(Research Article)

IJPSR (2017), Volume 8, Issue 10

INTERNATIONAL JOURNAL UTICAL SCIENCES AND SEARCH

Received on 26 February, 2017; received in revised form, 25 April, 2017; accepted, 12 May, 2017; published 01 October, 2017

COMPUTING SANSKRUTI INDEX OF TURC₄C₈(S) NANOTUBE

Y. Y. Gao¹, M. S. Sardar², S. M. Hosamani³ and M. R. Farahani^{*4}

College of Pharmacy and Biological Engineering ¹, Chengdu University, Chengdu - 610106, China. University of Management and Technology (UMT) ², Lahore, Pakistan.

Department of Mathematics³, Rani Channamma University, Belgavi - 591156, Karnataka, India. Department of Applied Mathematics⁴, Iran University of Science and Technology (IUST), Narmak, Tehran 16844, Iran.

Keywords:

Topological Index, Connectivity index, Sanskruti Index, $TURC_4C_8(S)$, Nanotube

Correspondence to Author: M. R. Farahani

Department of Applied Mathematics, Iran University of Science and Technology (IUST), Narmak, Tehran 16844, Iran.

E-mail: MrFarahani88@gmail.com

INTRODUCTION: Let G be a simple connected graph in chemical graph theory. The vertices and edges of a graph also correspond to the atoms and bonds of the molecular graph, respectively. If e is an edge / bond of G, connecting the vertices /atoms u and v, then we write e = uv and say "u and v are adjacent". A simple graph is an un-weighted, undirected graph without loops or multiple edges. And also a connected graph is a graph such that there is a path between all pairs of vertices. Clearly, a molecular graph is a simple connected graph. A topological index is a numeric quantity from the structural graph of a molecule and is invariant on the automorphism of the graph.

ABSTRACT: Among topological descriptors connectivity indices are very important and they have a prominent role in chemistry. One of them is Sanskruti index defined as $S(G) = \sum_{uv \in E(G)} \left(\frac{S_u S_v}{S_u + S_v - 2} \right)^3$, where Su is the summation of degrees of all neighbours of vertex u in G. In this

chapter we compute this new topological index for $TURC_4C_8(S)$ nanotube.

> And computing topological indices of molecular graphs from chemical graph theory is an important branch of mathematical chemistry ¹⁻³. One of the best known and widely used is the Randić connectivity index and introduced in 1975 by Milan Randić¹, who has shown this index to reflect molecular branching.

$$R(G) = \sum_{uv \in E(G)} \frac{1}{\sqrt{d_u d_v}}$$

The Sanskruti index S(G) of a graph G is defined in ²⁵⁻²⁸ as follows:

$$S(G) = \sum_{uv \in E(G)} \left(\frac{S_u S_v}{S_u + S_v - 2} \right)^3$$

Where S_u is the summation of degrees of all neighbours of vertex u in G. The goal of this chapter is to study this new index and computing Sanskruti index of famous nano - structure TURC₄C₈(S) nanotubes. Our notation is standard and mainly taken from standard books of chemical graph theory ³. One can see the references ⁴⁻¹¹, for more details about topological and connectivity indices

Preliminaries: Consider the molecular graph $G = TURC_4C_8(S)$ nanotube and suppose that there are rs cycle C_8 and C_4 in its structure. Let us denote this graph simply by $TUC_4C_8[r; s]$. Obviously $TUC_4C_8[r; s]$ nanotube has 8rs + 2r vertices and 12rs + r edges. For further study and more detail of this nanotube, see the paper series ^{4-8, 10} and the general representation of this nano structure is shown in **Fig. 1** and **Fig. 2**.

The goal of this section is computing the Sanskruti index of a lattice of $TUC_4C_8[r; s]$, with r rows and s columns in following theorem.

Theorem 2.1: Let G be the 2 - Dimensional Lattice of $TURC_4C_8[r; s]$ nanotube (r; s > 1). Then the Sanskruti index of G is equal to:

$$S(G) = \frac{2187}{2} rs - \frac{36501941053}{86350888} r.$$

FIG. 1: THE 3 DIMENSIONAL LATTICE (OR CYLINDER) OF TURC₄C₈(S) NANOTUBE ¹⁹

FIG. 2: DIMENSIONAL LATTICE OF TUC₄C₈[R; S]¹

Proof: Consider now 2 dimensional graph of lattice G = TUC4C8[r; s] (r; s > 1) depicted in **Fig. 1**. Summation of degrees of edge endpoints of this graph have ve types e(5;5); e(5;8); e(8;8); e(8;9) and e(9;9) that are shown in **Fig. 2** by red, blue, yellow, green and black colors. In other word for all edge e = uv of the types e(5;5); S(v)=S(u)=5 and for an edge f = vw of the types e(5;8); S(v)=5 and S(w)=8 and other types are analogous. Also the number of edges of the types e(5;5) and e(5;8) are equal to 2r and 22r, respectively and for other types see following table.

TABLE 1: SUMMATION OF DEGREES OF EDGEENDPOINTS

Summation of degrees of edge					
endpoints	^e (5;5)	^e (5;8)	^e (8;8)	^e (8;9)	^e (9;9)
Number of edges					
of this type	2r	4r	2r	4r	12r-11r

$S(TUC_4C_8[r,s]) = \sum_{uv \in E(G)} \left(\frac{S_u S_v}{S_u + S_v - 2}\right)^3 = \frac{2187}{2}rs - \frac{36}{2}rs$	$\frac{6501941053}{86350888}r.$
--	---------------------------------

CONCLUSION: In chemical graph theory, mathematical chemistry and mathematical physics, molecular descriptors, topological and connectivity indices are very important and useful and have more applications which characterize a molecular graph topology. In this work, a new connectivity topological index called "Sanskruti index" of TURC₄C₈(S) nanotube was determined. Further works in this line are soon to be communicated ⁹⁻²⁴.

ACKNOWLEDGEMENT: Nil.

CONFLICTS OF INTEREST: Nil.

REFERENCES:

- M. Randic: On Characterization of Molecular Branching, J. Am. Chem. Soc. 1975; 97(23), 6609.
- 2. Todeschini R and Consonni V: Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
- 3. Trinajsti N: Chemical Graph Theory, CRC Press, Boca Raton, FL 1992.
- 4. Arezoomand M: Energy and Laplacian Spectrum of $C_4C_8(S)$ Nanotori and Nanotube. Digest. J. Nanomater. Bios. 2009; 4(6): 899-905.
- 5. Asadpour J, Mojarad R and Safikhani L: Computing some topological indices of nano structure. Digest. J. Nanomater. Bios. 2011; 6(3): 937-941.
- Ashrafi AR and Yousefi S: An Algebraic Method Computing Szeged index of TUC₄C₈(R) Nanotori. Digest. J. Nanomater. Bios. 2009; 4(3): 407-410.

- 7. Ashrafi AR, Faghani M and Seyed Aliakbar SM: Some Upper Bounds for the Energy of $TUC_4C_8(S)$ Nanotori. Digest. J. Nanomater. Bios. 2009; 4(1): 59-64.
- 8. Ashrafi AR and Shabani H: The Hosoya Polynomial of $TUC_4C_8(S)$ Nanotubes. Digest. J. Nanomater. Bios. 2009; 4(3): 453-457.
- Graovac A and Ghorbani M: A New Version of Atom-Bond Connectivity Index. Acta Chim. Slov. 2010; 57(3), 609.
- Heydari A: On the Modified Schultz Index of C₄C₈(S) Nanotori and Nanotube. Digest. J. Nanomater. Bios. 2010; 5(1): 51-56.
- 11. Furtula B, Graovac A and Vukicevic D: Atom-bond connectivity index of trees. Disc. Appl. Math. 2009; 157: 2828.
- 12. Ashrafi AR, Doslic T and Saheli M: The eccentric connectivity index of $TUC_4C_8(R)$ nanotubes. MATCH Commun. Math. Comput. Chem. 2011; 65: 221-230.
- 13. Alaeiyan M, Bahrami A and Farahani MR: Cyclically Domination Polynomial of Molecular Graph of Some Nanotubes. Digest Journal of Nanomaterials and Biostructures 2011; 6(1): 143-147.
- Farahani MR: On the Higher Randic Indices of Nanotubes. Journal of Computational Methods in Molecular Design 2015; 5(3): 10-15.
- 15. Farahani MR, Imran M, Siddiqui MK, Afzal. Siddiqui MH and Baby S: The Second and Second-Sum-connectivity indices of $TUC_4C_8(S)$ Nanotubes. Journal of Optoelectronic and Biomedical Materials 2016; 8(2): 107-111.
- Farahani MR: Multiplicative Versions of Zagreb indices of T USC₄C₈(S). Journal of Chemistry and Materials Research 2015; 2(2): 67-70.
- Farahani MR: Zagreb indices of T UHRC₄(S) and T USC₄C₈(S) Nanotubes. Journal of Advance in Mathematical Science 2015; 2(1): 98-105.

- Farahani MR: Fifth Geometric-Arithmetic Index of TURC₄C₈(S) Nanotubes. Journal of Chem-ica Acta. 2013; 2(1): 62-64.
- 19. Farahani MR: New Version of Atom-Bond Connectivity Index of $TURC_4C_8(S)$. International Journal of Chemical Modeling 2012; 4(4): 527-521.
- Farahani MR: Domination polynomial of Nanotorus by using the 2-variables Generating Func-tion. Paci C Journal of Applied Mathematics 2014; 6(1): 79-95.
- 21. Farahani MR: Computing some connectivity indices of Nanotubes. Adv. Mater. Corrosion 2012; 1: 57-60.
- 22. Farahani MR: The Hyper-Zagreb Index of T $USC_4C_8(S)$ Nanotubes. International Journal of Engineering and Technology Research 2015; 3(1): 1-6.
- Farahani MR: On Domination Polynomial of TUC₄C₈(S) Nanotube. Paci c Journal of Applied Mathematics 2015; 7(2): 75-86.
- Kulli VR: General Multiplicative Zagreb Indices of TUC₄C₈[m; n] and TUC₄[m; n] Nanotubes. Intern. J. Fuzzy Mathematical Archive 2016; 11(1): 39-43.
- 25. Hosamani SM: Computing Sanskruti index of certain nanostructures. Journal of Applied Math-ematics and Computing. In press.
- Sardar MS, Zafar S and Farahani MR: Computing Sanskruti index of the Polycyclic Aromatic Hydrocarbons. Geology, Ecology, and Landscapes (TGEL) 2017; 1(1): 37-40.
- 27. Gao YY, Sardar MS, Zafar S and Farahani MR. Sanskruti index of Benzenoid molecular graphs. Applied Mathematics (scirp), 7403538. In press, 2017.
- Y.Y. Gao, M.S. Sardar, S. Zafar, M.R. Farahani. Computing Sanskruti index of Dendrimer Nanostars. International Journal of Pure and Applied Mathematics. In press, 2017.

How to cite this article:

Gao YY, Sardar MS, Hosamani SM and Farahani MR: Computing sanskruti index of $TURC_4C_8(s)$ nanotube. Int J Pharm Sci Res 2017; 8(10): 4423-25.doi: 10.13040/IJPSR.0975-8232.8(10).4423-25.

All © 2013 are reserved by International Journal of Pharmaceutical Sciences and Research. This Journal licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

This article can be downloaded to **ANDROID OS** based mobile. Scan QR Code using Code/Bar Scanner from your mobile. (Scanners are available on Google Playstore)