(Research Article)

1

IJPSR (2017), Volume 8, Issue 7

INTERNATIONAL JOURNAL

Received on 27 December, 2016; received in revised form, 10 February, 2017; accepted, 17 February, 2017; published 01 July, 2017

RELATIVE EXPLORATION OF IN-VITRO ANTI- INFLAMMATORY ACTIVITIES OF DIFFERENT ARTOCARPUS SEED EXTRACTS

Nagala Sirisha^{*}, B. Archana, S. Brahmaji and T. Raghava Rao

Department of Biochemistry, College of Science and Technology, Andhra University, Visakhapatnam-530003, Andhra Pradesh, India.

Keywords:

Artocarpus seed oil, Membrane stabilization assay, Red blood cells

Correspondence to Author: Nagala Sirisha

Department of Biochemistry, College of Science and Technology, Andhra University, Visakhapatnam-530003, India.

E-mail: nagalasirisha@gmail.com

ABSTRACT: The study was undertaken to investigate and compare *in vitro* anti inflammatory activities of five varieties of hexane and methanol seed extracts each, specifically Artocarpus heterophyllus, Artocarpus integrifolia, Artocarpus hirsitus, Artocarpus inciscus and Artocarpus integer of Artocarpus species belonging to the family Moraceae by means of most prominent membrane stability assay. Results revealed that, the percentage of membrane stability exhibited by the test samples were concentration dependent and compared constructively with that of standard Diclofenac. Amongst two extracts methanolic seed extracts had highest percentage of inhibition and in both extracts Artocarpus integer had uppermost membrane stabilization capacity. The statistical analysis with student 't' test showed significant difference for tested factors in between hexane and methanolic seed extract groups. The study disclosed that Artocarpus seed extracts could be seen as a potential natural source of membrane stabilizer and was capable of providing an alternative remedy for the management and source of membrane stabilizer and further studies were suggested to isolate the active principles responsible for the bustle.

INTRODUCTION: Inflammatory diseases are currently treated with steroidal and non-steroidal anti-inflammatory drugs (NSAIDs) Unfortunately, both of these widely prescribed drug classes have significant negative side effects. Natural product based anti-inflammatory agents with a transcriptional mode of action, good efficacy and lower risk of side effects offer promising treatment and prevention of inflammation related conditions 2, 3. Tissue degeneration is mainly mediated by reactive oxygen and nitrogen species produce and proteases from infiltrated inflammatory cells ^{4, 5}

The vitality of cells depends upon the integrity of their membranes, exposure of RBC's to injurious substances such as hypotonic medium results in lysis of its membrane accompanied by haemolysis and oxidation of haemoglobin ^{6, 7}. An injury to RBC membrane will further render the cell, more susceptible to secondary damage through free radical induced lipid peroxidation^{6, 7}. Compounds with membrane stabilizing properties are well known for their ability to interfere with the early phase of inflammatory reactions, namely the prevention of the release of phospholipases that trigger the formation of inflammatory mediators⁸. Essential oils have ability to scavenge free radicals and anti-inflammatory activities. For example, chamomile essential oil has been used for centuries as an anti-inflammatory and also for alleviating the symptoms associated with eczema, dermatitis and other pronounced irritation ⁹. However, there are other examples of essential oils (eucalyptus, rosemary, lavender, millefolia) along with other

plants (pine, clove and myrrh) that have been used as mixed formulations as anti-inflammatory agents ¹⁰. Carrageenan-induced mouse paw oedema is frequently used to determine the anti-inflammatory activity of diverse bioactive compounds such as plant extracts and essential oils ¹¹. The antiinflammatory activity of essential oils may be attributed not only to their antioxidant activities but also to their interactions with signaling cascades involving cytokines and regulatory transcription factors and on the expression of pro-inflammatory genes ¹². A large number of essential oils contain various bioactive compounds exhibiting health beneficial properties, anti-oxidative, antimicrobial and anti-inflammatory effects and their preventive and therapeutic use increases. Numerous natural products have been already tested in various animal models for the development of new antiinflammatory therapeutics ¹³. Thus the key objective of this current cram was to resolve and compare in vitro anti inflammatory activities of five varieties of hexane and methanol seed extracts each. explicitly Artocarpus *heterophyllus*, integrifolia, Artocarpus hirsitus, Artocarpus Artocarpus inciscus and Artocarpus integer of Artocarpus species belonging to the family Moraceae.

MATERIALS AND METHODS:

Chemicals: Chemicals and reagents used in the study were purchased from Merck. All additional chemicals used were analytical grade. Altogether the experiments were performed at room temperature unless otherwise stated.

Collection of seeds: Five varieties of jackfruit seeds were collected from Visakhapatnam nearby areas including Simhachalam and Kaviti. The five varieties are Artocarpus heterophyllus (A. Artocarpus integrifolia *heterophyllus*), (A. integrifolia), Artocarpus hirsitus (A. hirsitus), Artocarpus inciscus (A. inciscus) and Artocarpus integer (A. integer). The fruits were cut and the seeds removed from the perianth of fruits. The seeds were then sliced with knife and dried. The dried seeds were grinded to fine powder.

Extraction of oil by Soxhalation: The Artocarpus heterophyllus, Artocarpus integrifolia, Artocarpus inscicus, Artocarpus hirsitus and Artocarpus integer seed oils were extracted using soxhlet

extraction method with analytical grade hexane and methanol as refluxing solvents. At the completion of the extraction process, the oils were recovered from the mixture by distillation and stored in dessicator until required to exploit ¹⁴.

Membrane stabilization Assay: The human red blood cell (HRBC) membrane stabilization method has been used to study the anti-inflammatory activity ¹⁵. Blood was collected from the healthy volunteers and mixed with equal volume of sterilized Alsever solution (2 % dextrose, 0.8 % sodium citrate, 0.05 % citric acid and 0.42 % sodium chloride in distilled water). The blood was centrifuged at 3000 rpm and packed cells were washed with isosaline (0.85 %, pH 7.2) and a suspension was made with isosaline (10 % v/v).

The assay mixture contained 1 ml of phosphate buffer (0.15 M, pH 7.4), 2 ml of hyposaline (0.36 %), 0.5 ml of HRBC suspension and 1 ml of various concentrations of the test seed extracts. Diclofenac sodium was used as reference drug. In the control solution instead of hyposaline, 2 ml of distilled water was added. The mixtures were incubated at 37 0 C for 30 min and centrifuged. The absorbance of the supernatant solution was read at 560 nm. The percentage of haemolysis was calculated by assuming the haemolysis produced in the presence of distilled water as 100%. The percentage of HRBC membrane stabilization was calculated using the formula.

Percentage of membrane stabilization = 100-OD of drug treated sample \times 100 OD of control

Statistical analysis: The results of *in vitro* studies were given as Mean±Standard deviation (SD) of three replicates and analysed with Student's t-test (Paired Samples Test) to know the significance between verified parameters among hexane and methanolic seed extracts. 'P' value less than 0.05 was considered as significant difference in the analysis. All the statistical analysis was resolved using SPSS software.

RESULTS AND DISCUSSION: Stabilization of the RBCs membrane was studied to establish the mechanism of anti-inflammatory action of five varieties of hexane and methanol *Artocarpus* seed extracts. The seed extracts were effective in inhibiting the hypotonic solution induced haemolysis at different concentrations. These extracts may possibly inhibit the release of lysosomal content of neutrophils at the site of inflammation. These neutrophil lysosomal constituents include bactericidal enzymes and proteases, which upon extracellular release cause further tissue inflammation and damage ¹⁶. The haemolytic effect of hypotonic solution is related to excessive accumulation of fluid within the cell resulting in the rupturing of its membrane. Such injury to RBC membrane will further render the cell more susceptible to secondary damage through free radical-induced lipid peroxidation ⁷. Tested seed extracts repressed the haemolysis of RBCs to varying degree as displayed in Table 1 along with associated statistical counters.

All five verities of hexane seed extracts showed high RBC membrane stabilization, in another words percentage of inhibition. The outcomes of the analysis mentioned below were at 50 mg/ml. Maximum percentage of inhibition was experimental in Artocarpus integer with 23.7 ± 0.32 , next to this Artocarpus heterophyllus showed 22±0.3. Sensible tricks were practical in Artocarpus hirsitus and Artocarpus inscicus through 20.8±0.26 each. Minimum activity was perceived in Artocarpus integrifolia via 20.6±0.4. Subsequently, with methanolic seed extracts, uppermost action was perceived in Artocarpus integer with 24.1±0.36, judicious activities were in Artocarpus heterophyllus observed with 23.8±0.15 and Artocarpus hirsitus by 23.2±0.4. Lastly minimum activities were detected with Artocarpus integrifolia and in Artocarpus inscicus through 22.8±0.25 and 22.7±0.2 proceedingly. Standard drug Diclofenac Sodium showed maximum membrane stabilization with 41 ± 0.26 at 1mg/ml. Among two extracts methanolic seed extracts had highest percentage of inhibition and in

addition *Artocarpus integer* had uppermost membrane stabilization. The percentage of inhibition for both seed extracts were less than that of the standard may be due to hydrophobicity. The statistical analysis of *in vitro* (n=3) studies of *Artocarpus* seed extracts with student 't' test showed significant difference, except few, for tested factors in between hexane and methanolic seed extracts groups.

Earlier studies revealed that the ethanolic extract of Operculina turpethum has showed significant activity at various concentrations and its effect was compared with the standard drug Diclofenac¹⁷. Gambhire *et al.*, $(2009)^{18}$ reported that methanol extract of Murraya koenigi leaves produces significant anti-inflammatory activities in dose dependent manner in membrane stabilization. Umapathy et al., (2010)¹⁹ confirmed that aqueous extract of Albuca setosa possess membrane stabilization properties. Habibur Rahman et al., (2012)²⁰ accounted the erythrocyte membrane stabilization effect by Eucalyptus globulus oil. Ravi kiran and Raghava Rao (2014)¹³ reported membrane stabilization assets of Ceiba pentandra seed oil. It has been reported that certain saponins and flavonoids exerted profound stabilizing effect on lysosomal membrane both in vivo and in vitro, while tannins and saponins possess ability to bind cations, thereby stabilizing erythrocyte membranes and other biological macromolecules 21, 22 Akinwunmi and Oyedapo (2015)²³ demonstrated that, flavonoid rich fraction of Monodora myristica had momentous in *vitro* anti-inflammatory potentials by stabilizing red blood cell membrane. The test samples therefore could be regarded as a natural source of membrane stabilizer and was capable of providing an alternative remedy for the management and source of membrane stabilizer.

TABLE: 1. *IN VITRO* ANTI-INFLAMMATORY ACTIVITIES (PERCENTAGE OF INHIBITION) OF *ARTOCARPUS* SEED EXTRACTS BY HRBC METHOD

Seed Varieties	Hexane	Methanolic	Hexane	Methanolic	Hexane	Methanolic	
	Extract	Extract	Extract	Extract	Extract	Extract	1mg/ml
	25 mg/ml	25 mg/ml	50 mg/ml	50 mg/ml	100 mg/ml	100 mg/ml	
A. heterophyllus	13.6±0.36	14.2±0.38	22±0.3	23.8±0.15	16.6±0.31	18.7±0.26	
A.integrifolia	14 ± 0.25	14.5 ± 0.42	20.6±0.4	22.8±0.25	16.8±0.26	18.1±0.21	
A.hircitus	12.5±0.35	13.6±0.21	20.8±0.26	23.2±0.4	17.2±0.2	18.5 ± 0.35	
A.inciscus	12.6±0.42	14.2 ± 0.31	20.8±0.25	22.7±0.2	16.9±0.31	17.8 ± 0.21	
A.integer	14.1±0.44	14.8±0.23	23.7±0.32	24.1±0.36	17.9±0.15	18.9±0.25	
Standard (Diclofenac Sodium)							41±0.26

Paired Samples Test

		Paired Differences						
				nfidence				
A. heterophyllus				Interva	l of the			
25 mg/ml	Mean	Std.	Std. Error	Error Difference				Sig.
		Deviation	Mean	Lower	Upper	t	df	(2-tailed)
Hexane seed oil -	56667	.41633	.24037	-1.60090	.46756	-2.357	2	.142
Methanol seed oil								

Paired Differences									
		95% Confidence							
A. heterophyllus				Interva	l of the				
50 mg/ml	Mean	Std.	Std. Error	Error Difference				Sig.	
		Deviation	Mean	Lower	Upper	t	df	(2-tailed)	
Hexane seed oil -	-1.76667	.37859	.21858	-2.70715	82619	-8.082	2	.015	
Methanol seed oil									

Paired Differences								
				nfidence				
A. heterophyllus				Interva	l of the			
100 mg/ml	Mean	Std.	Std. Error	Diffe	rence			Sig.
		Deviation	Mean	Lower	Upper	t	df	(2-tailed)
Hexane seed oil -	-2.06667	.40415	.23333	-3.07062	-1.06271	-8.857	2	.013
Methanol seed oil								

Paired Samples Test

Paired Differences									
				nfidence	-				
A. integrifolia		Interval of the							
25 mg/ml	Mean	Std.	Std. Error	Differ	ence			Sig.	
		Deviation	Mean	Lower	Upper	t	df	(2-tailed)	
Hexane seed oil -	43333	.63509	.36667	-2.01097	1.14431	-1.182	2	.359	
Methanol seed oil									

		Pa	ired Difference	ces				
				nfidence				
A. integrifolia				Interva	l of the			
50 mg/ml	Mean	Std.	Std. Error	Diffe	rence			Sig.
		Deviation	Mean	Lower	Upper	t	df	(2-tailed)
Hexane seed oil -	-2.13333	.15275	.08819	-2.51279	-1.75388	-24.190	2	.002
Methanol seed oil								

		Pa	ired Difference	ces		_		
				-				
A. integrifolia				Interva	l of the			
100 mg/ml	Mean	Std.	Std. Error	Diffe	rence			Sig.
		Deviation	Mean	Lower	Upper	t	df	(2-tailed)
Hexane seed oil -	-1.26667	.32146	.18559	-2.06521	46813	-6.825	2	.021
Methanol seed oil								

Paired Samples Test

		Pa	nired Difference	ces				
				nfidence	-			
A. hircitus				Interva	l of the			
25 mg/ml	Mean	Std.	Std. Error	rence			Sig.	
		Deviation	Mean	Lower	Upper	t	df	(2-tailed)
Hexane seed oil -	-1.10000	.43589	.25166	-2.18281	01719	-4.371	2	.049
Methanol seed oil								

International Journal of Pharmaceutical Sciences and Research

		Pa	nired Difference					
A. hircitus 50 mg/ml	Mean	Std.	Std. Error	95% Confidence Interval of the Difference				Sig.
8		Deviation	Mean	Lower	Upper	t	df	(2-tailed)
Hexane seed oil - Methanol seed oil	-2.36667	.66583	.38442	4.02069	71265	-6.156	2	.025
		Pa	nired Difference	es				
				95% Co	nfidence			
A. hircitus				Interva	l of the			
100 mg/ml	Mean	Std.	Std. Error	Diffe	rence			Sig.
		Deviation	Mean	Lower	Upper	t	df	(2-tailed)
Hexane seed oil -	-1.33333	.28868	.16667	-2.05044	61622	-8.000	2	.015

Paired Samples Test

Methanol seed oil

		Pa	ired Difference	ces		_		
				95% Cor	nfidence	-		
A. inciscus				Interval	l of the			
25 mg/ml	Mean	Std.	Std. Error	Differ	ence			Sig.
		Deviation	Mean	Lower	Upper	t	df	(2-tailed)
Hexane seed oil - Methanol seed oil	-1.60000	.69282	.40000	-3.32106	.12106	-4.000	2	.057

Paired Differences								
A. inciscus				Interva	l of the			
50 mg/ml	Mean	Std.	Std. Error	Diffe	rence			Sig.
		Deviation	Mean	Lower	Upper	t	df	(2-tailed)
Hexane seed oil - Methanol seed oil	-1.93333	.25166	.14530	-2.55849	-1.30817	-13.306	2	.006

	Paired Differences							
				-				
A. inciscus				Interval	l of the			
100 mg/ml	Mean	Std.	Std. Error	Differ	ence			Sig.
		Deviation	Mean	Lower	Upper	t	df	(2-tailed)
Hexane seed oil - Methanol seed oil	90000	.50000	.28868	-2.14207	.34207	-3.118	2	.089

Paired Samples Test

	Paired Differences					_		
A. integer	Interval of the							
25 mg/ml	Mean	Std.	Std. Error	Difference				Sig.
		Deviation	Mean	Lower	Upper	t	df	(2-tailed)
Hexane seed oil - Methanol seed oil	66667	.66583	.38442	-2.32069	.98735	-1.734	2	.225

	Paired Differences							
				-				
A. integer				Interval				
50 mg/ml	Mean	Std.	Std. Error	Difference				Sig.
		Deviation	Mean	Lower	Upper	t	df	(2-tailed)
Hexane seed oil - Methanol seed oil	43333	.30551	.17638	-1.19225	.32558	-2.457	2	.133

International Journal of Pharmaceutical Sciences and Research

	Paired Differences								
A. integer		Interval of the							
100 mg/ml	Mean	Std.	Std. Error	Difference				Sig.	
		Deviation	Mean	Lower	Upper	t	df	(2-tailed)	
Hexane seed oil - Methanol seed oil	-1.06667	.11547	.06667	-1.35351	77982	-16.000	2	.004	

One-Sample Test

	Test Value = 0							
					95% Confidence Interval of the			
					Difference			
	t	df	Sig.	Mean	Lower	Upper		
			(2-tailed)	Difference				
lium	268.408	2	.000	41.00000	40.3428	41.6572		
	lium	t dium 268.408	t df dium 268.408 2	t df Sig. (2-tailed) dium 268.408 2 .000	t df Sig. Mean (2-tailed) Difference dium 268.408 2 .000 41.00000	Test Value = 0 figure 1 t G5% Confi 1 t df Sig. Mean Lower t df Sig. Mean Lower dium 268.408 2 .000 41.00000 40.3428 Difference Difference Difference Difference Difference dium 268.408 2 .000 41.00000 40.3428 2 .000 40.3428 3 .000		

CONCLUSION: The study revealed that all varieties of *Artocarpus* seed extracts could be seen as potential natural sources of membrane stabilizers and were capable of providing an alternative remedy for the management and source of membrane preservatives. On the other hand, the most common used non steroidal anti-inflammatory drugs can cause gastric erosions, exacerbate asthma, and cause kidney and liver damages. Therefore, natural products have attracted interest as potential therapeutic agents for handling inflammation.

ACKNOWLEDGEMENT: There is no acknowledgement.

CONFLICT OF INTEREST: No conflict of interest.

REFERENCES:

- 1. Langman MJS: Ulcer complications and NSAIDs. Am J Med (Suppl.) 1998; 84: 15–19.
- 2. Juni P, Reichenbach S and Egger M. COX_2 inhibitors, traditional NSAIDs and the heart. Br Med J 2005; 330: 1342–1343.
- Pathak SK, Sharma RA, Steward WP, Mellon JK, Griffiths TR and Gescher AJ; Oxidative stress and cyclooxygenase activity in prostate carcinogenesis: targets for chemopreventive strategies. Eur J Cancer 2005; 41: 61–70.
- Gallin JI, Goldstein IM and Syndennan R: Inflammation: Basic principles and clinical correlates, 2nd ed., Raven Press, New York 1992; 1-4.
- Suleyman H, Demircan B, Karagoz Y, Oztasan N and suleyman B: Anti-inflammatory effects of selective COX₋₂ inhibitors. Pol J Pharmacol. 2004; 56: 775-780.
- 6. Augusto O, Kunze KL. and Montellano PR: N phenylprotoporphyrin formation in the haemoglobin phenylhydrazine reaction. J Biol Chem. 1982; 257: 6231-6241.
- 7. Ferrali M, Signorni C, Ciccoli L and Comporti M: Iron release and membrane damage in erythrocytes exposed to

oxidizing agents' phenylhydrazine, divicine and isouramil. Biocheml J. 1992; 285: 295-301.

- Aitadafoun M, Mounieri C, Heyman SF, Binistic C, Bon C and Godhold J: 4-Alkoxybenzamides as new potent phosholipase A2 inhibitors. Biochem Pharmacol. 1992; 51: 737-742.
- 9. Kamatou GPP and Viljoen AM: A review of the application and pharmacological properties of α -bisabolol and α -bisabolol-rich oils. J Am Oil Chem Soc. 2010; 87: 1-7.
- 10. Darsham S and Doreswamug R: Patented antiinflammatory plant drug development from traditional medicine. Phytother Res. 2004; 18: 343-357.
- 11. Apel MA, Lima MEL, Sobral M, Young MCM, Cordeiro I, Schapoval EES, Henriques AT and Moreno PRH: Antiinflammatory activity of essential oils from leaves of *Myrciaria tenella* and *Calycorectes sellowianus*. Pharm Biol. 2010; 48: 433-438.
- 12. Mendes SS, Bomfim RR, Jesus HCR, Alves PB, Blank AF, Estevam CS, Antoniolli AR and Thomazzi SM: Evaluation of the analgesic and anti-inflammatory effects of the essential oil of *Lippia gracilis* leaves. J Ethnopharmacol. 2010; 129: 391-397.
- 13. Ravi Kiran Ch. and Raghava Rao T: Lipid Profiling by GC-MS and Anti-inflammatory Activities of Ceiba pentandra Seed Oil, J Biol Active Product from Nature. 2014; 4:1, 62-70.
- Popoola TOS, Yangomodou OD and Akintokun AK: Antimicrobial Activity of *Cassava* Seed Oil on Skin Pathogenic Microorganisms. Res J Med Plant. 2007; 1: 60-64.
- 15. Gandhidasan R, Thamaraichelvan A and Baburaj S: Antiinflammatory action of *Lannea coromandelica* by HRBC membrane stabilization. Fitoterapia. 1991; 62: 81-3.
- 16. Chou CT: The anti-inflammatory effect of *Tripterygium* wilfordii Hook F on aduvant induced paw edema in rats and inflammatory mediator's release. Phytother Res. 1997; 11: 152-154
- 17. Veena Sharma and Manu Singh: *In vitro* antiartritic and haemolysis preventive: Membrane stabilizing efficacy of ethanolic root extract of *Operculina turpethum*. World J Pharm Pharm Sci. 2013; 2: 302-312.
- Gambhire MN, Juvekar AR and Sakat SS: Evaluation of anti-inflammatory activity of methanol extract of *Murraya koenigi* leaves by *in vivo* and *in vitro* methods. Pharmacol online. 2009; 1: 1072-1094.
- 19. Umapathy E, Ndebia EJ, Meeme A, Adam B, Menziura P, Nkeh-Chungag BN and Iputo JE: An experimental evaluation of *Albuca setosa* aqueous extract on membrane

stabilization, protein denaturation and white blood cell migration during acute inflammation. J Med Plant Res. 2010; 4: 789-795.

- 20. Habibur Rahman, Chinna Eswaraiah M, Kamala V and Madhavi P: *In- vitro* studies suggest probable mechanism of eucalyptus oil for anti-inflammatory and anti-arthritic activity. Int J Phytopharm. 2012; 2:81-83.
- 21. El-Shabrany OA., El-Gindi OD., Melek FR., Abdel-Khalk SM. and Haggig MM. (1997). Biological properties of

saponin mixtures of *Fagonia cretica* and *Fagonia mollis*. Fitoterapia. LXVIII: 219-222.

- Oyedapo OO, Akinpelu BA and Orefuwa SO: Antiinflammatory effect of *Theobroma cacao*, root extract. J Trop Med Plants. 2004; 5: 161-166.
- 23. Akinwunmi KF and Oyedapo OO: *In vitro* antiinflammatory evaluation of African Nutmeg (*Monodora myristica*) Seeds. Eur J Med Plants. 2005; 8: 167-174.

How to cite this article:

Sirisha N, Archana B, Brahmaji S and Rao TR: Relative exploration of *in-vitro* anti- inflammatory activities of different *Artocarpus* seed extracts. Int J Pharm Sci Res 2017: 8(7): 2975-81.doi: 10.13040/JJPSR.0975-8232.8(7). 2975-81.

All © 2013 are reserved by International Journal of Pharmaceutical Sciences and Research. This Journal licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

This article can be downloaded to ANDROID OS based mobile. Scan QR Code using Code/Bar Scanner from your mobile. (Scanners are available on Google Playstore)