (or radial) plots 

designate the conformation of the torsion 

throughout the course of the simulation (Fig. 17A 

and17B). The beginning of the simulation is in the 

center of the radial plot and the time evolution is 

plotted radially outwards. Ligands showed 

significant stability on structural conformation. The 

ligands properties histograms (Fig. 18A and 18B) 

illustrated the conformational strain it undergoes to 

maintain a protein-bound conformation. 

 

DISCUSSION: Inhibition of influenza promoting 

protein is an established therapeutic strategy for the 

treatment of various flu infections. Two inhibitors 

are approved for use in humans and few more are 

in clinical development. Computational designing 

of this kind of selectively unselective leads that 

bind to the desired disease targets, but avoid off-

target liabilities is very difficult due to the high 

adaptive evolutionary change in viral proteins 

across the human populace. It is likely that most of 

the approved anti-influenza drugs are marginally 

striking the balance favorably. In contrast, it may 

be hard to optimize natural or nature derived 

phytochemical inhibitors, and there is strong 

evidence that such compound scan revel 

satisfactory effectiveness and pharmacology.  
 

 
FIG.1: SUPERPOSITION OF NURAMINIDASE 1 CRYSTAL STRUCTURES HAVING DIFFERENT LIGANDS 

We built distinct docking modelsafter picking three representative co-crystal structures, considering co-crystal ligand chemical diversity, 

quality and resolution of the structure and importantly the flexibility of the binding sites.  

 

 
FIG.2: A. THE CLOSED CONFORMATION OF NEURAMINIDASE 1 (4KS1); B. OPEN CONFORMATION OF 

NEURAMINIDASE 1 (4KS4); C. OPEN CONFORMATION OF NEURAMINIDASE 1 WITH DISTINCT CONFORMATION OF 

ARG156 IN BINDING SITE D. SUPERIMPOSED STRUCTURES OF THE THREE CRYSTAL STRUCTURES (4MJU IN GREEN, 

4KS1 IN BLUE AND 4KS4 IN BROWN) AND THE CIRCLE PORTION SHOWS THE CONFORMATIONAL CHANGES FROM 

CLOSED TO OPEN FORM. 
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FIG.3: THE CONSENSUS WATERS REPRESENTED IN RED COLOR BALLS FOR THE SUPERIMPOSED H1N1 

NEURAMINIDASE CRYSTAL STRUCTURES. THE LABELING OF THE WATERS IS SHOWN FOR THE PROTEIN 4MJU. 

 

 
FIG. 4:  THE ABOVE FIGURE 1ILLUSTRATES THE BINDING OF REPRESENTATIVE LIGAND STRUCTURE OF 

DIFFERENT PHYTOCHEMICALS AND KNOWN NEURAMINIDASE INHIBITOR WITH RECEPTOR 4MJU. IT ENLISTS A: 

4MJU CO- CRYSTALLED COMPOUND 27S, B: EUXANTHIC ACID, C: ABEITICACID, D: GALLICACID, E: 

PRTOCATECHMIC ACID, F: SHIKIMIC ACID, G: ALOE EMODIN, H: RUTIN, I: ZANAMVIR. 
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FIG. 5: ILLUSTRATES THE ENRICHMENT OF THE DECOY DATASET OF 764 COMPOUNDS AGAINST 4MJU, 4KS5 AND 

4KS33 DOCKING MODELS. 4MJU, 4KS5 AND 4KS3 GENERATED AUCS WERE 0.93, 0.86 AND 0.82, RESPECTIVELY WHEN 

ITS BEDROCK VALUES WERE 0.88, 0.84 AND 0.80. 

 

 
FIG. 6: ILLUSTRATES CORRELATION BETWEEN DOCKING SCORES AND LOG VALUE OF ACTIVITY DATA OF 

764COMPOUNDS AGAINST 4MJU, 4KS5 AND 4KS3 DOCKING MODELS. THESE PROPERTIES ARE NOT CORRELATED 

WHICH IN TURNS SHOWED THAT GLOBAL CORRELATION OF DOCKING SCORE AND ESTIMATED RELATIVE 

BINDING AFFINITY MAY NOT BE POSSIBLE THROUGH NORMAL DOCKING PROCESS. 

 

 
FIG. 7: ILLUSTRATES CLUSTERING OF KNOWN N1 ACTIVES BY MAXIMUM COMMON SUBSTRUCTURE AND 

TOPOLOGICAL FEATURES, WE FOUND GOOD CORRELATION FOR CONSERVED CHEMOTYPES. PEARSON 

CORRELATION COEFFICIENTS (R2) IN THE RANGE OF 0.4 TO 0.9 WERE OBSERVED FOR ACTIVE COMPOUNDS, 

WHICH INCLUDE SOME RECENTLY MARKETED COMPOUNDS. 
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FIG.8: THE ABOVE FIGURE 8A, ILLUSTRATES THE BINDING OF REPRESENTATIVE ZANAMVIR LIGAND STRUCTURE 

WITH RECEPTOR 4MJU. IT SHOWS THE EXISTING HYDROGEN BONDS BETWEEN LIGAND AND RECEPTOR. IN 

PICTURE IT’S EVIDENT THAT THE REPRESENTATIVE LIGAND STRUCTURE BINDS WITH ARG 152, GLU 227, TRP 178, 

ARG 371, ARG 292, ARG 118 BY HYDROGEN BOND WHEREAS IN FIGURE 8B RUTIN FORMS PI-CATION INTERACTION 

WITH ARG 371 AND HYDROGEN BONDS WITH ARG 118, GLU 432, ASP 151, THR 439. 

 

 
FIG. 9: ILLUSTRATES THAT INDUCED FIT DOCKING STUDY CORROBORATED WITH OUR ENSEMBLE DOCKING 

STUDY GENERATED MODELS WHICH SHOWED THE PRECISION OF THE DATA AGGREGATION. IFD SCORE, XP 

GSCORE AND DOCKING SCORE SHOWED 0.93, 0.84 AND 0.75 R2 VALUES WITH EACH OTHER’S RESPECTIVELY. 
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FIG. 10: FIGURE 10A AND 10B SHOWED THE STABILITY OF THE ALOE- EMODIN AND RUTIN WITH RECEPTOR (4MJU) 

OVER 50 NS SIMULATION PERIOD. AMONG WHICH IT DEPICTED THE RECEPTOR – ALOE EMODIN BEST 

STABILIZED BETWEEN 22-50 NS WHEREAS THE RECEPTOR – RUTIN BEST STABILIZED AROUND 20-50 NS TIME 

PERIOD. 

 
FIG.11: FIGURE 11A AND 11B SHOWS THE ROOT MEAN SQUARE FLUCTUATION OF PROTEIN BACKBONE. FIGURE 8B 

ALSO SHOWS THAT CORRESPONDING INTERACTION POINTS OF RUTIN FITTED IN RECEPTOR PROTEIN. EVERY 

SPIKE IN THE RMSF GRAPH DEPICTS ONE INTERACTIVE POINT WITH RESPECT TO ASSOCIATED PROTEIN/ 

RECEPTOR STRUCTURE.  
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FIG.12:  FIGURE 12A AND 12B SHOWS REPORTED SSE DISTRIBUTION BY RESIDUE INDEX THROUGHOUT THE 

PROTEIN STRUCTURE FOR ALOE EMODIN-NEURAMINIDASE AND RUTIN-NEURAMINIDASE COMPLEXES. 

COMPLEXES SHOW 1.05% AND 0.36% ALPHA HELIXES INDUCED IN RECEPTOR. 

 

 
FIG.13:  FIGURE 13A AND 13B SHOWS REPORTED SSE DISTRIBUTION BY RESIDUE INDEX THROUGHOUT THE 

PROTEIN STRUCTURE FOR ALOE EMODIN-NEURAMINIDASE AND RUTIN-NEURAMINIDASE COMPLEXES. 

COMPLEXES SHOW STABLE CONFORMATIONAL MODIFICATION IN ACTIVE SITE POCKET IN HYDROPHOBIC CORE 

OF RECEPTOR. 
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FIG 14: FIG 14A AND 14B SHOWED ALOE EMODIN AND RUTIN RESIDUES INTERACTION WITH THE PROTEIN IN 

EACH TRAJECTORY FRAME. SOME RESIDUES MADE MORE THAN ONE SPECIFIC CONTACT WITH THE LIGAND, 

WHICH WAS REPRESENTED BY A DARKER SHADE OF ORANGE, ACCORDING TO THE SCALE TO THE RIGHT OF THE 

PLOT. 

 
FIG. 15: FIG 15A AND 15B CATEGORIZED INTO FOUR TYPES: HYDROGEN BONDS, HYDROPHOBIC, IONIC AND 

WATER BRIDGES. THE STACKED BAR CHARTS ARE NORMALIZED OVER THE COURSE OF THE TRAJECTORY: FOR 

EXAMPLE, A VALUE OF 0.7 SUGGESTS THAT 70% OF THE SIMULATION TIME THE SPECIFIC INTERACTION IS 

MAINTAINED. 
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FIG. 16: FIG 16A SHOWS ALOE EMODIN COULD BIND 60% TIME WITH PI CATAION WITH ARG 118 WHEREAS FIG 16B 

SHOWS RUTIN HAVE BINDING 100% WITH GLU 432 BY HYDROGEN BONDING.    

 

 
FIG. 17: FIGURE 17 A AND FIGURE 17 B SHOWED THE ALOE EMODIN AND RUTIN TORSIONS PLOT WHICH 

SUMMARIZED THE CONFORMATIONAL EVOLUTION OF EVERY ROTATABLE BOND (RB) IN THE LIGAND 

THROUGHOUT THE SIMULATION TRAJECTORY (0.00 THROUGH 50.00 NSEC).  THE WIDE RANGE VARIATION ON 

TORSION ANGLE CONFORMATION ABILITY ATTRIBUTES TO THE FLEXIBILITY OF THE LIGAND. 
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FIG 18: FIGURE 18 A AND FIGURE 18 B SHOWS THE DIFFERENT PROPERTIES OF ALOE EMODIN AND RUTIN.  IT 

SHOWS THE DISTRIBUTION OF ROOT MEAN SQUARE DEVIATION RADIUS OF GYRATION, INTRA MOLECULE 

HYDROGEN BOND, MOLECULAR SURFACE AREA, SOLVENT ACCESSIBLE SURFACE AREA, Π (CARBON AND 

ATTACHED HYDROGENS) COMPONENTS OF SOLVENT ACCESSIBLE SURFACE AREA,OVER THE 50 NSEC 

SIMULATION TIME PERIOD. 

 
TABLE 1a: RMSD (A0) VALUES OF SELF-DOCKING (RED COLOR VALUES) AND CROSS DOCKING CRYSTAL POSE 

REPRODUCIBILITY FOR THE PROTEINS WITHOUT CONSERVED WATERS. 27S, 2H8, 1SJ, 1SL, 1SN, 1SO AND LNV ARE 

CO-CRYSTAL LIGANDS OF 4MJU, 4KS1, 4KS2, 4KS3, 4KS4, 4KS5 AND 3TI3 RESPECTIVELY 

 

 

Identifier/

PDBID 

27S 2H8 1SJ 1SL 1SN 1SO LNV Average Average: 

Open 

Average: 

closed 

4MJU 3.313 3.754 6.15 4.181 3.414 5.558 5.839 5.009 4.095 4.981 

4KS1 5.924 2.907 2.769 4.626 4.833 5.771 3.476 4.592 5.509 3.44 

4KS2 6.06 2.904 2.745 5.189 5.723 5.754 4.682 5.007 5.845 3.88 

4KS3 3.31 3.47 2.92 1.788 3.102 7.572 4.031 4.227 4.661 3.052 

4KS4 6.209 6.157 3.052 2.511 2.229 3.684 6.117 4.719 4.04 4.459 

4KS5 3.537 5.946 6.507 2.71 2.34 3.609 5.904 4.818 3.162 5.266 

3TI3 5.792 2.922 2.981 4.489 5.89 6.119 3.654 5.041 5.933 3.511 
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TABLE 1b: RMSD (A0) VALUES OF SELF-DOCKING (RED COLOR VALUES) AND CROSS DOCKING CRYSTAL POSE 

REPRODUCIBILITY FOR THE PROTEINS CONSERVED WATERS. 

 
TABLE 2: THE TABLE SHOWS ENRICHMENT FACTORS (EF), BEDROC AND RIE VALUES OF DOCKING MODELS. 

Docking Models EF(1%) EF(2%) EF(5%) EF(10%) BEDROC(α=20) RIE 

4MJU 2.1` 1.4 0.55 0.27 0.88 0.48 

4KS5 1.8 1.1 0.47 0.24 0.84 0.44 

4KS3 1.5 0.9 0.42 0.22 0.80 0.42 

 
TABLE 3: THE TABLE SHOWS % YIELDS OF ACTIVE, % ACTIVES, SENSITIVITY, SPECIFICITY OF DOCKING MODELS. 

IT SHOWS THAT 4MJU, 4KS5 AND 4KS3 DOCKING MODELS OF CAN GENERATE OF 94.7 %, 91.09 % AND 89.07 % 

SIMILARITY HIT WITH ACTIVE AND DECOY LIGAND LIBRARY. 

Sl no Docking Model %Actives Sensitivity Specificity Goodness of Hits (GH 

score) 

% of similarity Hit 

1 4MJU 71 0.93 0.86 0.65459 94.7 

2 4KS5 69 0.86 0.83 0.59121 91.09 

3 4KS3 65 0.82 0.80 0.55215 89.07 

 
TABLE 4: THE TABLE SHOWS 4MJU AND 3TI3 DOCKING MODELS GENERATED DOCKING SCORE OF DIFFERENT 

PHYTOCHEMICALS LIGAND LIBRARY 

Ligand Name 3TI3 Docking Model 4MJU Docking Model 

Abetic acid -2.474 -2.576 

Aloe emodin -8.168 -9.168 

Apocynin -8.472 -8.472 

AzadirachtinA -4.896 -5.896 

Berberin -2.475 -4.475 

Betastisterol -1.51 -5.51 

Caryophyllene -2.324 -6.324 

Cinamaldehyde -2.695 -5.695 

Columbin -3.312 -3.312 

Courmaric acid -7.821 -7.821 

Curcumin -4.576 -4.576 

Eugenol -3.553 -3.553 

EuxanthicAcid -6.163 -6.163 

Euxanthicmod1 -8.112 -5.112 

Galliac Acid -7.715 -6.715 

Piperin -3.31 -3.31 

Protocatechemic acid -8.101 -8.101 

Rutin -8.291 -9.791 

Shikimic Acid -7.185 -7.185 

Ursolic acid -7.404 -7.404 

Xeronine -6.772 -6.772 

Zanamvir -7.73 -8.73 

 

TABLE 5: THE TABLE SHOWS SPECIFICITY OF 4MJU AND 3TI3 DOCKING MODELS WITH RESPECT TO DELTA G 

BINDING AFFINITY WITH TOP DOCKED PHYTOCHEMICALS AND REFERENCE MOLECULES. 

Docking Model Glide Score ∆Gbinding Ligands 

4MJU -9.791 -51.849 Rutin 

-9.168 -50.365 Aloe emodin 

-8.73 -44.085 Zanamvir 

-8.112 -43.871 27S 

3TI3 -8.291 -49.765 Rutin 

-8.168 -47.87 Aloe emodin 

-7.73 -40.085 Zanamvir 

-7.712 -44.891 Laminavir 

 

 

Identifier/

PDBID 

27S 2H8 1SJ 1SL 1SN ISO LNV Average Average: 

Open 

Average: 

closed 

4MJU 2.132 1.435 0.86 3.353 4.306 7.132 2.419 3.091 4.523 2.016 

4KS1 5.627 0.868 0.901 4.791 6.645 7.899 5.819 4.65 6.72 3.094 

4KS2 5.742 0.844 0.374 4.919 5.367 6.503 4.081 3.975 5.87 2.554 

4KS3 3.358 1.543 1.19 1.903 2.204 7.742 2.679 2.945 4.43 1.828 

4KS4 6.244 1.372 0.966 2.212 1.158 1.466 5.927 2.763 2.956 2.619 

4KS5 3.399 1.119 1.511 2.798 1.203 1.442 6.047 2.5 2.01 2.868 

3TI3 6.118 1.16 1.74 4.568 4.953 4.762 3.536 3.8 5.277 2.751 
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As example, studies with ERBB2+ breast cancer 

have shown that targeting numerous ancillary 

kinases expressed in higher concentration by 

adaptive kinome reprogramming after the 

development of susceptibility to synergistic effect 

of curcumin and berberin regime management to 

growth inhibition of tumor cells variably. Using an 

extensive high throughput screening we 

recommend for first time a class of phytochemical 

neuraminidase inhibitor, validated by several N1 

inhibition assays and further characterized by 

extensive molecular modeling. Our computational 

approach was based on ligand-based N1 

classification models and N1 structure-based 

models integrated with physicochemical property 

prediction along with a robust virtual screening 

method. The N1 classifiers were trained on counted 

N1 inhibitors against 750 of N1 decoy compounds 

and the N1structure-based models made use of 

several available co-crystal structures. It should be 

distinguished that these models are ranked 

depending upon its ability to separate compounds 

by predictive property and these models are 

probabilistic models too. Models can be quantified 

by enrichment factor and ROC score (see Results).  

 

The statistics-depending classification of models 

(or any predictor) therefore should be interpreted as 

a capability to predict single active compound or a 

certain percentage of a small sample size. Our 

high-throughput computational screening pipeline 

balanced predicted N1 activity with favorable 

physicochemical properties before applying the 

neuraminidase structure based model. This 

prioritized innovative lead-like neuraminidase 

inhibitors among a big set of compounds and then 

selecting the most likely N1 binders.  

 

This was a significant challenge, because we were 

looking at the intersection of phytochemical and 

chemically synthesized compounds. Two known 

inhibitors of N1 were included in our ensemble 

docking protocol; but these compounds did not 

rank too impressively, supporting our focus on the 

discovery of novel phytochemical compounds. Our 

approach is the first to look for natural or nature 

derived phytochemicals inhibitors using a 

synergistically performed screening of ligand and 

structure-based models for each target. As a result 

of our computational pipeline, we ultimately 

selected and tested 2 compounds from over 23 

shortlisted one. We identified 2 novel N1 binders’ 

phytochemicals, a first-in class compound.  

 

Rutin and Aloe emodin is a potent N1 inhibitor 

(IC50: 6,11 respectively). To better understand 

molecular binding interactions of Rutin and Aloe 

emodin in N1(neuraminidase) and to facilitate 

future rational optimization, we executed extensive 

all atom, explicit water MD simulations of these 

compounds in N1. The 50 ns MD simulation of the 

predicted N1-Rutin and N1-Aloe emodin complex 

appeared consistent with the more modest potency 

observed in the biochemical assays. The observed 

interactions throughout the duration of the 

simulation were important hydrophobic pocket 

motifs for N1. The initial docking pose shows 

primary interaction with Arg118, a conserved 

direct positively charged binding residue, through a 

direct hydrogen bond with the rutin Fig. 16B and pi 

cataion bond with aloe emodin Fig. 16B. Binding 

of Rutin and Aloe emodin appeared to switch 

between different interactions, but stabilize half 

way through the simulation with key interactions. 

Structural analysis of N1 at atomic resolution 

indicates that Glu 432espouses a closed 

conformation in the nonexistence of binding.  

 

The binding orientation is the same as zanamivir, 

oseltamivir, erlotinib, and laminavir inhibitors. 

Therefore, Rutin and Aloe emodin is a type I 

neuraminidase inhibitor binding in the active 

conformation of the activation loop.  

 

The molecular interactions analyzed in the MD 

simulations suggest possible positions for chemical 

optimization of Rutin and Aloe emodin to develop 

derivatives with more equalN1 potency, which 

would likely escalate compound efficiency. These 

contain the alkaloid residues and the flavanoid 

substituent. Such results are also in agreement with 

the finding by Villar and his groups that AM1 can 

increase the accuracy in prediction of binding free 

energies 
43

. It gave the impression to be that our 

strategy is more advantageous due to the number of 

compounds tested and the eminence of the 

correlation model. The model showed a reasonable 

computational cost, and it could be organized for a 

straightforward application to other groups of 

molecules with some medical interest. However, 
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we found that good performance of the collective 

approach to predict the binding free energy 

recommends that it can be used to lead discovery 

and optimization of N1 inhibitor.  

 

Our results do not support or reject the hypothesis 

that known N1 inhibitors may be privileged viral 

coating protein binders. We are currently 

performing analyses to investigate this further. In 

our method we have established that it is possible 

to computationally develop such inhibitor 

compounds. We are presently ranging our selection 

method to study other important target 

combinations and we believe that our in-silico 

method can be comprehensive to discover a variety 

of novel phytochemical based neuraminidase 

inhibitors and chemotypes. Here we demonstrated a 

proof of concept study implementing a pipeline to 

identify natural derived product based 

neuraminidase inhibitors. We discovered the first in 

class phytochemical inhibitor and predict that many 

dual RNA virus coating protein inhibitors can be 

identified using this method. We expect this will 

underwrite to evolving some novel clinical drug 

leads for the treatment of influenza resistant to 

current treatment regimens. 
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