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ABSTRACT: Olmesartan medoxomil (OLM) is a lipophilic (log P = 4.31) 

antihypertensive drug suffering from limited oral bioavailability in humans 

(26%) due to its low aqueous solubility, uncontrolled enzymatic conversion to 

the active metabolite (Olmesartan; OL) and efflux by drug resistance pumps. 

Surmounting such limitations via incorporation of OLM into self-

nanoemulsifying drug delivery systems (SNEDDS). Based on OLM-equilibrium 

solubility studies in various oils, surfactants and co-surfactants, Capmul
®
 MCM, 

Tween
®
 20, Cremophor

®
 EL and polyethylene glycol - 400 (PEG) were 

combined in different ratios to plot ternary phase diagrams. OLM-loaded 

SENDDS were developed and evaluated forparticle size, polydispersity index 

(PDI), zeta potential, self-emulsification time, morphology, drug released 

percentages after 5-min (Q5min%), 1 hour (Q1h%) and dissolution efficiency 

percentages (DE1h%). The OL pharmacokinetics from SNEDDS (F6) and 

Benicar
®
 tablets were evaluated (LC-MS/MS) in rabbits. Spherical OLM-loaded 

SNEDDS were developed. The best-achieved SNEDDS (F6) showed short 

emulsification time (13 s), fine droplet size (60.00nm), low PDI (0.25), negative 

zeta potential (-14.4mV), promising dissolution parameters; Q5min% (29.78%), 

Q1h% (66.69%) and DE1h% (47.96%) and enhanced in vivo absorption 

characteristics; shorter Tmax, higher Cmax and larger AUC(0−48h; suggesting its 

potential for the enhancement of the oral absorption of practically insoluble 

drugs; like OLM. 

INTRODUCTION: Olmesartan medoxomil (OLM) 
is a selective angiotensin II receptor antagonist 

with actions similar to those of losartan 
1
. It is 

given in oral doses of 10mg to 20mg once daily for 

the management of hypertension 
2
. Clinical trials 

on hypertensive patients revealed that OLM has a 

good tolerance without any serious side effects 
3
. 
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Recently, the concomitant use of OLM with 

amlodipine was well tolerated and effectively 

lowered blood in patients with hypertension and 

type II diabetes 
4
. OLM is an ester prodrug which is 

quickly de-esterified to olmesartan (active 

metabolite; OL) upon oral administration by the 

action of aryl esterase situated in plasma and 

intestine 
5
.  

Unfortunately, OLM suffers from low oral 

bioavailability (26%) in healthy humans; possibly 

due to its highly lipophilic nature (log P = 4.31) 

and poor aqueous solubility, uncontrolled 

enzymatic conversion of OLM to the poorly 
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permeable OL in the gastrointestinal fluids as well 

as the efflux of hydrophobic drugs by the drug 

resistance pump in the gastrointestinal tract 
6, 7

. 

Several approaches were investigated to improve 

the oral bioavailability of OLM, including the 

development of solid lipid nanoparticles 
8
, freeze-

dried solid dispersions 
9
, nanosuspensions 

10
, 

nanoemulsions 
11 - 13

, and self-micro emulsifying 

drug delivery systems 
14

, and solid self-

nanoemulsifying drug delivery systems 
15

. 

According to Gursoy and Benita 
16

, the self-

emulsifying drug delivery systems could be defined 

as isotropic mixtures of oils, surfactants, or 

alternatively, one or more hydrophilic solvents or 

surfactants. These systems can form fine O/W 

microemulsion droplets (less than 100nm) upon 

mild agitation and dilution in aqueous media like 

gastrointestinal fluids. The importance of these 

systems results from the resultant small droplet size 

and large surface area; allowing for the enhanced 

absorption of lipophilic drugs, like OLM, by 

opening tight junctions to allow Para cellular 

transport, increasing membrane fluidity to facilitate 

transcellular absorption, and inhibiting efflux 

pumps like P-glycoprotein 
14, 16, 17

. Like Nano 

emulsions, self-nanoemulsifying drug delivery 

systems (SNEDDS) can be formulated with little 

energy input (heat or mixing) 
18

. In fact, several 

SNEDDS - based products, e.g., Fortovase
®
 

(saquinavir), Norvir
®
 (ritonavir) and Sandimmune 

Neoral
®
 (cyclosporine) were successfully 

commercialized due to the simplicity of scale up of 

manufacturing process 
16, 19

.
 

P-glycoprotein (P-gp) is a multidrug resistance 

(MDR) protein encoded by the MDR1 gene in 

humans. It serves as a biochemical barrier for the 

efflux of structurally diverse drugs 
20

. Drugs that 

are substrates for P-gp bind and are transported 

back to the apical surface of the tissue in an ATP-

dependent manner, thereby restricting the overall 

permeability of drugs. Cremophor
®
 EL, and 

Tween
®
 80 were used to inhibit P-gp efflux 

transporter activity in Caco-2 cell monolayers of 

the intestinal mucosa 
12, 20

.
 

Herein, Cremophor
®
 EL-, and Tween

®
 80-based 

SNEDDS could improve the oral bioavailability of 

OLM due to the dual improved effect of 

solubility/dissolution and P-gp efflux transporter 

inhibition. To confirm these assumptions, the 

pharmacokinetics of OL following oral 

administration of the best achieved OLM - loaded 

SNEDDS and the commercial Benicar
®
 tablets 

were evaluated in rabbits using LC MS/MS. It 

could be hypothesized that improving the oral 

bioavailability of OL can increase clinical efficacy 

and / or reduce the oral dosage required to achieve 

the same effect with possible reduction in side 

effects. 

MATERIALS AND METHODS: 

Materials: Olmesartan Medoxomil (OLM) was 
purchased from GVK Biosciences, Hyderabad, India. 
Capmul

®
 MCM EP (glycerol monocaprylocaprate; 

Capmul
®
) and Captex

®
 355 EP/NF (triglycerides of 

caprylic / capric acid; Captex
®
) were kindly 

donated by ABITEC Corporation, Ohio, USA. 

Maisine
®
 35-1 (glyceryl monolinoleate; Maisine

®
) 

and Lauroglycol® 90 (propylene glycol monolaurate) 
were generously provided by Gattefossé, St-Priest, 

France. Cremophor
®
 EL (polyoxyl 35 Castor oil; 

Cremophor®) was donated by BASF, Ludwigshafen, 
Germany. Tween 20

®
 (polyoxyethylene sorbitan 

monolaurate) and polyethylene glycol 400 (PEG) 

were purchased from Oxford Laboratory Reagent, 

Maharashtra, India.  

Absolute ethyl alcohol, sodium dihydrogen 

orthophosphate-1-hydrate and disodium hydrogen 

orthophosphate-1-hydrate were from El Nasr 

Pharmaceutical Chemicals, Abuzaabal, Egypt. 

Acetonitrile (HPLC grade), Formic acid (HPLC 

grade), Olmesartan (active metabolite; OL), 

Ornidazol (internal standard; ORN) and dialysis-

tubing cellulose membrane (M. wt cut-off 12,000-

14,000) were procured from Sigma Aldrich, St. 

Louis, Missouri, USA. 

Methods: 

Determination of the Saturated Solubility of 

OLM in Various Vehicles: The saturated 

solubility of OLM in various oils (Capmul
®
, 

Captex
®
, Maisine 35-1

®
 and Lauroglycol 90

®
), 

surfactants (Cremophor
® 

EL and Tween 20
®
) and a 

co-surfactant (Polyethylene glycol 400
®

) was 

determined, in triplicate, by adding an excess 

amount of drug to 3gm of each vehicle in 5mL 

stoppered vials, and mixed using a vortex mixer. 

The vials were kept at 25 ± 1.0 °C in an incubator 

shaker for 72 h to attain equilibrium. The 
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equilibrated samples were removed from the shaker 

and centrifuged at 3,000 rpm for 15 min. The 

supernatant was taken and filtered through a 

cellulose acetate membrane filter (0.45µm) 
21

. The 

concentration of OLM was determined 

spectrophotometrically at 257nm after appropriate 

dilution 
12, 22

. 

Construction of Ternary Phase Diagrams: On 

the basis of the saturated solubility studies of OLM, 

two ternary phase diagrams were plotted using 

varying concentrations of Capmul
®
 as the oily 

phase, Cremophor
® 

EL or Tween
®
 20 as the 

surfactant, and PEG 400 as the co-surfactant. The 

total of the three components always added to 

100% for each system. An aliquot (1gm) of each 

system was introduced into 200mL of distilled 

water in a glass beaker at room temperature. The 

contents were mixed gently with a magnetic stirrer. 

Visual observations were made immediately as 

well as after storage for 48h at room temperature 

for clarity, phase separation and / or precipitation. 

All the studies were repeated twice with similar 

observations made between repeats 
22 - 23

. Phase 

diagrams were plotted using Triplot software Ver. 

4.1.2 (Graham and Midgley, Loughborough 

University, Leicestershire, England). The area 

under the curve (AUC) of the clear self-

emulsifying region in each phase diagram was 

calculated according to the trapezoidal rule method. 

The statistical significance of the results was 

checked using one-way ANOVA test at P < 0.05 by 

Stat View
®
 software Ver. 5.0.1 (SAS Institute Inc. 

San Francisco, CA, USA) 
24

. 

Development of OLM - Loaded SNEDDS: A 

series of SNEDDS were prepared with varying 

weight ratios of oil (10% – 20% w/w), surfactant 

(60%, 70%, 80% and 90% w/w) and co-surfactant 

(0%, 10% and 20% w/w). In all systems, the 

concentration of OLM was kept constant at 1%, 

w/w. Briefly Capmul
®
, Cremophor

® 
EL or Tween

®
 

20, and PEG 400 were accurately weighed and 

vortex mixed in stoppered glass vials to ensure 

complete mixing. OLM - loaded SNEDDS were 

developed by dispersing an amount of OLM 

(10mg) with sonication into one gram of each 

system until a clear phase was obtained. The 

developed systems were equilibrated for 48h at 

room temperature for further studies. The 

composition of the investigated OLM-loaded 

SNEDDS is shown in Table 1. 

TABLE 1: THE COMPOSITION (% w/w) OF OLM - LOADED SNEDDS 

 

Systems 

Oil Surfactant Co-Surfactant 

Capmul MCM
®
 Tween 20

®
 Cremophor EL

®
 PEG

®
 

F1 10 90   0 

F2 10 80  10 

F3 10 70  20 

F4 20 80  0  

F5 20 70  10 

F6 20 60  20 

F7 10  90 0  

F8 10  80 10 

F9 10  70 20 

F10 20  80 0  

F11 20  70 10 

F12 20   60 20 

 

Characterization of OLM-Loaded SNEDDS: 

Determination of the Emulsification Time: A 

predetermined weight (1gm) of each system was 

introduced into 200mL of distilled water 

maintained at 37 ± 0.5 °C in a glass beaker and the 

contents were mixed gently using a magnetic stirrer 

rotating at constant speed (100 rpm) 
23

. The 

emulsification time - defined as the time required 

for the pre-concentrate (oil / surfactant / co-

surfactant) to form a homogeneous clear phase 

upon dilution- was recorded visually 
22

. 

Determination of Globule Size and Zeta 

Potential: The mean droplet size (z-ave) and the 

polydispersity index (PDI) were determined, in 

triplicate, by photon correlation spectroscopy 

(PCS) at 25 ± 0.5 °C.  Each system was diluted (10 

times) with de-ionized water to avoid the multi-
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scattering phenomena. Measurements were 

performed at 90º to the incident beam using a 

Zetasizer Nano ZS
 24

. PDI values ranging from 0.1 

- 0.3 are considered optimum since they indicate 

uniform particle size distribution. In a parallel line, 

the zeta potential of the systems was determined, in 

triplicate, according to electrophoretic light 

scattering technology using a laser Doppler 

anemometer coupled with Zetasizer Nano ZS. 

Measurements were carried out at 25 ± 0.5 °C 

using the Helmholtz- Smoluchouski equation built 

into software 
25

. 

Morphologic Examination: The morphologic 

characteristics of representative OLM-loaded 

SNEDDS (F6) were examined using transmission 

electron microscopy (TEM). SNEDDS were diluted 

200 times by mixing with distilled water. One drop 

of each diluted system was placed on a copper grid 

for one minute and the excess was removed using a 

filter paper. For staining, one drop of an aqueous 

phosphotungstic acid solution (2%, w/v) was 

loaded and the excess was similarly removed. 

Finally, the grid was screened under a transmission 

electron microscope (Jeol, JXA-840A, Tokyo, 

Japan) under a magnification of 60,000X. 

In vitro Drug Release Studies: The in vitro release 

studies of OLM-loaded SNEDDS (1%, w/w), an 

aqueous drug suspension (10 mg/g) and Benicar
® 

tablets (20mg) were assessed, in triplicate, using 

the bulk-equilibrium reverse dialysis technique in a 

USP Dissolution tester apparatus (type II) at 37 ± 

0.5 °C (26-27). According to FDA specifications 

for the dissolution testing of OLM tablets 
28

, the 

release studies were conducted in 0.05M 

Sorensen’s phosphate buffer (pH 6.8; 1000mL) and 

the paddles were adjusted to rotate at 50 rpm. 

Five dialysis bags, each containing 5mL aliquots of 

the dissolution medium, were left to equilibrate in 

the dissolution medium within each dissolution 

flask for 12 h prior to the studies. On the study day, 

two g samples of OLM-loaded SNEDDS, the 

aqueous drug suspension or Benicar
® 

tablets were 

directly placed into the dissolution flasks. At 

definite time intervals (5, 10, 15, 30 and 60 

minutes), one dialysis bag was withdrawn from 

each dissolution flask. The withdrawn volume was 

equally replenished with fresh medium to maintain 

a constant volume.  

The withdrawn samples were analyzed 
spectrophotometrically (Shimadzu spectrophotometer 
UV-1800, Kyoto, Japan) for the drug at 257nm. 

The mean (± S.D.) drug released percentages of 

each system were portrayed against time. For 

comparative studies, the drug released percentages 

after 5min (Q5min %) and 1h (Q1h %) as well as the 

dissolution efficiency percentages after 1h (DE1h 

%) were estimated by calculating the area under the 

drug release profile curve (AUC) at 60 minutes 

using the trapezoidal rule.  As proposed by Khan 
29

, 

DE% is expressed (equation 1) as a percentage of 

the area of the rectangle corresponding to 100% 

release, for the same total time (60 minutes); 

DE% = 0
t
ʆC × dt × 100 

   C100 ×T 

Where, C represents the drug released percentage 

as a function of time t, C100 represents the complete 

drug release (100%) and T represents the total time 

of drug release.  

In vivo Drug Absorption Studies: 

Study Design: The study was carried out to 

compare the pharmacokinetics of OL in rabbit 

plasma following oral administration of Benicar
®

 

tablets (Daiichi-Sankyo Co., Japan) and the best 

achieved OLM - loaded SNEDDS (F6) using a non 

- blind, two treatment, two-period, randomized, 

crossover design. The protocol of the studies (REC-

FPSPI-5/38) was approved by the Research Ethics 

Committee for experimental and clinical studies at 

the Faculty of Pharmaceutical Sciences and 

Pharmaceutical Industries, Future University in 

Egypt. The use and the treatment of rabbits in this 

study were conducted in full compliance with the 

spirit of Association for Assessment and 
Accreditation of Laboratory Animal Care (AAALAC) 

International’s expectations for animal care and 

use/ethics committees. 

Animals: Six healthy rabbits (weighing 2 – 2.5 kg) 

were housed in an air-conditioned room under 

controlled alternate day and night cycles; provided 

with artificial fluorescent light. The animals were 

fed a standard pellet diet, water ad libitum. These 

conditions were evaluated on a daily basis to ensure 

the safety and well-being of animal. A veterinarian 

checked the health of animals to ensure the lack of 

clinically observable abnormalities. 
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Administration of Drug Treatment to Rabbits: 

After overnight fasting, the rabbits randomly 

divided into two equal groups. The rabbits of the 

first group were administered two gm samples of 

OLM-loaded SNEDDS (F6) (Test, treatment A). 

Meanwhile, the rabbits of the other group received 

Benicar
®
 tablets (Reference, treatment B). Before 

withdrawal of blood samples, the marginal ear vein 

was dilated, using warm water and/or swapping 

with cotton, and then punctured (24 gauge needle) 

to allow withdrawal of blood samples (2mL) at 0 

(pre-dose), 0.5, 1, 1.5, 2, 3, 4, 6, 8, 24, 48 hours 

(post - dose). The samples were collected in EDTA 

tubes.  

Sample Processing: The plasma was derived from 

the blood samples by centrifugation (3000 ×g) for 

10 min, pipetted into glass tubes and then frozen (− 

20 °C) until analyzed by LC – MS/MS. The tubes 

were labelled with the animal code, the study 

period, the run date, the treatment type; test or 

reference. The plasma samples (250µl) were spiked 

with ORN solution in acetonitrile (500µl; 

0.5µg/mL). The spiked samples were vortexed (2 

min) and centrifuged (4000 x g) for 5 min to allow 

for the separation of plasma proteins and injection 

of samples of the supernatant, via the auto-sampler, 

for analysis. 

Determination of OLM in Rabbit Plasma by LC 

– MS/MS: The chromatographic separation of OL 

and ORN in rabbit plasma was performed on 

Shimadzu Prominence LC system (Kyoto, Japan) 

equipped with an auto-sampler (SIL-20A/HT), a 

solvent delivery pump (LC-20AT) and a degasser 

(DGU-20A3). A previously reported selective and 

sensitive LC-MS/MS method for the determination 

of OL in plasma was adopted 
11

. The separation 

was performed on a SunFire C18 column (4.6 x 50 

mm; 5µm particle size) (Waters Corp., Milford, 

MA, USA), at 25 °C, using an isocratic mobile 

phase composed of acetonitrile: 0.1% formic acid 

(80: 20, v/v) running at a flow rate of 1mL/min into 

the electrospray ionization (ESI) chamber. The 

API-3200™ triple quadrupole LC/MS/MS mass 

spectrometer (AB Sciex Instruments, Foster City, 

CA, USA) was equipped with an electrospray 

ionization source (ESI) operating in the positive ion 

mode with multiple-reaction monitoring (MRM) 

mode to detect the transitions for OL and the m/z 

446.909 precursor ion to the m/z 207.100 product 

ion and for ORN; the m/z 219.949 precursor ion to 

the m/z 128.100 product ion. The peak area ratio of 

(OL/ORN) was plotted against OL concentration of 

1.7 – 1002.9 (ng/mL) in blank rabbit plasma. The 

Analyst
®
 Software 1.6 (AB Sciex Instruments, 

Concord, Ontario, L4K, 4V8, Canada) was used for 

the processing of the LC-MS/MS data. 

Pharmacokinetic and Statistical Analyses: The 

pharmacokinetic parameters following oral 

administration of both treatments for each animal 

were estimated based on the non - compartmental 

analysis using Win Nonlin
® 

software Ver.1.5 

(Scientific consulting, Inc., Cary, NC, USA). The 

estimated pharmacokinetics parameters included; 

Cmax (the maximum drug concentration; ng/mL), 

tmax (the time to reach Cmax; h), MRT0-∞ (the mean 

residence time, h), AUC (0-48h) (the area under the 

plasma concentration - time curve from zero to 48 

h; ng h/mL) and AUC (0-∞) (the area under the curve 

from zero to infinity; ng h/mL) 
30

. The relative 

bioavailability was calculated by dividing AUC (0-

48h) of F6 over AUC (0-48h) of Benicar
®
 tablets. The 

results are expressed as mean values of six rabbits 

± S.D. The statistical significance of the results was 

checked using one - way ANOVA at a P-value of 

0.05. 

RESULTS AND DESCUSSION: 

Development of OLM-Loaded SNEDDS: OLM 

suffers from a limited oral bioavailability in 

humans (26%), possibly due to its limited aqueous 

solubility, uncontrolled enzymatic conversion to 

the active metabolite OL as well as the efflux by P-

gp in GIT. These factors restrict the overall 

permeability of the drug. In a parallel line, the 

concomitant use of OLM has been associated with 

the incidence of diarrhoea and certain intestinal 

problems. In fact, FDA had approved label changes 

to include intestinal problems (sprue-like 

enteropathy) linked to OLM 
31

. The physical 

contact of OL with intestinal villi might be a trigger 

to local cell mediated immune response 
13

.  

In view of the aforementioned, the design of OLM 

- loaded SNEDDS - where OLM was incorporated 

within the oily core of the resulting Nanoemulsion - 

was explored in an attempt to surmount such 

limitations and improve the oral drug 

bioavailability. It should be noted that the proper 

selection of the oil, surfactant, and co-surfactant 
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would allow complete solubility and optimum drug 

loading in SNEDDS. So that, it should be promptly 

dissolved as clear monophasic liquid, without 

physical accumulation, when introduced to 

gastrointestinal fluids.   

The saturated solubility of OLM in various vehicles 

was shown in Fig. 1. For the investigated oils, the 

highest solubility for OLM was achieved with 

Capmul MCM
®
 (7.26mg/g). The solubility of OLM 

in Tween 20
®

 (40.2mg/g) was greater than that in 

Cremophor
® 

EL (10.7mg/g). Yet, both non-ionic 

surfactants were selected for incorporation in 

SNEDDS for many reasons, including; (i) high 

safety, low toxicity,high stability, and 

biodegradability 
32

, (ii) minimal irritation potential 

when compared to other ampholytic, anionic or 

cationic surfactants 
11

, (iii) their highly hydrophilic 

nature (HLB values > 12) would allow lowering of 

the surface tension and formation of fine, uniform 

Nanoemulsion droplets upon contact with 

gastrointestinal fluids 
22

, and (iv) their transporter 

inhibition activity on P-glycoprotein in Caco-2 cell 

monolayers of the intestinal mucosa via increasing 

apical-to-basolateral permeability and decreasing 

basolateral - to - apical permeability of P-gp 

substrates 
33

. On the other hand, PFG 400 was the 

co-surfactant of choice where the solubility of 

OLM was 44.8mg/g. Recent reports showed that 

polyethoxylated excipients, like PEG, can inhibit P-

gp activity in Caco-2 cell monolayers.  

 
FIG. 1: SATURATED SOLUBILITY BAR CHART OF OLM IN VARIOUS VEHICLES 

  
FIG. 2: TERNARY PHASE DIAGRAMS CONSISTING OF CAPMUL, TWEEN 20 AND PEG 400 (A) AND CAPMUL, 

CREMOPHORE EL AND PEG 400 (B) [BLACK DOMAINS INDICATE THE SELF-EMULSIFICATION REGION] 

It was revealed that PEG-induced changes in P-gp 

activity are probably related to changes in the 

fluidity of the polar head group regions of cell 

membranes 
20

. PEG 400 is a short-chain alcohol 

that can reduce the critical packing parameter of the 

investigated surfactants and would facilitate the 
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formation of stable o/w microemulsions 
34

. 

Furthermore, it has a positive influence on the 

fluidity of the surfactant film and provides 

sufficient flexibility to the interfacial film to be 

able to attain different curvatures required to form 

promising microemulsions 
35

. In view of the 

aforementioned, two ternary phase diagram plots 

were constructed to identify the clear self-

nanoemulsifying areas suitable for loading OLM 

(1% w/w); Fig. 2. The AUC of Cremophor
®
 EL-

based system (2338.26 square units) was wider 

than that of Tween
®

 20-based one (19.9185 square 

units); indicating better self-nanoemulsifying 

ability of the former system. This difference was 

proved to be statistically significant (P > 0.05). 

These results were in line with those reported by 

Yin et al., 
36

 and Tayel et al., 
24

 who found that 

Cremophor
®
 EL - based systems showed wider 

AUCs than the corresponding Tween
® 

80 based 

systems; suggesting the better emulsification ability 

of the former surfactant with respect to reduction in 

the interfacial energy as well as the provision of a 

mechanical barrier to coalescence 
14

. 

Characterization of OLM-Loaded SNEDDS: 

Determination of self-Emulsification Time: 

Previous reports showed that no significant 

differences were observed in the dispersibilty of 

non-ionic surfactant - based Nanoemulsions upon 

dispersion in water or simulated gastric or intestinal 

fluids. Therefore, water was used as a dispersion 

medium to simulate the emulsification efficiency of 

SNEDDS upon infinite dilution in GI fluids 
12

.  

The self-emulsification times for OLM - loaded 

SNEDDS were represented in Table 2. It was clear 

that all systems exhibited rapid rates of 

emulsification with very short self-emulsification 

times upon contact with water; ranging from 12 s 

(F12) to 20 s (F1 and F8). These findings could be 

attributed to the proper selection of the type and 

concentration of SNEDDS ingredients. 

Determination of Droplet Size, PDI and Zeta 

Potential: The droplet size is a crucial factor 

influencing the in vivo performance of SNEDDS. 

An inverse correlation could be established 

between the droplet size and the interfacial surface 

area. Larger surface areas have been associated 

with rapid drug absorption rates and higher drug 

bioavailability. The droplet size, PDI and zeta 

potential of the investigated OLM-loaded SNEDDS 

(F1 – F12) were shown in Table 2. 

TABLE 2: CHARACTERIZATION OF OLM - LOADED SNEDDS, SUSPENSION AND BENICAR
® 

TABLETS 

System Particle size 

(nm) 

PDI Zeta Potential 

(mV) 

Self-emulsification 

time (s) 

Q5 min 

(%) 

Q1 h 

(%) 

DE 

(%) 

Suspension - - - - 11.20±1.98 34.73±1.02 24.55±1.26 

Benicar
®
 - - - - 6.66±3.29 65.57±1.04 33.71±1.67 

F1 119.70±39.68 0.19 -15.23 20 22.23±2.46 60.02±3.65 39.27±2.00 

F2 89.63±9.99 0.15 -11.6 14 24.45±1.11 57.79±1.45 40.19±2.01 

F3 66.68±46.00 0.16 -11.26 15 24.45±2.76 55.57±1.11 41.49±2.04 

F4 43.34±21.06 0.12 -7.53 15 33.34±1.01 51.12±1.87 40.10±2.50 

F5 12.19±0.55 0.29 -9.64 14 26.67±2.21 62.24±1.10 37.60±1.86 

F6 60.00±14.20 0.25 -14.4 13 29.78±1.00 66.69±0.91 47.96±1.09 

F7 20.60±0.14 0.25 -10.12 15 26.67±3.28 46.68±1.33 34.54±1.65 

F8 18.54±0.45 0.23 -11.2 20 29.78±0.21 57.79±3.29 40.77±2.07 

F9 22.10±1.06 0.23 -7.92 14 24.45±2.21 51.12±1.86 35.84±1.23 

F10 21.13±0.98 0.19 -9.93 13 26.67±2.09 44.46±1.75 33.99±2.03 

F11 19.52±0.09 0.20 -6.65 13 31.12±2.09 57.79±2.22 42.77±2.21 

F12 21.06±7.31 0.17 -9.5 12 28.89±3.02 51.12±1.75 38.80±1.20 

Cremophor
®
 EL-based systems ranged in size from 

18.54 nm (F8) to 22.10nm (F9) while Tween
® 

20-

based systems extended from 12.19nm (F5) to 

119.70nm (F1). It could be inferred that the former 

systems had smaller droplet sizes than the 

corresponding ones of the latter system; confirming 

the better emulsification ability of Cremophor
®
 EL; 

as noted earlier 
24, 36

. 

All OLM-loaded SNEDDS had PDI ≤ 0.3; 

indicating a homogenous droplet size population 

and narrow globule size distribution. Negative zeta 

potential values were observed with OLM - loaded 

SNEDDS ranging from of - 6.65 (F17) to - 15.23 

(F4) mV. The results might be attributed to the 

presence of negatively charged carboxylic acid 

groups of the free fatty acids in Capmul
®12

. 
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Topographic Examination of SNEDDS: 

Representative photomicrographs of OLM - loaded 

SNEDDS (F6) were illustrated in Fig. 3. It was 

clear that the developed SNEDDS were fairly 

dispersed in aqueous media and formed 

homogeneous small-sized discrete spherical Nano 

emulsion droplets. The estimated droplet sizes from 

TEM images were in good agreement with those 

measured by the photon correlation spectroscopy; 

as noted earlier. 

  
FIG. 3: REPRESENTATIVE TEM PHOTOMICROGRAPHSOF OLM LOADED SNEDDS 

In vitro Drug Release Studies: The in vitro release 

profiles of OLM from an aqueous suspension, 

Benicar
®
 tablets in comparison to Tween

®
 20-based 

SNEDDS and Cremophor
®
 EL-based SNEDDS in 

Sorensen’s phosphate buffer (pH 6.8) at 37 + 0.5 

°C were illustrated in Fig. 4 and Fig. 5. The drug 

released percentages after 5 min (Q5min %) and 1 

hour (Q1h %) and the dissolution efficiency 

percentages after 1h (DE1h %) were reported in 

Table 2. 

 
FIG. 4: IN VITRO RELEASE PROFILES OF AN AQUEOUS OLM SUSPENSION, BENICAR TABLETS AND OLM - 

LOADED SNEDDS COMPOSED OF CAPMUL, TWEEN 20 AND PEG 400 IN SORENSEN'S PHOSPHATE BUFFER 

(pH 6.8) AT 37 ± 0.5 °C (MEAN ± S.D., n = 3) 

All SNEDDS showed higher Q5min %, Q1h % and 

DE1h % than the aqueous drug suspension. This 

finding can be attributed to the small size of the 
developed Nanoemulsion droplets; thereby providing 
larger surface areas and faster drug release 

percentages. In a parallel line, all SNEDDS showed 

higher Q5min % and DE1h % than Benicar
®
 tablets. 

Only one SNEDDS (F6) succeeded to achieve 

greater Q5min %, Q1h % and DE1h % (29.78%, 

66.69% and 47.96 %, respectively) than the 

corresponding values of Benicar
®
 tablets (6.66%, 

65.57% and 33.71%, respectively).  
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Yet, no-significant difference (P > 0.05) was 

observed between Q1h % of both treatments. Based 

on the previous findings, SNEDDS (F6) was 

selected for further in-vivo studies. 

 
FIG. 5: IN VITRO RELEASE PROFILES OF AN AQUEOUS OLM SUSPENSION, BENICAR TABLETS AND OLM-

LOADED SNEDDS COMPOSED OF CAPMUL, CREMOPHORE EL AND PEG 400 IN SORENSEN'S PHOSPHATE 

BUFFER  (pH 6.8) AT 37 ± 0.5 °C (MEAN ± S.D., n = 3) 

In vivo Drug Absorption Studies: A previously 

reported selective and sensitive LC-MS/MS 

method for the determination of OL in plasma was 

adopted 
11

. For the reported chromatographic 

conditions, the detection of OL and ORN was 

achieved at 0.48 and 0.53 min, respectively. A 

linear (r
2
 = 0.999) calibration curve was 

constructed by plotting the peak area ratio of (OL / 

ORN) against OL concentration of 1.7 – 1002.9 

ng/mL in rabbit plasma. The LLOQ (lower limit of 

quantification), representing 10: 1 signal / noise 

ratio was 1.7ng/mL. The Plasma concentration-

time curves of OL following oral administration of 

OLM - loaded SNEDDS (F6) and Benicar
®
 tablets 

in rabbits (mean ± S.D., n = 6) were portrayed in 

Fig. 6. The estimated pharmacokinetic parameters 

of both treatments, derived by non-compartmental 

fitting of data, were summarized in Table 3. 

 
FIG. 6: PLASMA CONCENTRATION – TIME CURVE OF OLM FOLLOWING ORAL ADMINSTRATION OF 

OLM LOADED - SNEDDS (F6) AND BENICAR TABLETSINRABBITS (MEAN ± S.D., n = 6) 

TABLE 3: PHARMACOKINETIC PARAMETERS OF OLM FOLLOWING ORAL ADMINISTRATION OF OLM -

LOADED SNEDDS (F6) AND BENICAR
® 

TABLETS IN RABBITS (MEAN ± S.D., n = 6) 

Pharmacokinetic parameters Benicar
®
 tablets OLM-loaded SNEDDS (F6) 

Cmax (ng/mL) 335.41 ± 98.12 387.55 ± 141.17 

Tmax (h) 5 3.5 
a
MRT(0-∞) (h) 31.93 ± 13.90 31.32 ± 16.54 

AUC(0-48 h) (ng.h.mL
-1

) 7040.89 ± 1793.92 7696.67 ± 3478.74 

AUC(0-∞) (ng.h.mL
-1

) 9205.62 ± 2438.83 9603.73 ± 3980.31 
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Clearly, the immediate release pattern of Benicar
®
 

tablets and SNEDDS (F6) were revealed. Benicar
®

 

tablets showed a maximum drug concentration 

(Cmax) of 335.41ng/mL at a median Tmax of 5 h. On 

the other hand, a higher Cmax value of 387.55ng/mL 

was estimated for SNEDDS (F6) at a shorter 

median Tmax of 3.5 h. In fact, the MRT(0-∞) of 

SNEDDS (F6) was almost similar (31.32 h) to that 
estimated for the reference Benicar® tablet (31.93 h). 

The AUC(0−48h) and AUC(0−∞) values of SNEDDS 

(F6) (7696.67 and 9603.73ng.h/mL, respectively) 

were larger than the corresponding values of 

Benicar
®
 tablets (7040.89 and 9205.62ng.h/mL, 

respectively). Based on the calculated AUC(0−48h) 

values, the relative bioavailability % was found to 

be 109.31%. The higher drug bioavailability of 

SNEDDS could be related to a number of factors, 

including; (i) the generation of fine o/w 

Nanoemulsions upon contact with gastrointestinal 

fluids.  

The fine oil droplets provide a large interfacial area 

for pancreatic lipases to hydrolyze the oily core and 

hence promote immediate drug release and/or the 

formation of drug-loaded mixed micelles of bile 

salts 
21, 37

. (ii) the ability of Tween
®
 20 and / or 

PEG 400 to lower the interfacial tension and hence 

promote faster drug dissolution in gastrointestinal 

fluids, to increase intestinal epithelial permeability, 

to increase tight junction permeability and to 

inhibit P-gp efflux transporter activity 
21, 33, 38, 39

. 

CONCLUSION: OLM - loaded SNEDDS were 

successfully developed using Capmul MCM
®
, 

Cremophor
®

 EL or Tween20
®
 and PEG400

®
. At an 

optimum Capmul MCM
®
: Tween20

®
: PEG400

®
 

ratio of 20: 60: 20, the best achieved SNEDDS (F6) 

showed short emulsification time, fine droplet size, 

low PDI, negative zeta potential, promising in vitro 

dissolution parameters with respect to Q5min %, Q1h 

% and DE1h %. When compared to Benicar® 

tablets, the later system showed shorter Tmax, higher 

Cmax and larger AUC(0−48h) in rabbit plasma. Further 

in-vivo absorption studies on a larger number of 

animals are needed to minimize the variations in 

the estimated pharmacokinetic parameters.  
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