Received on 14 June 2018; received in revised form, 14 August 2018; accepted, 31 August 2018; published 01 February 2019

# CHEMICAL PROFILING, ADME PREDICTION OF BOERHAVIA DIFFUSA LINN. AND CRATEVA NURVALA BUCH. HAM IN THE MANAGEMENT OF UROLITHIASIS 

S. R. Gophane * and C. N. Khobragade

School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded - 431606, Maharashtra, India.

Keywords:<br>DPPH Assay, ADME, UV-VIS, FTIR, GC-MS analysis, Boerhavia diffusa, Crateva nurvala<br>Correspondence to Author:<br>Shweta R. Gophane<br>Ph.D. Student, School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded - 431606, Maharashtra, India.<br>E-mail: shweta.gophane@gmail.com


#### Abstract

Background: This study was carried out to investigate qualitative and quantitative phytochemical analysis and free radical scavenging activity of Boerhavia diffusa (root) and Crateva nurvala (bark) along with certain computational ADME (Absorption, Distribution, Metabolism, Excretion) parameters of compounds analyzed from Boerhavia diffusa (root) and Crateva nurvala (bark). Methods: The dried powder of plants were extracted with increasing polarity of solvent namely ethyl acetate, acetone, ethanol and distilled water by a three-step sequential extraction procedure. The chemical compositions of extracts were investigated using UV-Vis, FTIR and PerkinElmer Gas ChromatographyMass Spectrometry. Ethanolic extract of Boerhavia diffusa and Crateva nurvala was evaluated in vitro for its ability to inhibit the major enzyme activities of GOX and LDH through spectrophotometrically and mode of inhibition were evaluated using Lineweaver-Burk plots while ADME parameters were derived from ADMET server admet SAR. Results: Among all extracts, ethanolic extracts showed the highest phenol, flavonoid, proanthocyanidins, and coumarin content. High DPPH free radical quenching activity was observed in ethanolic, ethyl acetate and acetone extracts of the plant which was significantly comparable with ascorbic acid. Also, plant extracts, analyzed by UV-FTIR and GC-MS which showed promising Glycolate oxidase and Lactate dehydrogenase inhibition and found to contain phenolic, glycosides and flavonoids compounds. Conclusion: The FTIR and GC-MS spectrum profile of the medicinally important plant extract having various bioactive compounds and interestingly from the absorption, distribution, metabolism, and excretion (ADME)-Toxicity analysis the compound have enhanced pharmacological properties and can be used as an herbal alternative for the synthesis of antiurolithiac agents.


INTRODUCTION: Urolithiasis is a complex process that results from several physicochemical events including crystal nucleation, aggregation, and growth of insoluble particles in the kidney ${ }^{1}$.


Calculogenesis is influenced by the interplay of critical factors, viz. stone inhibitors, complexing agents and stone promoters. The sequence of events in the formation of any urinary stone can be:
Urinary saturation $\Rightarrow$ super saturation $\Rightarrow$ nucleation $\Rightarrow$ crystal $\Rightarrow$ growth $\Rightarrow$ crystal $\quad \Delta$ aggregation $\Rightarrow$ crystal retention $\square$ stone formation.

Urolithiasis affects $10-12 \%$ of the world population, especially in the industrialized countries. It has a recurrence rate of $50 \%^{2}$.

In spite of substantial progress in the study of the biological and physical manifestations of kidney stones, there is no satisfactory drug to use in clinical therapy ${ }^{3}$. Therefore, it is worthwhile to look for an alternative for the management of urolithiasis. Herbal drugs are essential components of traditional medicine in several countries including India. Boerhavia diffusa and Crateva nurvala are important medicinal plants much used in Ayurveda and Unani medicines and other traditional medicines in many parts of the world. Crataeva nurvala Buch.-Ham. belongs to the family Capparaceae. The stem bark is being widely used as a single drug or in compound formulations for the treatment of urinary disorders including urolithiasis, prostatic hypertrophy, blood purifier, skin infections, neurogenic bladder and chronic urinary infections ${ }^{4}$. Boerhaavia diffusa Linn. belongs to the family Nyctaginaceae and is commonly known as, punarnava. Traditionally, this plant has been extensively used in the treatment of dyspepsia, jaundice enlargement of liver, abdominal pain and as an antistress agent. It also has diuretic, anti-inflammatory, antidiabetic, antibacterial and anticancer properties ${ }^{5,6}$.

According to the World Health Organization (WHO) in 2008, more than $80 \%$ of the world's population relies on traditional medicine for their primary healthcare needs ${ }^{7}$. Phenolics and flavonoids are polyphenols, an important class of secondary plant metabolites possessing an impressive array of pharmacological activity which includes free radical scavenging, inhibition of hydrolytic and oxidative enzymes and antiinflammatory action, etc. ${ }^{8}$ Oxidation reaction can produce free radicals, which can damage cells and tissues. Recently, there has been an upsurge of interest in the therapeutic potential of medicinal plants as antioxidants in reducing such free radicalinduced tissue injury.

As a result, antioxidants are often reducing agents such as phenolic compounds (flavonoids, phenolic acids), sugars, vitamins, saponins, ethereal oils, polyunsaturated fatty acids, phospholipids, enzymes, amino acids, thiols, etc. As every plant has its metabolite fingerprinting, profiling by some platform technology such as gas chromatographymass spectrometer (GC-MS), liquid chromatography-mass spectrometer and nuclear
magnetic resonance, it is crucial to have a holistic overview of all metabolites present in the extracts ${ }^{9}$. Spectroscopic (UV-Vis, FTIR) methods are a simple, cost-effective and rapid test for detecting phytocomponents. Hence, the present study is designed to evaluate the phytochemical profile of Boerhavia diffusa and Crateva nurvala with the aid of GC-MS, UV-VIS, and FTIR Techniques and computer analysis using ADME to ascertain the rationale for its use in traditional medicine.

## MATERIALS AND METHODS:

Drugs: Boerhavia diffusa (root) and Crateva nurvala (bark) were procured from Yogesh pharma Pvt. Ltd., Nanded (MS), India. The barks and roots were washed thoroughly with water to remove dust and dried under the shade at room temperature for 5 days. The dried parts were ground using a blender to obtain the coarse powder and kept in an airtight container until further use. Powdered plant material $(150 \mathrm{~g})$ were successively extracted with Soxhlet apparatus using the solvents in order of increasing polarity viz., C), ethyl acetate, acetone, ethanol, and water. Each time the marc was dried and later extracted with other solvents. All the extracts were concentrated by distilling the solvent in a rotary vacuum evaporator.

Phytochemical Screening of Bark Extract: The extracts were subjected to phytochemical tests to investigate the presence or absence of active secondary metabolites using standard procedures ${ }^{10}$.

## Quantitative Estimation of Phytoconstituents: Quantitative Estimation of Total Phenols: Folin-

 Ciocalteu reagent was used to determine the total phenolic content (TPC) of the various organic crude extracts with slight modification ${ }^{11} .1 .5 \mathrm{ml}$ Folin-Ciocalteu reagent (diluted 1:10 with deionized water) was added to the 0.5 mL of the plant extract sample, and was vortexed for 5 min , followed by addition of 3 mL of sodium carbonate solution (7.5\%). This reaction mixture was incubated for 30 min at room temperature in the dark. The absorbance of the resulting blue color was measured by using double beam UV-Vis spectrophotometer (UV Shimadzu- 1800) at a fixed wavelength of 760 nm . The calibration curve was prepared by employing gallic acid at concentrations of 10 to $100 \mu \mathrm{~g} / \mathrm{ml}$ Fig. 1 .The TPCs were determined using a linear regression equation obtained from the standard plot of gallic acid. The content of total phenolic compounds was calculated as mean $\pm \mathrm{SD}(n=3)$ and expressed as $\mathrm{mg} / \mathrm{g}$ gallic acid equivalent (GAE) of dry extract.

Quantitative Estimation of Total Flavonoid: Aluminum chloride colorimetric method was used for flavonoids determination as described by ${ }^{11} .0 .5$ mL of each plant extract was mixed with 1.5 mL of ethanol, 0.1 mL of $10 \%$ aluminum chloride, 0.1 mL of 1 M potassium acetate and 2.8 mL of distilled water. The reaction mixture was allowed to stand at room temperature for 30 min , and the absorbance of the reaction mixture was measured at 415 nm .

The calibration curve was prepared by using rutin at concentrations of 10 to $100 \mu \mathrm{~g} / \mathrm{ml}$ in ethanol Fig. 1. The amount of flavonoid was calculated from the linear regression equation obtained from the rutin calibration curve. The flavonoid content was calculated as mean $\pm \mathrm{SD}(n=3)$ and expressed as $\mathrm{mg} / \mathrm{g}$ of rutin equivalent (RE) of dry extract.

Quantitative Estimation of total Proanthocyanidins: The total proanthocyanidin was determined using the procedure reported by Sun et al. ${ }^{12}$ A volume of 0.5 mL of $0.1 \mathrm{mg} / \mathrm{mL}$ of extract solution was mixed with 3.0 mL of $4 \%$ vanillin-methanol solution and 1.5 mL hydrochloric acid, the mixture was allowed to stand for 15 min at room temperature, the absorbance was measured at 500 nm . Total proanthocyanidin contents were expressed as catechin ( $\mathrm{mg} / \mathrm{g}$ ) using the following equation of the curve: $\mathrm{Y}=0.69 \mathrm{x}+0.076, \mathrm{R} 2=$ 0.970 , where x is the absorbance and Y is the catechin equivalent Fig. 1.

Quantitative Estimation of Total Coumarin: Coumarin content was determined with slight modification in procedure reported by Bruna Medeiros-Neves et al. ${ }^{13}$ A volume of 0.5 mL of the extract was mixed with 2 ml of distilled water and 0.5 mL of lead acetate solution. The sample was shaken, and then 7 mL of distilled water was added before transferring 2 mL of this solution to a new test tube and added 8 mL of hydrochloric acid solution. The sample was incubated at room temperature for 30 min , and the absorbance was measured at 500 nm . Total coumarin contents were
expressed as coumarin ( $\mathrm{mg} / \mathrm{g}$ ) using the following equation of the curve: $\mathrm{Y}=0.050 \mathrm{x}+0.022, \mathrm{R} 2=$ 0.992 , where x is the absorbance and Y is the coumarin equivalent Fig. 1.

Free Radical Scavenging Activity by DPPH Assay Method: The capacity of the extracts and ascorbic acid to scavenge the stable 1, 1-diphenyl-2-picrylhydrazyl (DPPH) free radical was measured as per reported method ${ }^{14} .0 .1 \mathrm{~mL}$ of extracts and ascorbic acid of different concentrations ( 10 to $200 \mu \mathrm{~g} / \mathrm{ml}$ ) was mixed with 2.9 mL of 0.1 mM DPPH solution. The solution was rapidly mixed and allowed to stand in the dark at room temperature for 30 min . The blank was prepared similarly without extract or ascorbic acid. The decrease in absorbance of each solution was measured at 517 nm using UV-Vis spectrophotometer.

The negative control was prepared by mixing 0.1 mL of ethanol with 2.9 mL of DPPH solution. The percentage of radical scavenging activity of tested extracts and positive control ascorbic acid was calculated by using the following formula:

Free radical scavenging activity $(\%)=[A c-A s] \times 100 /$ Ac
Where Ac=Absorbance of control at 517 nm and As=Absorbance of the sample.

The concentration of the sample required to scavenge $50 \%$ of DPPH free radical ( $\mathrm{IC}_{50}$ ) was determined from the curve of percent inhibitions plotted against the respective concentration.

UV-Vis and FTIR Spectroscopic Analysis: The ethanolic extracts were examined under visible and UV light for proximate analysis. For UV-VIS and FTIR spectrophotometer analysis, the extracts were centrifuged at 5000 rpm for 15 min and filtered through Whatman no. 1 filter paper. The sample is diluted to $1: 10$ with the same solvent. The extracts were scanned in the wavelength ranging from 2001100 nm using UV-1800 Shimadzu UV Spectrophotometer, and the characteristic peaks were detected.

FTIR analysis was performed using Thermofisher Scientific, model- Nicolet 6700 FTIR system in a scan range of $400-4000 \mathrm{~cm}^{-1}$ and characteristic peaks and their functional groups were detected.

## Gas Chromatography-Mass Spectrometry

 Analysis: The GC-MS analysis of the ethanolic extracts were carried out using a Agilent 7890 A gas chromatogram equipped and coupled to a mass detector 5975 MSD spectrometer with DB 5 MS and $30 \mathrm{~m} \times 0.25 \mu \mathrm{~m}$ DF of the capillary column. Ultra-high purity helium ( $99.99 \%$ ) was used as carrier gas at a constant flow rate of 1.0 $\mathrm{mL} / \mathrm{min}$. The injection, transfer line and ion source temperatures were at all $290{ }^{\circ} \mathrm{C}$. The ionizing energy was 70 eV . Electron multiplier voltage was obtained from autotune. The oven temperature was programmed from $60^{\circ} \mathrm{C}$ (hold for 2 min ) to $320^{\circ} \mathrm{C}$ at a rate of $3{ }^{\circ} \mathrm{C} / \mathrm{min}$. The crude sample was diluted with an appropriate solvent $(1 / 10, \mathrm{v} / \mathrm{v})$ and filtered.The particle-free diluted crude extracts $(1 \mu \mathrm{~L})$ were taken in a syringe and injected into injector with a split ratio of $30: 1$. All data were obtained by collecting the full-scan mass spectra within the scan range 30-600 amu. The percentage composition of the crude extract constituents was expressed as a percentage by peak area. The identification and characterization of chemical compounds in ethanolic crude extract were based on GC retention time. AMDIS and NIST VersionYear 2011 was used MS data library and comparing the spectrum obtained through GC-MS compounds present in the plant's sample was identified.

Lactate Dehydrogenase Enzyme Inhibition Assay: ${ }^{15}$ Assay mixture contained 0.3 mM NADH, 2.0 mM pyruvate and $100 \mu \mathrm{~L}$ enzyme in a volume of 3.0 ml . The reaction was started by addition of enzyme. Lactate dehydrogenase inhibitory activity of test plant extracts was monitored spectrophotometrically following the absorbance at 340 nm under aerobic condition. The reaction mixture containing 0.3 mM NADH, $100 \mu \mathrm{~L}$ enzymes in the volume of 3.0 mL and a solution of test plant extracts in DMSO was incubated at room temperature for 15 min . The reaction was started by addition of 2 mM pyruvate, and l-lactate formation was then followed by a measure of decreasing absorbance at 340 nm . The inhibitory activity of each test compound was indicated by their $\mathrm{IC}_{50}$ values calculated using linear regression curve.

The percent inhibition of enzyme activity was calculated using standard formula ${ }^{16}$.

Glycolate Oxidase Enzyme Inhibition Assay: ${ }^{15}$
Each assay contained $200 \mu \mathrm{M}$ potassium phosphate ( pH 7.0 ), 1 mg of bovine serum albumin, $3 \mu \mathrm{M}$ EDTA, $0.1 \mu \mathrm{M}$ DCIP, enzyme and water to a volume of 3 ml and a solution of test plant extracts in DMSO was incubated at room temperature for 15 min .

The reaction was started by addition of $2 \mu \mathrm{M}$ Sodium glycolate was then followed by a measure of the decrease in absorbance at 600 nm . The inhibitory activity of each test compound was indicated by their $\mathrm{IC}_{50}$ values calculated using linear regression curve. The percent inhibition of enzyme activity was calculated using standard formula ${ }^{16}$.

Lineweaver-Burk Plots: This kinetics study was carried out in the absence and presence of active compounds with varying concentrations of substrate. The initial velocity was expressed as the absorbance decrease at 340 nm for lactate dehydrogenase and 600 nm for glycolate oxidase per 10 s in the assay and Lineweaver-Burk plot analysis was performed ${ }^{17}$.

ADMET Predictions: ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) analyses constitutes the pharmacokinetics of a drug molecule ${ }^{18}$. In this study, prediction and significant descriptors of drug-likeness such as mutagenicity, toxicological dosage level and pharmacologically relevant properties of the compounds were predicted using Swissadme (http://www. swissadme.ch) and admetSAR (lmmd.ecust.edu. $\mathrm{cn}: 8000)$ servers.

Data Analysis: The results are expressed as mean $\pm$ SD. Student's $t$-test and one way ANOVA were applicable and used to analyze the level of statistical significance between groups. $P<0.05$ were considered statistically significant. Linear regression analysis was used to calculate the $\mathrm{IC}_{50}$ values.

## RESULTS:

Preliminary Phytochemical Screening: Preliminary phytochemical analysis showed the presence of major classes of secondary metabolites such as Alkaloids, tannins, saponins, flavonoids, cardiac glycosides, etc. in extracts Table 1a and 1b.

| Phytoconstituents | Test/ Reagents | Ethyl acetate extract | Acetone extract | Ethanolic extract | Aqueous extract |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Alkoids | Dragendorff's Test | + | + | + | + |
|  | Hager's Test | + | + | + | + |
| Proteins | Wagner's Test | + | + | + | + |
|  | Biuret Test | - | + | + | + |
|  | Ninhydrin's Test | - | + | + | + |
| Tannins | Millon's Test | - | + | + | + |
|  | Lead acetate | + | + | + | + |
|  | Ferric chloride | + | + | + | + |
| Steroids | Salkowski test | - | - | - | - |
| Tarpenoids | Salkowski test | - | + | + | + |
| Carbohydrate | Fehling's Test | - | + | + | + |
|  | Benedict's Test | - | + | + | + |
| Flavonoids | Shinoda test | + | + | + | - |
|  | Lead Acetate Test | + | + | + | - |
|  | Sodium Hydroxide Test | - | + | + | - |
| Glycoside | Keller-killani Test | - | - | - | - |
| Saponins | Foam Test | + | + | - | - |


| Phytoconstituents | Test/ Reagents | Ethyl acetate extract | Acetone extract | Ethanolic extract | Aqueous extract |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Alkoids | Dragendorff's Test | + | + | + | + |
|  | Hager's Test | + | + | + | + |
| Proteins | Wagner's Test | + | + | + | + |
|  | Biuret Test | - | - | - | - |
|  | Ninhydrin's Test | - | - | - | - |
| Tannins | Millon's Test | - | - | - | - |
|  | Lead acetate | + | + | + | + |
|  | Ferric chloride | + | + | + | + |
| Steroids | Salkowski test | + | + | + | + |
| Terpenoids | Salkowski test | - | - | - | - |
| Carbohydrate | Fehling's Test | - | + | + | + |
|  | Benedict's Test | - | + | + | + |
| Flavonoids | Shinoda test | + | + | + | + |
|  | Lead Acetate Test | + | + | + | + |
|  | Sodium Hydroxide Test | + | + | + | + |
| Glycoside | Keller-killani Test | - | + | + | + |
| Saponins | Foam Test | - | + | + | + |

Quantitative Estimation of phytoconstituents and Free Radical Scavenging Activity: The present study revealed a relatively good amount of phenols, flavonoids, coumarin and proanthocyanidins contents of ethanolic extract of

Boerhaavia diffusa and Crataeva nurvala as shown in Table 2. The correlation coefficient of total phenols, total flavonoids, coumarin, and total proanthocyanidins were ( $\mathrm{r}=0.993,0.984,0.992$ and 0.970) respectively Fig. 1.

TABLE 2: QUANTITATIVE ESTIMATION OF TOTAL PHENOLICS, FLAVONOIDS, FLAVONOLS, PROANTHOCYANIDINS AND COUMARIN ( $\mathrm{n}=3$ )

| Plants | Extracts | Total phenolics <br> (GAE mg/g) | Total flavonoids <br> $(\mathbf{R E ~} \mathbf{~ m g} / \mathbf{g})$ | Total Proanthocyanidins <br> (Catechin $\mathbf{~ m g} / \mathbf{g})$ | Total coumarin <br> (coumarin mg/g) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Boerhaavia | Ethanolic | $155.35 \pm 2.50$ | $75.19 \pm 0.19$ | $0.17 \pm 0.25$ | $0.527 \pm 0.2$ |
| diffusa | Acetone | $131.291 \pm 1.5$ | $56.91 \pm 0.28$ | ND | $0.453 \pm 0.11$ |
|  | Ethyl acetate | $118.26 \pm 1.45$ | $32.77 \pm 1.64$ | ND | ND |
|  | Aqueous | $85 \pm 1.30$ | ND | ND | ND |
| Crataeva | Ethanolic | $235.3 \pm 1.94$ | $11.38 \pm 0.13$ | $0.06 \pm 0.11$ | $0.48 \pm 0.1$ |
| nurvala | Acetone | $47.4 \pm 0.73$ | $7.09 \pm 0.19$ | ND | $0.44 \pm 0.11$ |
|  | Ethyl acetate | $43.6 \pm 0.87$ | $3.7 \pm 0.74$ | ND | $0.32 \pm 0.24$ |
|  | Aqueous | $45.8 \pm 0.94$ | $6.5 \pm 0.76$ | ND | ND |

 PHENOLIC CONTENT (A), TOTAL FLAVONOIDS CONTENT FOR STANDARD RUTIN (B), TOTAL PROANTHOCYANIDINS CONTENT FOR STANDARD CATECHIN (C) AND TOTAL COUMARIN FOR STANDARD COUMARIN (D).

The antioxidant activity of Boerhavia diffusa and Crataeva nurvala extracts in solvents of varying polarity were measured regarding hydrogen donating or radical scavenging ability. The method is based on the reduction of alcoholic DPPH solutions in the presence of a hydrogen donating antioxidant. DPPH solutions show a strong absorption band at 517 nm appearing as a deep
violet color. The absorption vanishes and the resulting decolorization is stoichiometric concerning the degree of reduction. The results of the free radical scavenging activity (\%) of the Boerhavia diffusa and Crataeva nurvala extracts assessed by DPPH assay and amount of the sample needed for $50 \%$ inhibition of free radical activity, $\mathrm{IC}_{50}$ values were summarized in Fig. 2 and Table 3.



FIG. 2: FREE RADICAL SCAVENGING ACTIVITY (\%) OF BOERHAVIA DIFFUSA AND CRATAEVA NURVALA
TABLE3. IC $_{50}$ VALUE OF FREE RADICAL SCAVENGING ACTIVITY BY DPPH METHOD

| Plants | $\mathbf{I C}_{\mathbf{5 0}}$ of $\mathbf{D P P H}$ inhibition in $\boldsymbol{\mu g} / \mathbf{m l}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Ethanolic extract | Acetone extract | Ethyl acetate extract | Aqueous extract |
| Boerhaavia diffusa | $57.07 \pm 0.34$ | $63.27 \pm 0.21$ | $65.78 \pm 0.24$ | $91.18 \pm 0.33$ |
| Crataeva nurvala | $77.54 \pm 0.29$ | $69.31 \pm 0.8$ | $156.24 \pm 1.7$ | $134.96 \pm 0.54$ |
| Ascorbic acid (Control) |  |  | $14.82 \pm 0.27$ |  |

Values are expressed in mean $\pm$ SD; *: $P<0.05$

Boerhaavia diffusa ethonolic extract was having phenolic $(23.9 \pm 0.25 \mathrm{mg} / \mathrm{g}$ of gallic acid equivalent), flavonoids ( $13.8 \pm 0.13 \mathrm{mg} / \mathrm{g}$ of rutin equivalents), coumarin ( $1.48 \pm 0.1 \mathrm{mg} / \mathrm{g}$ coumarin
equivalent) and proanthocyanidins contents ( $1.6 \pm$ $0.11 \mathrm{mg} / \mathrm{g}$ equivalent of catechin). The Crataeva nurvala extract showed the least concentration of phenol ( $18.2 \pm 0.50 \mathrm{mg} / \mathrm{g}$ of gallic acid equivalent),
flavonoids ( $11.9 \pm 0.19 \mathrm{mg} / \mathrm{g}$ of rutin equivalents), coumarin ( $1.527 \pm 0.2 \mathrm{mg} / \mathrm{g}$ coumarin equivalent) and proanthocyanidins ( $1.7 \pm 0.25 \mathrm{mg} / \mathrm{g}$ equivalent of catechin) contents.

Spectrophotometric Analysis: The qualitative UV-Vis and FTIR spectrum profile of Boerhavia diffusa and Crataeva nurvala ethanolic extracts were selected at a wavelength from 200 to 1000 nm due to the sharpness of the peaks and proper baseline. The profile showed the peaks with the absorption mentioned in Fig. 3a and 3b. The results of UV-Vis and FTIR peak values and functional groups were represented in Table 4 and 5. The FTIR spectrum confirmed the presence of alcohols, phenols, alkanes, alkynes, alkyl halides, aldehydes, carboxylic acids, aromatics, nitro compounds and amines in different plant extracts.

Chemical Composition of Extracts by GC-MS Analysis: GC-MS chromatogram of the ethanolic extract of Boerhaavia diffusa and Crataeva nurvala Fig. 4 showed peaks indicating the presence of phytochemical constituents. All the constituents were characterized and identified by comparison of the mass spectra of the constituents with the AMDIS and NIST Version-Year 2011 library. The active principles with their retention time (RT), molecular formula, molecular weight (MW) and concentration (\%) are presented in Table 6.


TABLE 4: UV-VIS PEAK VALUES OF ETHANOLIC extracts of boerhavia diffusa and crataeva NURVALA

| Boerhavia diffusa. | Wavelength (nm) | Abs. |
| :---: | :---: | :---: |
|  | 1029 | 0.0779 |
|  | 664 | 0.5630 |
|  | 606 | 0.2517 |
|  | 388 | 3.1294 |
|  | 925 | 0.0114 |
|  | 622 | 0.2335 |
|  | 593 | 0.2437 |
| Crataeva nurvala. | 367 | 2.8693 |
|  | Wavelength (nm) | Abs. |
| 1029 | 0.0877 |  |
|  | 338 | 3.7931 |

TABLE 5: FTIR PEAK VALUES AND FUNCTIONAL GROUPS OF BOERHAVIA DIFFUSA AND CRATAEVA NURVALA

| Boerhavia diffusa | Peak values | Functional group |
| :---: | :---: | :---: |
|  | 3850.92 | Unknown |
|  | 3835.69 | Unknown |
|  | 3813.92 | Unknown |
|  | 3708.51 | Phenols |
|  | 3742.49 | Phenols |
|  | 3390.83 | Alcohols/Phenols |
|  | 2925.54 | Alkanes |
|  | 2354.54 | Unknown |
|  | 1651.41 | Alkenes, Primary |
|  | amines |  |
|  | 1050.53 | Carboxylic acid |
| 1024.04 | Aliphatic Amines |  |
| Crataeva nurvala | Peak values | Functional group |
|  | 3418.94 | Alcohol (including |
|  | phenol) |  |
|  | 2925.59 | Alkanes |
| 2849.06 | Carboxylic acids |  |
|  | 1621.59 | Non-acid carbonyl |
| 1038.76 | Alcohol |  |

FIG. 3A: UV-VISIBLE AND FTIR SPECTRUM OF CRATEVA NURVALA (ETHANOLIC EXTRACT)


FIG. 3B: UV-VISIBLE AND FTIR SPECTRUM OF BOERHAVIA.DIFFUSA (ETHANOLIC EXTRACT)


FIG. 4: TOTAL ION CHROMATOGRAM (GC-MS) OF PLANTS (ETHANOLIC EXTRACTS)
TABLE 6: BIOLOGICALLY ACTIVE CHEMICAL COMPOUNDS OF ETHANOLIC EXTRACT OF BOERHAVIA DIFUSA L. AND CRATEVA NURVALA. A: BOERHAVIA DIFUSA L. (ETHANOLIC EXTRACT)

| CAS | Name of Compound | RT | Purity (\%) | Model | Molecular weight | Molecular formula |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17877428 | >tromethamine (3,7-Dioxa-2,8-disilanonan-5-one, 2,2,8,8-tetramethyl- | 10.5911 | 80\% | $73 \mathrm{~m} / \mathrm{z}$ | 234.110 | $\mathrm{C}_{9} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Si}_{2}$ |
| 7449141 | >Levoglucosan, tris(trimethylsilyl)- | 23.1448 | 46\% | $333 \mathrm{~m} / \mathrm{z}$ | 378.68 | $\mathrm{C}_{15} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Si}_{3}$ |
| EPA-38016 | >D-(-)-Fructopyranose, pentakis(trimethylsilyl) ether (isomer 1) | 26.6323 | 57\% | 438m/z | 541.06 | $\mathrm{C}_{21} \mathrm{H}_{52} \mathrm{O}_{6} \mathrm{Si}_{5}$ |
| EPA-38013 | >D-Pinitol, pentakis(trimethylsilyl) ether | 27.1282 | 52\% | $318 \mathrm{~m} / \mathrm{z}$ | 555.08 | $\mathrm{C}_{22} \mathrm{H}_{54} \mathrm{O}_{6} \mathrm{Si}_{5}$ |
| 6736943 | >D-Galactose, 2,3,4,5,6-pentakis-O-(trimethylsilyl)- | 28.0568 | 33\% | TIC | 570.10 | $\mathrm{C}_{22} \mathrm{H}_{55} \mathrm{NO}_{6} \mathrm{Si}_{5}$ |
| 112390 | >Hexadecanoic acid, methyl ester | 28.7578 | 51\% | 185m/z | 270.45 | $\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{O}_{2}$ |
| EPA-38017 | >á-D-(+)-Talopyranose, pentakis(trimethylsilyl) ether | 29.4953 | 65\% | 206m/z | 541.06 | $\mathrm{C}_{21} \mathrm{H}_{52} \mathrm{O}_{6} \mathrm{Si}_{5}$ |
| EPA-38013 | >á-D-(+)-Xylopyranose, tetrakis(trimethylsilyl) ether | 29.5048 | 59\% | 204m/z | 438.85 | $\mathrm{C}_{17} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{Si}_{4}$ |
| 19126999 | >Glucopyranose, 1,2,3,4,6-pentakis-O-(trimethylsilyl)-, D- | 29.5184 | 48\% | 191m/z | 541.06 | $\mathrm{C}_{21} \mathrm{H}_{52} \mathrm{O}_{6} \mathrm{Si}_{5}$ |
| 18623228 | >D-Xylose, tetrakis(trimethylsilyl)- | 29.5286 | 44\% | 189m/z | 467.89 | $\mathrm{C}_{18} \mathrm{H}_{45} \mathrm{NO}_{5} \mathrm{Si}_{4}$ |
| 19126999 | $>$ Glucopyranose, 1,2,3,4,6-pentakis-O-(trimethylsilyl)-, D- | 30.5667 | 51\% | 206m/z | 541.06 | $\mathrm{C}_{21} \mathrm{H}_{52} \mathrm{O}_{6} \mathrm{Si}_{5}$ |
| 18623228 | >D-Xylose, tetrakis(trimethylsilyl)- | 30.5796 | 55\% | 204m/z | 467.89 | $\mathrm{C}_{18} \mathrm{H}_{45} \mathrm{NO}_{5} \mathrm{Si}_{4}$ |
| 2582798 | >Myo-Inositol, 1,2,3,4,5,6-hexakis-O-(trimethylsilyl)- | 30.7273 | 52\% | 191m/z | 613.24 | $\mathrm{C}_{24} \mathrm{H}_{60} \mathrm{O}_{6} \mathrm{Si}_{6}$ |
| 19127152 | >Mannose, 6-deoxy-2,3,4,5-tetrakis-O-(trimethylsilyl)-, L- | 31.7783 | 41\% | TIC | 452.88 | $\mathrm{C}_{18} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{Si}_{4}$ |
| 2582798 | >Myo-Inositol, 1,2,3,4,5,6-hexakis-O-(trimethylsilyl)- | 34.5787 | 56\% | $221 \mathrm{~m} / \mathrm{z}$ | 613.24 | $\mathrm{C}_{24} \mathrm{H}_{60} \mathrm{O}_{6} \mathrm{Si}_{6}$ |
| 19159252 | >à-D-Glucopyranoside, 1,3,4,6-tetrakis-O-(trimethylsilyl)-á-D-fructofuranosyl 2,3,4,6-tetrakis-O-(trimethylsilyl)- | 48.5498 | 45\% | $361 \mathrm{~m} / \mathrm{z}$ | 919.74 | $\mathrm{C}_{36} \mathrm{H}_{86} \mathrm{O}_{11} \mathrm{Si}_{8}$ |
| EPA-38009 | Sucrose, octakis(trimethylsilyl) ether | 49.7474 | 42\% | $73 \mathrm{~m} / \mathrm{z}$ | 361.00 | $\mathrm{C}_{36} \mathrm{H}_{86} \mathrm{O}_{11} \mathrm{Si}_{8}$ |
| 19159252 | >à-D-Glucopyranoside, 1,3,4,6-tetrakis-O-(trimethylsilyl)-á-D-fructofuranosyl 2,3,4,6-tetrakis-O-(trimethylsilyl)- | 49.7573 | 40\% | $361 \mathrm{~m} / \mathrm{z}$ | 919.74 | $\mathrm{C}_{36} \mathrm{H}_{86} \mathrm{O}_{11} \mathrm{Si}_{8}$ |
| EPA-38009 | Sucrose, octakis(trimethylsilyl) ether | 50.9886 | 39\% | $73 \mathrm{~m} / \mathrm{z}$ | 361.00 | $\mathrm{C}_{36} \mathrm{H}_{86} \mathrm{O}_{11} \mathrm{Si}_{8}$ |
| 2625469 | ß-Sitosterol trimethylsilyl ether | 59.6181 | 76\% | $129 \mathrm{~m} / \mathrm{z}$ | 486.88 | $\mathrm{C}_{32} \mathrm{H}_{58} \mathrm{OSi}$ |
| 545471 | >Lupeol | 59.9548 | 55\% | $105 \mathrm{~m} / \mathrm{z}$ | 426.71 | $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}$ |

B: CRATEVA NURVALA BUCH-HAM (ETHANOLIC EXTRACT)

| CAS | Name of Compound | RT | Purity (\%) | Model | Molecular weight | Molecular formula |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 74978260 | >D-Altro-2-Heptulose, 1,3,4,5,6,7-hexakis-O-(trimethylsilyl)- | 23.1447 | 51 | $205 \mathrm{~m} / \mathrm{z}$ | 643.269 | $\mathrm{C}_{25} \mathrm{H}_{62} \mathrm{O}_{1} \mathrm{Si}_{6}$ |
| EPA-380168 | $>$ D-(-)-Fructopyranose, pentakis(trimethylsilyl) ether (isomer 1) | 26.6577 | 58 | $205 \mathrm{~m} / \mathrm{z}$ | 541.0615 | $\mathrm{C}_{21} \mathrm{H}_{52} \mathrm{O}_{6} \mathrm{Si}_{5}$ |
| 112390 | >Hexadecanoic acid, methyl ester | 28.8189 | 43 | TIC | 270.45 | $\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{O}_{2}$ |
| EPA-366063 | >N-methylene-n-octadecylamine | 33.0643 | 44 | $182 \mathrm{~m} / \mathrm{z}$ | 283.53 | $\mathrm{C}_{19} \mathrm{H}_{41} \mathrm{~N}$ |
| 2582798 | >Myo-Inositol, 1,2,3,4,5,6-hexakis-O-(trimethylsilyl)- | 34.5095 | 35 | $307 \mathrm{~m} / \mathrm{z}$ | 613.24 | $\mathrm{C}_{24} \mathrm{H}_{60} \mathrm{O}_{6} \mathrm{Si}_{6}$ |
| 1617705 | >Lup-20(29)-en-3-one | 59.7533 | 85 | $109 \mathrm{~m} / \mathrm{z}$ | 424.70 | $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}$ |
| 545471 | >Lupeol | 59.9996 | 88 | $189 \mathrm{~m} / \mathrm{z}$ | 426.71 | $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}$ |

TABLE 7: BIOACTIVITY OF PHYTOCOMPONENTS IDENTIFIED IN THE ETHANOLIC EXTRACT OF BOERHAVIA DIFUSA L. AND CRATEVA NURVALA

| Boerhavia difusa L. |  |
| :---: | :---: |
| Name of the compound | Biological Activity** |
| >Hexadecanoic acid, methyl ester | Antioxidant, Hypocholesterolemic, Nematicide, Pesticide, Lubricant, Antiandrogenic, Hemolytic, 5-alpha-reductase inhibitor |
| >Myo-Inositol, 1,2,3,4,5,6-hexakis-O-(trimethylsilyl)- <br> >D-Pinitol, pentakis(trimethylsilyl) ether | Antidepression, liver problems, panic disorders, and diabetes Smart drug, Anticancer, CNS-depressant, Decalcifier, Decongestant, coronary dialator, Decrease oxalate excretion, Decrease Lactate/pyruvate ratio, Dehydrogenase inhibitor, diuretic, provide vitamin D |
| >Glucopyranose, 1,2,3,4,6-pentakis-O-(trimethylsilyl)-, D- | Decrease oxalate excretion, Anticancer, Decalcifier, coronary dilator, Decrease Lactate/pyruvate ratio, diuretic, inhibit production of uric acid, oncostatic, oxidase inhibitor, xo inhibitor |
| >Mannose, 6-deoxy-2,3,4,5-tetrakis-O-(trimethylsilyl)-, L- | Low oxalate, Anti-LDL, Anticancer, Antitumor, Decrease Lactate/pyruvate ratio, laxative, litholytic, decrease oxalate excretion, and inhibit production of uric acid, xo inhibitor |
| $\beta$-Sitosterol trimethylsilyl ether >Lupeol | Antioxidant, analgesic, anti-inflammatory, hypocholesterolemic Anti-inflammatory, arthritis problem, diabetes, cardiovascular ailments, renal disorder, hepatic toxicity, antimicrobial, anti-leukemia |
| Sorbopyranose, 1,2,3,4,5-pentakis-O-(trimethylsilyl)-, L- | Larvicidal, Lactation, Anticancer, Laxative, Anti-leukemia, Litholytic, Lymphatic diseases, oxidase inhibitor |

Crateva nurvala

Name of the compound
>Hexadecanoic acid, methyl ester
>Myo-Inositol, 1,2,3,4,5,6-hexakis-O-(trimethylsilyl)-
$>$ Lup-20(29)-en-3-one
Sorbopyranose, 1,2,3,4,5-pentakis-O-(trimethylsilyl)-, L-
>Lupeol

Biological Activity**
Antioxidant, Hypocholesterolemic, Nematicide, Pesticide, Lubricant, Antiandrogenic, Hemolytic, 5-alpha-reductase inhibitor Antidepression, liver problems, panic disorders, and diabetes Anti-leukamia, antibacterial, Antioxidant, Antitumor. Larvicidal, Lactation, Anticancer, Laxative, Anti-leukemia, Litholytic, Lymphatic diseases, oxidase inhibitor
Anti-inflammatory, arthritis problem, diabetes, cardiovascular ailments, renal disorder, hepatic toxicity, antimicrobial, anti-leukemia
(**Activity source: Dr. Duke's Phytochemical and Ethnobotanical Database)

Glycolate Oxidase and Lactate Dehydrogenase Inhibition and Mode of Inhibition: The experimental evidence indicates that all ethanolic extracts of Boerhavia diffusa and Crateva nurvala showed a good activity profile for inhibition of glycolate oxidase and lactate dehydrogenase as
indicated by $\mathrm{IC}_{50}(\mu \mathrm{M})$ Fig. 5 and 6; Table 8. $\mathrm{V}_{\text {max }}$ and Km of $B$. diffusa and C. nurvala (ethanolic extracts) for lactate dehydrogenase (LDH) Inhibition and glycolate oxidase inhibition are mentioned in Fig. 7 and 8; Table 9 and 10.


FIG. 5: LACTATE DEHYDROGENASE ENZYME INHIBITION ACTIVITY (\%)


FIG. 6: GLYCOLATE OXIDASE ENZYME INHIBITION ACTIVITY (\%)


FIG. 7: LINEWEAVER-BURK PLOT FOR ENZYME GLYCOLATE OXIDASE


FIG. 8: LINEWEAVER-BURK PLOT FOR ENZYME LACTATE DEHYDROGENASE
TABLE 8: IC $_{50}$ VALUE OF ENZYME GLYCOLATE OXIDASE AND LACTATE DEHYDROGENASE I: GLYCOLATE OXIDASE

| Plants | $\mathbf{I C}_{\mathbf{5 0}}$ of glycolate oxidase (GOX) inhibition in $\boldsymbol{\mu g} / \mathbf{m l}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Ethanolic extract | Acetone extract | Ethyl acetate extract | Aqueous extract |
| Boerhavia diffusa | $69.53 \pm 0.37$ | $87.53 \pm 0.96$ | $95.50 \pm 1.4$ | $167.11 \pm 0.21$ |
| Crataeva nurvala | $86.50 \pm 0.17$ | $110.09 \pm 0.59$ | $313.84 \pm 1.53$ | $192.60 \pm 1.35$ |

## II: LACTATE DEHYDROGENASE

| Plants | IC $_{\mathbf{5 0}}$ of Lactate dehydrogenase (LDH) inhibition in $\boldsymbol{\mu g} / \mathbf{m l}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Ethanolic extract | Acetone extract | Ethyl acetate extract | Aqueous extract |
| Boerhavia diffusa | $73.67 \pm 1.21$ | $116.27 \pm 1.1$ | $158.52 \pm 0.84$ | $161.31 \pm 1.52$ |
| Crataeva nurvala | $149.50 \pm 1.60$ | $178.74 \pm 0.80$ | $318.56 \pm 1.82$ | $260.41 \pm 0.98$ |
| Vayyyy |  |  |  |  |

Values are expressed in mean $\pm$ SD; *: $P<0.05$
TABLE 9: $\mathrm{V}_{\text {max }}$ AND Km OF B. DIFFUSA AND C. NURVALA (ETHANOLIC EXTRACTS) FOR LACTATE DEHYDROGENASE (LDH) INHIBITION

| Samples | Concentrations ( $\mu \mathrm{g} / \mathrm{ml}$ ) | Vmax ( $\mu \mathrm{g} / \mathrm{min}$ ) | $\mathbf{K m}(\mu \mathrm{g} / \mathrm{ml})$ | Type of Inhibition | IC $\mathrm{C}_{50}$ value ( $\mu \mathrm{g} / \mathrm{ml}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| B. diffusa | 10 | 2.38 | 1.754 | Mixed type ( | 73.67 |
|  | 25 | 1.42 | 1.639 | between |  |
|  | 50 | 1.25 | 1.639 | Uncompetitive to |  |
|  | 75 | 0.90 | 1 | Non-competitive |  |
|  | 100 | 0.76 | 0.833 | Inhibition) |  |
| C. nurvala | 10 | 1.31 | 1.63 | Non-competitive | 149.50 |
|  | 25 | 1.25 | 1.63 |  |  |
|  | 50 | 1.08 | 1.63 |  |  |
|  | 75 | 1 | 1.66 |  |  |
|  | 100 | 0.76 | 1.17 |  |  |

TABLE 10: $\mathrm{V}_{\max }$ AND Km OF B. DIFFUSA AND C. NURVALA (ETHANOLIC EXTRACTS) FOR GLYCOLATE OXIDASE INHIBITION

| Samples | Concentrations ( $\mu \mathrm{g} / \mathrm{ml}$ ) | Vmax ( $\mu \mathrm{g} / \mathrm{min}$ ) | $\mathbf{K m}(\mu \mathrm{g} / \mathrm{ml})$ | Type of Inhibition | IC $\mathrm{C}_{50}$ value ( $\mu \mathrm{g} / \mathrm{ml}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| B. diffusa | 10 | 0.033 | 1.11 | Uncompetitive | 69.53 |
|  | 25 | 0.028 | 1.05 |  |  |
|  | 50 | 0.016 | 0.8 |  |  |
|  | 75 | 0.0153 | 0.76 |  |  |
|  | 100 | 0.0105 | 0.64 |  |  |
| C. nurvala | 10 | 0.031 | 0.86 | Non-competitive | 86.50 |
|  | 25 | 0.028 |  |  |  |
|  | 50 | 0.022 |  |  |  |
|  | 75 | 0.018 |  |  |  |
|  | 100 | 0.0142 |  |  |  |

ADMET Predictions: The potential ADME profiles of the compounds as predicted using an admetSAR server, while the distribution profile of the compounds as obtained from the admetSAR server is shown in Table 11. Computational study for the prediction of the relevant properties
influencing bioactivity of the lead compounds was performed. The ADME properties of the compounds were evaluated, and the selected properties are linked to metabolism, cell permeation.

## TABLE 11: ADMET PREDICTIONS

## Compound 1: à-D-(+)-Talopyranose, pentakis (trimethylsilyl) ether



ADMET PREDICTED PROFILE - CLASSIFICATION

| Model | Result | Probability |
| :---: | :---: | :---: |
| Blood-Brain Barrier | Absorption | 0.8921 |
| Human Intestinal Absorption | BBB+ | 0.8550 |
| Caco-2 Permeability | HIA- | 0.5487 |
| P-glycoprotein Substrate | Caco2+ | 0.5765 |
| P-glycoprotein Inhibitor | Non-substrate | 0.5502 |
|  | Inhibitor | 0.9673 |
| Renal Organic Cation Transporter | Non-inhibitor | 0.8459 |
|  | Non-inhibitor |  |
| Subcellular localization | Distribution | 0.6510 |
| CYP450 2C9 Substrate | Mitochondria |  |
| CYP450 2D6 Substrate | Metabolism | 0.8354 |
| CYP450 3A4 Substrate | Non-substrate | 0.8224 |
| CYP450 1A2 Inhibitor | Non-substrate | 0.5799 |
| CYP450 2C9 Inhibitor | Substrate | 0.8483 |
| CYP450 2D6 Inhibitor | Non-inhibitor | 0.8869 |
| CYP450 2C19 Inhibitor | Non-inhibitor | 0.9098 |
| CYP450 3A4 Inhibitor | Non-inhibitor | 0.7904 |
| CYP Inhibitory Promiscuity | Non-inhibitor | 0.9682 |
|  | Non-inhibitor | 0.9587 |
| CYP Inhibitory Promiscuity | Excretion |  |
| Human Ether-a-go-go-Related Gene | Toxicity | 0.9544 |
| Inhibition | Weak inhibitor | 0.9550 |
| AMES Toxicity | Non-inhibitor | 0.5875 |
| Carcinogens | AMES toxic | 0.7804 |
| Fish Toxicity | Non-carcinogens | 0.9002 |
| Tetrahymena Pyriformis Toxicity | Low FHMT | 0.5591 |
| Honey Bee Toxicity | Low TPT | 0.7733 |
| Biodegradation | High HBT | 0.6437 |
| Acute Oral Toxicity | Not ready biodegradable | 0.5012 |
| Carcinogenicity (Three-class) | III | 0.6119 |

ADMET PREDICTED PROFILE - REGRESSION

| Model | Value | Unit |
| :---: | :---: | :---: |
|  | Absorption | LogS |
| Aqueous solubility | -1.9609 | $\mathrm{LogPapp}, \mathrm{cm} / \mathrm{s}$ |
| Caco-2 Permeability | 0.7929 |  |
|  | Distribution |  |
|  | Metabolism |  |
|  | Excretion | $\mathrm{LD}_{50}, \mathrm{~mol} / \mathrm{kg}$ |
| Toxicity | pLC |  |
| Rat Acute Toxicity | 2.5012 | pIGC |
| Fish Toxicity | 1.4568 | $\mathrm{ug} / \mathrm{L}$ |

Compound 2: Arabinopyranose, tetrakis-O-(trimethylsilyl)-, à-D-


ADMET PREDICTED PROFILE - CLASSIFICATION

| Model | Result | Probability |
| :---: | :---: | :---: |
| Absorption |  |  |
| Blood-Brain Barrier | BBB+ | 0.8827 |
| Human Intestinal Absorption | HIA+ | 0.6426 |
| Caco-2 Permeability | Caco2- | 0.5405 |
| P-glycoprotein Substrate | Non-substrate | 0.6829 |
| P-glycoprotein Inhibitor | Non-inhibitor | 0.6470 |
|  | Non-inhibitor | 0.8045 |
| Renal Organic Cation Transporter | Non-inhibitor | 0.8434 |
| Distribution |  |  |
| Subcellular localization | Mitochondria | 0.7063 |
| Metabolism |  |  |
| CYP450 2C9 Substrate | Non-substrate | 0.8123 |
| CYP450 2D6 Substrate | Non-substrate | 0.8160 |
| CYP450 3A4 Substrate | Substrate | 0.5652 |
| CYP450 1A2 Inhibitor | Non-inhibitor | 0.8670 |
| CYP450 2C9 Inhibitor | Non-inhibitor | 0.8627 |
| CYP450 2D6 Inhibitor | Non-inhibitor | 0.8911 |
| CYP450 2C19 Inhibitor | Non-inhibitor | 0.7965 |
| CYP450 3A4 Inhibitor | Non-inhibitor | 0.9008 |
| CYP Inhibitory Promiscuity | Low CYP Inhibitory Promiscuity | 0.9624 |
| Excretion |  |  |
| Toxicity |  |  |
| Human Ether-a-go-go-Related Gene | Weak inhibitor | 0.9649 |
| Inhibition | Non-inhibitor | 0.8872 |
| AMES Toxicity | Non-AMES toxic | 0.5000 |
| Carcinogens | Carcinogens | 0.6667 |
| Fish Toxicity | Low FHMT | 0.8148 |
| Tetrahymena pyriformis Toxicity | Low TPT | 0.7104 |
| Honey Bee Toxicity | High HBT | 0.6987 |
| Biodegradation | Not ready biodegradable | 0.6385 |
| Acute Oral Toxicity | III | 0.5320 |
| Carcinogenicity (Three-class) | Non-required | 0.5694 |

## ADMET PREDICTED PROFILE - REGRESSION

| Model | Value | Unit |
| :---: | :---: | :---: |
|  | Absorption | LogS |
| Aqueous solubility | -1.6569 | $\mathrm{LogPapp}, \mathrm{cm} / \mathrm{s}$ |
| Caco-2 Permeability | 0.7028 |  |
|  | Distribution |  |
|  | Metabolism |  |
| Excretion | $\mathrm{LD}_{50}, \mathrm{~mol} / \mathrm{kg}$ |  |
| Rat Acute Toxicity | Toxicity | $\mathrm{pLC}_{50}, \mathrm{mg} / \mathrm{L}$ |
| Fish Toxicity | 2.6942 | $\mathrm{pIGC}_{50}, \mathrm{ug} / \mathrm{L}$ |

Compound 3: Glucofuranoside, methyl 2,3,5,6-tetrakis-O-(trimethylsilyl)-, à-D-


ADMET PREDICTED PROFILE - CLASSIFICATION

| Model | Result | Probability |
| :---: | :---: | :---: |
| Blood-Brain Barrier | Absorption | 0.8921 |
| Human Intestinal Absorption | BBB+ | 0.8550 |
| Caco-2 Permeability | HIA- | 0.5487 |
| P-glycoprotein Substrate | Caco2+ | 0.5765 |
| P-glycoprotein Inhibitor | Non-substrate | 0.5502 |
|  | Inhibitor | 0.9673 |
| Renal Organic Cation Transporter | Non-inhibitor | 0.8459 |
| Subcellular localization | Non-inhibitor | 0.6510 |
|  | Distribution |  |
| CYP450 2C9 Substrate | Mitochondria | 0.8354 |
| CYP450 2D6 Substrate | Metabolism | 0.8224 |
| CYP450 3A4 Substrate | Non-substrate | 0.5799 |
| CYP450 1A2 Inhibitor | Non-substrate | 0.8483 |
| CYP450 2C9 Inhibitor | Substrate | 0.8869 |
| CYP450 2D6 Inhibitor | Non-inhibitor | 0.9098 |
| CYP450 2C19 Inhibitor | Non-inhibitor | 0.7904 |
| CYP450 3A4 Inhibitor | Non-inhibitor | 0.9682 |
| CYP Inhibitory Promiscuity | Non-inhibitor | 0.9587 |
|  | Non-inhibitor |  |
| CYP Inhibitory Promiscuity | Excretion | 0.9544 |
| Human Ether-a-go-go-Related Gene Inhibition | Toxicity | 0.9550 |
| AMES Toxicity | Weak inhibitor | 0.5875 |
| Carcinogens | Non-inhibitor | 0.7804 |
| Fish Toxicity | AMES toxic | 0.9002 |
| Tetrahymena Pyriformis Toxicity | Non-carcinogens | 0.5591 |
| Honey Bee Toxicity | Low FHMT | 0.7733 |
| Biodegradation | Low TPT | 0.6437 |
| Acute Oral Toxicity | High HBT | 0.5012 |
|  | Not ready biodegradable | 0.6119 |

ADMET PREDICTED PROFILE - REGRESSION

| Model | Value | Unit |
| :---: | :---: | :---: |
| Aqueous solubility | Absorption | LogS |
| Caco-2 Permeability | -1.9609 | LogPapp, $\mathrm{cm} / \mathrm{s}$ |
|  | 0.7929 |  |
|  | Distribution |  |
|  | Metabolism |  |
| Excretion | $\mathrm{LD}_{50}, \mathrm{~mol} / \mathrm{kg}$ |  |
| Rat Acute Toxicity | Toxicity | $\mathrm{pLC}_{50}, \mathrm{mg} / \mathrm{L}$ |
| Fish Toxicity | 2.5012 | $\mathrm{pIGC}_{50}, \mathrm{ug} / \mathrm{L}$ |

Compound 4: Glucopyranose, 1,2,3,4,6-pentakis-O-(trimethylsilyl)-, D-


ADMET PREDICTED PROFILE - CLASSIFICATION

| Model | Result | Probability |
| :---: | :---: | :---: |
| Blood-Brain Barrier | Absorption | 0.8921 |
| Human Intestinal Absorption | BBB+ | 0.8550 |
| Caco-2 Permeability | HIA- | 0.5487 |
| P-glycoprotein Substrate | Caco2+ | 0.5765 |
| P-glycoprotein Inhibitor | Non-substrate | 0.5502 |
|  | Inhibitor | 0.9673 |
| Renal Organic Cation Transporter | Non-inhibitor | 0.8459 |
| Subcellular localization | Non-inhibitor | 0.6510 |
|  | Distribution |  |
| CYP450 2C9 Substrate | Mitochondria | 0.8354 |
| CYP450 2D6 Substrate | Metabolism | 0.8224 |
| CYP450 3A4 Substrate | Non-substrate | 0.5799 |
| CYP450 1A2 Inhibitor | Non-substrate | 0.8483 |
| CYP450 2C9 Inhibitor | Substrate | 0.8869 |
| CYP450 2D6 Inhibitor | Non-inhibitor | 0.9098 |
| CYP450 2C19 Inhibitor | Non-inhibitor | 0.7904 |
| CYP450 3A4 Inhibitor | Non-inhibitor | 0.9682 |
| CYP Inhibitory Promiscuity | Non-inhibitor | 0.9587 |
|  | Non-inhibitor |  |
| CYP Inhibitory Promiscuity | Excretion | 0.9544 |
| Human Ether-a-go-go-Related Gene Inhibition | Toxicity | 0.9550 |
| AMES Toxicity | Weak inhibitor | 0.5875 |
| Carcinogens | Non-inhibitor | 0.7804 |
| Fish Toxicity | AMES toxic | 0.9002 |
| Tetrahymena Pyriformis Toxicity | Non-carcinogens | 0.5591 |
| Honey Bee Toxicity | Low FHMT | 0.7733 |
| Biodegradation | Low TPT | 0.6437 |
| Acute Oral Toxicity | High HBT | 0.5012 |
| Carcinogenicity (Three-class) | Cot ready biodegradable | 0.6119 |

ADMET PREDICTED PROFILE - REGRESSION

| Model | Value | Unit |
| :---: | :---: | :---: |
|  | Absorption | LogS |
| Aqueous solubility | -1.9609 | LogPapp, $\mathrm{cm} / \mathrm{s}$ |
| Caco-2 Permeability | 0.7929 |  |
|  | Distribution |  |
|  | Metabolism |  |
| Excretion | $\mathrm{LD}_{50}, \mathrm{~mol} / \mathrm{kg}$ |  |
| Rat Acute Toxicity | Toxicity | $\mathrm{pLC}_{50}, \mathrm{mg} / \mathrm{L}$ |
| Fish Toxicity | 2.5012 | $\mathrm{pIGC}_{50}, \mathrm{ug} / \mathrm{L}$ |

Compound 5: Hexadecanoic acid, methyl ester


ADMET PREDICTED PROFILE - CLASSIFICATION

| Model | Result | Probability |
| :---: | :---: | :---: |
| Blood-Brain Barrier | Absorption | 0.9848 |
| Human Intestinal Absorption | BBB+ | 0.9881 |
| Caco-2 Permeability | HIA+ | 0.8141 |
| P-glycoprotein Substrate | Caco2+ | 0.7061 |
| P-glycoprotein Inhibitor | Non-substrate | 0.8951 |
|  | Non-inhibitor | 0.7988 |
| Renal Organic Cation Transporter | Non-inhibitor | 0.8908 |
|  | Non-inhibitor |  |
| Subcellular localization | Distribution | 0.4276 |
| CYP450 2C9 Substrate | Mitochondria |  |
| CYP450 2D6 Substrate | Metabolism | 0.8648 |
| CYP450 3A4 Substrate | Non-substrate | 0.8885 |
| CYP450 1A2 Inhibitor | Non-substrate | 0.6454 |
| CYP450 2C9 Inhibitor | Non-substrate | 0.5548 |
| CYP450 2D6 Inhibitor | Non-inhibitor | 0.9329 |
| CYP450 2C19 Inhibitor | Non-inhibitor | 0.9502 |
| CYP450 3A4 Inhibitor | Non-inhibitor | 0.9524 |
| CYP Inhibitory Promiscuity | Non-inhibitor | 0.9773 |
|  | Non-inhibitor | 0.9176 |
| Human Ether-a-go-go-Related Gene | Low CYP Inhibitory Promiscuity |  |
| Inhibition | Excretion | 0.9104 |
| AMES Toxicity | Toxicity | 0.8787 |
| Carcinogens | Weak inhibitor | 0.9765 |
| Fish Toxicity | Non-inhibitor | 0.5347 |
| Tetrahyena Pyriformis Toxicity | Non-AMES toxic | 0.8790 |
| Honey Bee Toxicity | Carcinogens | 0.8990 |
| Biodegradation | High FHMT | 0.7623 |
| Acute Oral Toxicity | High TPT | 0.8747 |
| Carcinogenicity (Three-class) | High HBT | 0.8589 |
|  | Ready biodegradable | 0.7269 |

ADMET PREDICTED PROFILE - REGRESSION

| Model | Value | Unit |
| :---: | :---: | :---: |
|  | Absorption | LogS |
| Aqueous solubility | -3.3987 | $\mathrm{LogPapp}, \mathrm{cm} / \mathrm{s}$ |
| Caco-2 Permeability | 1.2386 |  |
|  | Distribution |  |
|  | Metabolism |  |
| Excretion | $\mathrm{LD}_{50}, \mathrm{~mol} / \mathrm{kg}$ |  |
| Rat Acute Toxicity | Toxicity | $\mathrm{pLC}_{50}, \mathrm{mg} / \mathrm{L}$ |
| Fish Toxicity | 1.4915 | $\mathrm{pIGC}_{50}, \mathrm{ug} / \mathrm{L}$ |

Compound 6: Lup-20(29)-en-3-one


ADMET PREDICTED PROFILE - CLASSIFICATION

| Model | Result | Probability |
| :---: | :---: | :---: |
| Blood-Brain Barrier | Absorption | 0.9583 |
| Human Intestinal Absorption | BBB+ | 1.0000 |
| Caco-2 Permeability | HIA+ | 0.8153 |
| P-glycoprotein Substrate | Caco2+ | 0.6211 |
| P-glycoprotein Inhibitor | Substrate | 0.8621 |
|  | Inhibitor | 0.5218 |
| Renal Organic Cation Transporter | Non-inhibitor | 0.6970 |
| Subcellular localization | Non-inhibitor |  |
|  | Distribution | 0.4922 |
| CYP450 2C9 Substrate | Mitochondria |  |
| CYP450 2D6 Substrate | Metabolism | 0.8462 |
| CYP450 3A4 Substrate | Non-substrate | 0.8797 |
| CYP450 1A2 Inhibitor | Non-substrate | 0.7584 |
| CYP450 2C9 Inhibitor | Substrate | 0.8231 |
| CYP450 2D6 Inhibitor | Non-inhibitor | 0.8670 |
| CYP450 2C19 Inhibitor | Non-inhibitor | 0.9589 |
| CYP450 3A4 Inhibitor | Non-inhibitor | 0.5701 |
| CYP Inhibitory Promiscuity | Non-inhibitor | 0.8408 |
|  | Non-inhibitor | 0.7721 |
| CYP Inhibitory Promiscuity |  |  |
| Human Ether-a-go-go-Related Gene | Excretion |  |
| Inhibition | Toxicity | 0.8295 |
| AMES Toxicity | Weak inhibitor | 0.7390 |
| Carcinogens | Non-inhibitor | 0.9620 |
| Fish Toxicity | Non-AMES toxic | 0.8938 |
| Tetrahymena Pyriformis Toxicity | Non-carcinogens | 0.9970 |
| Honey Bee Toxicity | High FHMT | 0.8992 |
| Biodegradation | High TPT | 0.8614 |
| Acute Oral Toxicity | High HBT | 0.9776 |
| Carcinogenicity (Three-class) | Iow | 0.6116 |
|  | Iot ready biodegradable | 0.4936 |

ADMET PREDICTED PROFILE - REGRESSION

| Model | Value | Unit |
| :---: | :---: | :---: |
| Aqueous solubility Caco-2 Permeability | Absorption |  |
|  | -4.0561 | LogS |
|  | 1.8360 | LogPapp, cm/s |
|  | Distribution |  |
|  | Metabolism |  |
|  | Excretion |  |
|  | Toxicity |  |
| Rat Acute Toxicity | 2.4398 | $\mathrm{LD}_{50}, \mathrm{~mol} / \mathrm{kg}$ |
| Fish Toxicity | -0.2851 | $\mathrm{pLC}_{50}, \mathrm{mg} / \mathrm{L}$ |
| Tetrahymena Pyriformis Toxicity | 1.0119 | $\mathrm{pIGC}_{50}$, ug/L |

## Compound 7: Lupeol



ADMET PREDICTED PROFILE - CLASSIFICATION

| Model | Result | Probability |
| :---: | :---: | :---: |
| Blood-Brain Barrier | Absorption |  |
| Human Intestinal Absorption | BBB+ | 0.9592 |
| Caco-2 Permeability | HIA+ | 0.9974 |
| P-glycoprotein Substrate | Caco2+ | 0.8499 |
| P-glycoprotein Inhibitor | Substrate | 0.6969 |
|  | Inhibitor | 0.6979 |
| Renal Organic Cation Transporter | Non-inhibitor | 0.8203 |
|  | Non-inhibitor | 0.7710 |
| Subcellular localization | Distribution |  |
|  | Lysosome | 0.5245 |
| CYP450 2C9 Substrate | Metabolism |  |
| CYP450 2D6 Substrate | Non-substrate | 0.8184 |
| CYP450 3A4 Substrate | Non-substrate | 0.9047 |
| CYP450 1A2 Inhibitor | Substrate | 0.7687 |
| CYP450 2C9 Inhibitor | Non-inhibitor | 0.8619 |
| CYP450 2D6 Inhibitor | Non-inhibitor | 0.8200 |
| CYP450 2C19 Inhibitor | Non-inhibitor | 0.9506 |
| CYP450 3A4 Inhibitor | Non-inhibitor | 0.7320 |
| CYP Inhibitory Promiscuity | Non-inhibitor | 0.8441 |
|  | Low CYP Inhibitory Promiscuity | 0.7562 |
| Excretion |  |  |
| Human Ether-a-go-go-Related Gene | Toxicity | 0.8599 |
| Inhibition | Weak inhibitor | 0.7580 |
| AMES Toxicity | Non-inhibitor | 0.9420 |
| Carcinogens | Non-AMES toxic | 0.9188 |
| Fish Toxicity | Non-carcinogens | 0.9972 |
| Tetrahymena Pyriformis Toxicity | High FHMT | 0.9185 |
| Honey Bee Toxicity | High TPT | 0.8611 |
| Biodegradation | High HBT | 0.9793 |
| Acute Oral Toxicity | Not ready biodegradable | 0.8578 |
| Carcinogenicity (Three-class) | III | 0.5755 |
|  | Non-required |  |

ADMET PREDICTED PROFILE - REGRESSION

| Model | Value | Unit |
| :---: | :---: | :---: |
|  | Absorption | LogS |
| Aqueous solubility | -4.4139 | $\mathrm{LogPapp}, \mathrm{cm} / \mathrm{s}$ |
| Caco-2 Permeability | 1.6517 |  |
|  | Distribution |  |
|  | Metabolism |  |
|  | Excretion | $\mathrm{LD}_{50}, \mathrm{~mol} / \mathrm{kg}$ |
|  | Toxicity | $\mathrm{pLC}_{50}, \mathrm{mg} / \mathrm{L}$ |
| Rat Acute Toxicity | 3.3838 | pIGC |
| Fish Toxicity | -0.0530 | $\mathrm{ug} / \mathrm{L}$ |

Compound 8: Mannose, 2,3,4,5,6-pentakis-O-(trimethylsilyl)-, D-


ADMET PREDICTED PROFILE - CLASSIFICATION

| Model | Result | Probability |
| :---: | :---: | :---: |
| Blood-Brain Barrier | Absorption | 0.8827 |
| Human Intestinal Absorption | BBB+ | 0.6426 |
| Caco-2 Permeability | HIA+ | 0.5405 |
| P-glycoprotein Substrate | Caco2- | 0.6829 |
| P-glycoprotein Inhibitor | Non-substrate | 0.6470 |
|  | Non-inhibitor | 0.8045 |
| Renal Organic Cation Transporter | Non-inhibitor | 0.8434 |
| Subcellular localization | Non-inhibitor |  |
|  | Distribution | 0.7063 |
| CYP450 2C9 Substrate | Mitochondria |  |
| CYP450 2D6 Substrate | Metabolism | 0.8123 |
| CYP450 3A4 Substrate | Non-substrate | 0.8160 |
| CYP450 1A2 Inhibitor | Non-substrate | 0.5652 |
| CYP450 2C9 Inhibitor | Substrate | 0.8670 |
| CYP450 2D6 Inhibitor | Non-inhibitor | 0.8627 |
| CYP450 2C19 Inhibitor | Non-inhibitor | 0.8911 |
| CYP450 3A4 Inhibitor | Non-inhibitor | 0.7965 |
| CYP Inhibitory Promiscuity | Non-inhibitor | 0.9008 |
|  | Non-inhibitor | 0.9624 |
| Human Ether-a-go-go-Related Gene | Inhibition | Excretion |
| AMES Toxicity | Toxicity |  |
| Carcinogens | Weak inhibitor | 0.9649 |
| Fish Toxicity | Non-inhibitor | 0.8872 |
| Tetrahymena Pyriformis Toxicity | Non-AMES toxic | 0.5000 |
| Honey Bee Toxicity | Carcinogens | 0.6667 |
| Biodegradation | Low FHMT | 0.8148 |
| Acute Oral Toxicity | Low TPT | 0.7104 |
| Carcinogenicity (Three-class) | High HBT | 0.6987 |
|  | Not ready biodegradable | 0.6385 |
| IIII | 0.5320 |  |

ADMET PREDICTED PROFILE - REGRESSION

| Model | Value | Unit |
| :---: | :---: | :---: |
| Aqueous solubility | Absorption | LogS |
| Caco-2 Permeability | -1.6569 | $\mathrm{LogPapp}, \mathrm{cm} / \mathrm{s}$ |
|  | 0.7028 |  |
|  | Distribution |  |
|  | Metabolism |  |
| Excretion | $\mathrm{LD}_{50}, \mathrm{~mol} / \mathrm{kg}$ |  |
| Rat Acute Toxicity | Toxicity | $\mathrm{pLC}_{50}, \mathrm{mg} / \mathrm{L}$ |
| Fish Toxicity | 2.6942 | pIGC |
| 50 |  |  |

Compound 9: Mannose, 6-deoxy-2,3,4,5-tetrakis-O-(trimethylsilyl)


ADMET PREDICTED PROFILE - CLASSIFICATION

| Model | Result | Probability |
| :---: | :---: | :---: |
| Blood-Brain Barrier | Absorption | 0.9473 |
| Human Intestinal Absorption | BBB+ | 0.7642 |
| Caco-2 Permeability | HIA+ | 0.5238 |
| P-glycoprotein Substrate | Caco2- | 0.7040 |
| P-glycoprotein Inhibitor | Non-substrate | 0.8254 |
|  | Non-inhibitor | 0.9217 |
| Renal Organic Cation Transporter | Non-inhibitor | 0.9392 |
| Subcellular localization | Non-inhibitor |  |
|  | Distribution | 0.7589 |
| CYP450 2C9 Substrate | Mitochondria |  |
| CYP450 2D6 Substrate | Metabolism | 0.8449 |
| CYP450 3A4 Substrate | Non-substrate | 0.8613 |
| CYP450 1A2 Inhibitor | Non-substrate | 0.5215 |
| CYP450 2C9 Inhibitor | Non-substrate | 0.8736 |
| CYP450 2D6 Inhibitor | Non-inhibitor | 0.8713 |
| CYP450 2C19 Inhibitor | Non-inhibitor | 0.9349 |
| CYP450 3A4 Inhibitor | Non-inhibitor | 0.7864 |
| CYP Inhibitory Promiscuity | Non-inhibitor | 0.9446 |
|  | Non-inhibitor | 0.9441 |
| CYP Inhibitory Promiscuity | Excretion |  |
| Human Ether-a-go-go-Related Gene | Toxicity | 0.9871 |
| Inhibition | Weak inhibitor | 0.9439 |
| AMES Toxicity | Non-inhibitor | 0.6867 |
| Carcinogens | Non-AMES toxic | 0.7110 |
| Fish Toxicity | Carcinogens | 0.6785 |
| Tetrahymena Pyriformis Toxicity | Low FHMT | 0.9571 |
| Honey Bee Toxicity | Low TPT | 0.8134 |
| Biodegradation | High HBT | 0.5187 |
| Acute Oral Toxicity | Ready biodegradable | 0.4870 |
| Carcinogenicity (Three-class) | III | 0.6385 |

ADMET PREDICTED PROFILE - REGRESSION

| Model | Value | Unit |
| :---: | :---: | :---: |
|  | Absorption | LogS |
| Aqueous solubility | -0.6165 | $\mathrm{LogPapp}, \mathrm{cm} / \mathrm{s}$ |
| Caco-2 Permeability | 0.8255 |  |
|  | Distribution |  |
|  | Metabolism |  |
| Excretion | $\mathrm{LD}_{50}, \mathrm{~mol} / \mathrm{kg}$ |  |
| Rat Acute Toxicity | Toxicity | $\mathrm{pLC}_{50}, \mathrm{mg} / \mathrm{L}$ |
| Fish Toxicity | 2.2175 | pIGC |
| Tetrahymena Pyriformis Toxicity | 2.3096 | $\mathrm{ug} / \mathrm{L}$ |

Compound 10: Myo-Inositol, 1,2,3,4,5,6-hexakis-O-(trimethylsilyl)-


ADMET PREDICTED PROFILE - CLASSIFICATION

| Model | Result | Probability |
| :---: | :---: | :---: |
|  | Absorption |  |
| Blood-Brain Barrier | BBB+ | 0.9112 |
| Human Intestinal Absorption | HIA+ | 0.7965 |
| Caco-2 Permeability | Caco2+ | 0.5800 |
| P-glycoprotein Substrate | Non-substrate | 0.6926 |
| P-glycoprotein Inhibitor | Non-inhibitor | 0.6467 |
|  | Non-inhibitor | 0.9721 |
| Renal Organic Cation Transporter | Non-inhibitor | 0.9037 |
| Subcellular localization | Distribution | 0.7017 |
|  | Mitochondria |  |
| CYP450 2C9 Substrate | Metabolism | 0.8327 |
| CYP450 2D6 Substrate | Non-substrate | 0.8141 |
| CYP450 3A4 Substrate | Non-substrate | 0.5518 |
| CYP450 1A2 Inhibitor | Substrate | 0.8293 |
| CYP450 2C9 Inhibitor | Non-inhibitor | 0.8767 |
| CYP450 2D6 Inhibitor | Non-inhibitor | 0.9374 |
| CYP450 2C19 Inhibitor | Non-inhibitor | 0.6998 |
| CYP450 3A4 Inhibitor | Non-inhibitor | 0.9147 |
| CYP Inhibitory Promiscuity | Non-inhibitor | 0.9436 |
|  | Low CYP Inhibitory Promiscuity | Excretion |
| Toxicity |  |  |
| Human Ether-a-go-go-Related Gene | Weak inhibitor | 0.9590 |
| Inhibition | Non-inhibitor | 0.9482 |
| AMES Toxicity | Non-AMES toxic | 0.7651 |
| Carcinogens | Non-carcinogens | 0.5987 |
| Fish Toxicity | Low FHMT | 0.7004 |
| Tetrahymena Pyriformis Toxicity | Low TPT | 0.9318 |
| Honey Bee Toxicity | High HBT | 0.8376 |
| Biodegradation | Not ready biodegradable | 0.7998 |
| Acute Oral Toxicity | III | 0.4080 |
| Carcinogenicity (Three-class) | Non-required | 0.6017 |
|  |  |  |

ADMET PREDICTED PROFILE - REGRESSION

| Model | Value | Unit |
| :---: | :---: | :---: |
| Aqueous solubility | Absorption | LogS |
| Caco-2 Permeability | -2.4271 | $\mathrm{LogPapp}, \mathrm{cm} / \mathrm{s}$ |
|  | 1.0786 |  |
|  | Distribution |  |
|  | Metabolism |  |
| Excretion | $\mathrm{LD}_{50}, \mathrm{~mol} / \mathrm{kg}$ |  |
| Rat Acute Toxicity | Toxicity | $\mathrm{pLC}_{50}, \mathrm{mg} / \mathrm{L}$ |
| Fish Toxicity | 2.2058 | $\mathrm{pIGC}_{50}, \mathrm{ug} / \mathrm{L}$ |

Compound 11: Pinotol, pentakis(trimethylsilyl) ether


ADMET PREDICTED PROFILE - CLASSIFICATION

| Model | Result | Probability |
| :---: | :---: | :---: |
| Blood-Brain Barrier | Absorption | 0.9112 |
| Human Intestinal Absorption | BBB+ | 0.7965 |
| Caco-2 Permeability | HIA+ | 0.5800 |
| P-glycoprotein Substrate | Caco2+ | 0.6926 |
| P-glycoprotein Inhibitor | Non-substrate | 0.6467 |
|  | Non-inhibitor | 0.9721 |
| Renal Organic Cation Transporter | Non-inhibitor | 0.9037 |
| Subcellular localization | Non-inhibitor |  |
|  | Distribution | 0.7017 |
| CYP450 2C9 Substrate | Mitochondria |  |
| CYP450 2D6 Substrate | Metabolism | 0.8327 |
| CYP450 3A4 Substrate | Non-substrate | 0.8141 |
| CYP450 1A2 Inhibitor | Non-substrate | 0.5518 |
| CYP450 2C9 Inhibitor | Substrate | 0.8293 |
| CYP450 2D6 Inhibitor | Non-inhibitor | 0.8767 |
| CYP450 2C19 Inhibitor | Non-inhibitor | 0.9374 |
| CYP450 3A4 Inhibitor | Non-inhibitor | 0.6998 |
| CYP Inhibitory Promiscuity | Non-inhibitor | 0.9147 |
|  | Non-inhibitor | 0.9436 |
| CYP Inhibitory Promiscuity | Excretion |  |
| Human Ether-a-go-go-Related Gene | Toxicity | 0.9590 |
| Inhibition | Weak inhibitor | 0.9482 |
| AMES Toxicity | Non-inhibitor | 0.7651 |
| Carcinogens | Non-AMES toxic | 0.5987 |
| Fish Toxicity | Non-carcinogens | 0.7004 |
| Tetrahymena Pyriformis Toxicity | Low FHMT | 0.9318 |
| Honey Bee Toxicity | Low TPT | 0.8376 |
| Biodegradation | High HBT | 0.7998 |
| Acute Oral Toxicity | Iorinogenicity (Three-class) | III |
|  | Non-required | 0.4080 |

ADMET PREDICTED PROFILE - REGRESSION

| Model | Value | Unit |
| :---: | :---: | :---: |
| Aqueous solubility | Absorption | LogS |
| Caco-2 Permeability | -2.4271 | $\mathrm{LogPapp}, \mathrm{cm} / \mathrm{s}$ |
|  | 1.0786 |  |
|  | Distribution |  |
|  | Metabolism |  |
| Rat Acute Toxicity | Toxicity | $\mathrm{LD}_{50}, \mathrm{~mol} / \mathrm{kg}$ |
| Fish Toxicity | 2.2058 | $\mathrm{pLC}_{50}, \mathrm{mg} / \mathrm{L}$ |
| Tetrahymena Pyriformis Toxicity | 2.0719 | pIGC |

Compound 12: $\boldsymbol{\beta}$-Sitosterol trimethylsilyl ether


ADMET PREDICTED PROFILE - CLASSIFICATION

| Model | Result | Probability |
| :---: | :---: | :---: |
| Blood-Brain Barrier | Absorption | 0.9673 |
| Human Intestinal Absorption | BBB+ | 0.9950 |
| Caco-2 Permeability | HIA+ | 0.6221 |
| P-glycoprotein Substrate | Caco2+ | 0.6710 |
| P-glycoprotein Inhibitor | Substrate | 0.8476 |
|  | Inhibitor | 0.5000 |
| Renal Organic Cation Transporter | Inhibitor | 0.6922 |
| Subcellular localization | Non-inhibitor |  |
|  | Distribution | 0.4124 |
| CYP450 2C9 Substrate | Lysosome | 0.8778 |
| CYP450 2D6 Substrate | Metabolism | 0.8112 |
| CYP450 3A4 Substrate | Non-substrate | 0.7701 |
| CYP450 1A2 Inhibitor | Non-substrate | 0.7685 |
| CYP450 2C9 Inhibitor | Substrate | 0.7888 |
| CYP450 2D6 Inhibitor | Non-inhibitor | 0.8759 |
| CYP450 2C19 Inhibitor | Non-inhibitor | 0.6383 |
| CYP450 3A4 Inhibitor | Non-inhibitor | 0.6911 |
| CYP Inhibitory Promiscuity | Non-inhibitor | 0.5319 |
|  | Non-inhibitor |  |
| Human Ether-a-go-go-Related Gene | Inhibition | Excretion |
| AMES Toxicity | Toxicity | 0.5310 |
| Carcinogens | Strong inhibitor | 0.6227 |
| Fish Toxicity | Non-inhibitor | 0.7433 |
| Tetrahymena Pyriformis Toxicity | Non-AMES toxic | 0.7878 |
| Honey Bee Toxicity | Non-carcinogens | 0.9943 |
| Biodegradation | High FHMT | 0.9391 |
| Acute Oral Toxicity | High TPT | 0.8492 |
| Carcinogenicity (Three-class) | High HBT | 0.9686 |
|  | Noty | 0.6021 |

ADMET PREDICTED PROFILE - REGRESSION

| Model | Value | Unit |
| :---: | :---: | :---: |
| Aqueous solubility | Absorption | LogS |
| Caco-2 Permeability | -4.6478 | $\mathrm{LogPapp}, \mathrm{cm} / \mathrm{s}$ |
|  | 1.2774 |  |
|  | Distribution |  |
|  | Metabolism |  |
| Rat Acute Toxicity | Excretion | $\mathrm{LD}_{50}, \mathrm{~mol} / \mathrm{kg}$ |
| Fish Toxicity | Toxicity | $\mathrm{pLC}_{50}, \mathrm{mg} / \mathrm{L}$ |
| Tetrahymena Pyriformis Toxicity | 2.4351 | pIGC |
| $00 \mathrm{ug} / \mathrm{L}$ |  |  |

Compound 13: Sorbopyranose, 1,2,3,4,5-pentakis-O-(trimethylsilyl)-, L-


ADMET PREDICTED PROFILE - CLASSIFICATION

| Model | Result | Probability |
| :---: | :---: | :---: |
| Blood-Brain Barrier | Absorption | 0.8947 |
| Human Intestinal Absorption | BBB+ | 0.9220 |
| Caco-2 Permeability | HIA- | 0.5163 |
| P-glycoprotein Substrate | Caco2+ | 0.5421 |
| P-glycoprotein Inhibitor | Substrate | 0.5955 |
|  | Inhibitor | 0.9550 |
| Renal Organic Cation Transporter | Non-inhibitor | 0.8222 |
| Subcellular localization | Non-inhibitor |  |
|  | Distribution | 0.6088 |
| CYP450 2C9 Substrate | Mitochondria |  |
| CYP450 2D6 Substrate | Metabolism | 0.8525 |
| CYP450 3A4 Substrate | Non-substrate | 0.8204 |
| CYP450 1A2 Inhibitor | Non-substrate | 0.5929 |
| CYP450 2C9 Inhibitor | Substrate | 0.8638 |
| CYP450 2D6 Inhibitor | Non-inhibitor | 0.8690 |
| CYP450 2C19 Inhibitor | Non-inhibitor | 0.9072 |
| CYP450 3A4 Inhibitor | Non-inhibitor | 0.7558 |
| CYP Inhibitory Promiscuity | Non-inhibitor | 0.9481 |
|  | Non-inhibitor | 0.9583 |
| CYP Inhibitory Promiscuity | Excretion |  |
| Human Ether-a-go-go-Related Gene | Toxicity | 0.9242 |
| Inhibition | Weak inhibitor | 0.8791 |
| AMES Toxicity | Non-inhibitor | 0.5000 |
| Carcinogens | Lon-AMES toxic | 0.7529 |
| Fish Toxicity | Non-carcinogens | 0.8427 |
| Tetrahymena Pyriformis Toxicity | Low FHMT | 0.6449 |
| Honey Bee Toxicity | Low TPT | 0.7305 |
| Biodegradation | High HBT | 0.8833 |
| Acute Oral Toxicity | Norcinogenicity (Three-class) | NII |

ADMET PREDICTED PROFILE - REGRESSION

| Model | Value | Unit |
| :---: | :---: | :---: |
|  | Absorption | LogS |
| Aqueous solubility | -2.3267 | $\mathrm{LogPapp}, \mathrm{cm} / \mathrm{s}$ |
| Caco-2 Permeability | 0.6844 |  |
|  | Distribution |  |
|  | Metabolism |  |
|  | Excretion | $\mathrm{LD}_{50}, \mathrm{~mol} / \mathrm{kg}$ |
| Rat Acute Toxicity | Toxicity | pLC |
| Fish Toxicity | 2.5394 | $\mathrm{pIGC} / \mathrm{L}$ |
| Tetrahymena Pyriformis Toxicity | 1.8088 | $\mathrm{ug} / \mathrm{L}$ |

DISCUSSION: The concentrations of phenolic, flavonoids compounds were high in all extracts while proanthocyanidin and coumarin contents were low when compared with other compounds. The differences in polarity of the antioxidant components are noticeably the reason why phenolic compounds and antioxidant activity of the extract correlate. Polyphenolic compounds which influence the radical scavenging, inhibition of hydrolytic and oxidative enzymes and also act as anti-inflammatory agent ${ }^{19}$. The mechanisms of action of flavonoids are through scavenging or chelating process ${ }^{20,21}$. Flavonoids are free radical scavengers, super antioxidants, and potent water soluble which prevent oxidative cell damage and have strong anti-cancer activity ${ }^{22}$ and provide antiinflammatory actions ${ }^{23}$. Cardiac glycosides are drugs and can be used in the treatment of congestive heart failure and cardiac arrhythmia. Tannins possess astringent, anti-inflammatory, antidiarrhoeal, antioxidant and antimicrobial activities ${ }^{24}$.

Among all extracts, the phenolic content decreased in the order of ethanol>acetone>ethyl acetate> distilled water. Hence it was observed that ethanol is a good solvent for the extraction of phenols and these results are in agreement with the previously reported study ${ }^{25,}{ }^{26}$. The interest in the phenols has increased outstandingly due to their prominent free radical scavenging activity. Polyphenols possess ideal structural chemistry for free radical scavenging activities which have shown to be more effective antioxidant in-vitro than vitamins E and C on a molar basis ${ }^{27}$. Phenol compounds could be classified as simple phenols, a single aromatic ring bearing at least one hydroxyl group and polyphenols with at least two phenol subunits like flavonoids or three and more phenol subunits called tannins ${ }^{28}$.

The phenolic compounds of plant origin showed their anti-oxidative effect by various mechanisms, including their ability to scavenge free radicals or activate various antioxidant enzymes and inhibit oxidase ${ }^{29}$. Flavonoids are reported to be responsible for antimicrobial activity associated with some ethnomedicinal plants ${ }^{30}$. Flavonoids play an important role in effective antioxidant and show strong anticancer activities ${ }^{31,32}$. Flavonoids are water-soluble antioxidants and possess pharmacological roles including anti-microbial, anti-inflammatory, cardioprotective, anti-allergic and anti-cancer activities ${ }^{33}$. The concentration of the flavonoids in plant extracts depends on the polarity of solvents used for the extracts which support the present results. The result showed a higher flavonoid content of ethyl acetate extract than of others extracts. It was expected that ethanol extract would have the higher antioxidant activity than that of other extracts, but surprisingly the acetone and ethyl acetate extracts have the good antioxidant activity in spite with less phenolic, flavonoids content Table 3. Since the natural antioxidant include many different compounds such as phenol, nitrous compounds, carotenoids and many unidentified compounds ${ }^{34}$, compounds other than the phenolic compounds may be responsible for antioxidant activity in the water, ethanolic or acetone extract or sometimes the structure of flavonoids in ethyl acetate extract may decrease its antioxidant activity. Rice-Evans et al. showed that hydroxyl groups, the amount of conjugation and its kind, are two important factors in the antioxidant potential of phenolic compounds.

Stronger antioxidants usually are more conjugated and have more hydroxyl groups that make the antioxidant strong enough to scavenge the free radicals. The occurrence of peaks at $234-676 \mathrm{~nm}$ reveals the presence of phenolic and alkaloids.

The FTIR spectrum was used to identify the functional group of the active components based on the peak value in the region of infrared radiation. The biological activities listed Table 7 are based on Dr.Duke's Phytochemical and Ethnobotanical Databases by Dr. Duke of the Agricultural Research Service/USDA ${ }^{35}$. Phytol was proven to exhibit antioxidant and antinociceptive effects ${ }^{36,37}$. These sterols even blocked inflammatory cytokines and induced apoptosis ${ }^{38-40}$. Lupeol exhibited marked anti-inflammatory and anticancer properties ${ }^{41}$. Several investigations revealed that lupeol blocks tumorigenesis by affecting molecular growth pathways which are involved in cell proliferation and cell death ${ }^{41}$.

In-vivo and in-vitro tests revealed the potent antimutagenic property of lupeol ${ }^{42-44}$. Identification of these compounds in the plant serves as the basis in determining the possible health benefits of the plant leading to further biologic and pharmacologic studies concerning urolithiasis and related renal disorders. In the case of glycolate oxidase inhibition, Boerhavia diffusa was found to be uncompetitive inhibitors as Km and $\mathrm{V}_{\text {max }}$ consequently decreased with increased inhibitor concentration. With Boerhavia diffusa there were Km values were constant while $\mathrm{V}_{\text {max }}$ consequently decreased with increased inhibitor concentration thus confirming a non-competitive type of inhibition by the Lineweaver-Burk equation.

In case of lactate dehydrogenase, Crateva nurvala was found to be non-competitive inhibitors as Km values were constant while $\mathrm{V}_{\text {max }}$ consequently decreased with increased inhibitor concentration, while Boerhavia diffusa showed the mixed type of inhibition (between uncompetitive to noncompetitive Inhibition). Glycolate oxidase and lactate dehydrogenase are key enzymes for oxalate synthesis. These enzymes are present in liver peroxisome. If inhibition of these key enzymes takes place then ultimately oxalate synthesis get to stop, and calcium oxalate stone formation will not occur. Calcium oxalate stone is a major type of stone occurs in patients.

GC-MS results reveal compounds namely, DPinitol, pentakis (trimethylsilyl) ether; Mannose, 6-deoxy-2,3,4,5-tetrakis-O-(trimethylsilyl)-, L-; Arabinopyranose, tetrakis-O-(trimethylsilyl)-, à- D;

Sorbopyranose, 1, 2, 3, 4, 5-pentakis-O-(trimethylsilyl)-, L-; >Lupeol;>Mannose, 6-deoxy$2, \quad 3, \quad 4, \quad 5$-tetrakis-O-(trimethylsilyl)-, $\quad$ L-; >Glucopyranose, 1, 2, 3, 4, 6-pentakis-O-(trimethylsilyl)-, D- clearly showed diuretic, litholytic, decrease oxalate excretion, decrease lactate/pyruvate ratio, dehydrogenase inhibitor, oxidase inhibitor and decalcifier nature. Inhibition of glycolate oxidase and lactate dehydrogenase may occur due to these phytoconstituents. This is the first report as per the author's knowledge.

CONCLUSION: Urolithiasis is a major problem worldwide, and significant advances in the treatment of urolithiasis have been made in the past few decades. However, the currently available treatment options are not completely satisfactory and associated with many side effects. In this study, we have collected the plants mentioned in literature on the ethnomedical use in the treatment of urolithiasis. These plants exhibit anti-urolithic effect by different mechanisms, such as Oxalate synthesizing enzyme (Glycolate oxidase and Lactate dehydrogenase) inhibition, crystallization inhibition mechanism of action, anti-inflammatory activity, and antioxidant activity.

Also, plant extract's analyzed constituents by UVFTIR, GC-MS and ADMET profiling showed promising Glycolate oxidase and Lactate dehydrogenase inhibition and are found to be phenolic, glycosides and flavonoids. However, isolation of individual phytochemical constituents and subjecting it to biological activity (in-vivo study) will give fruitful results.

ACKNOWLEDGEMENT: Authors are thankful to the Director of the school of life sciences, Swami Ramanand Teerth Marathwada University, Nanded and the Indian Institute of Science (IISc), Bangalore for providing the instrumentation facilities.

CONFLICT OF INTEREST: No conflict of interest relevant to this article was reported.

## REFERENCES:

1. Khare P and Mishra V: Study on the in-vitro antilithiatic activity of Phyllanthus niruri Linn. leaves by homogenous precipitation and turbidity method. International Journal of Pharmacy and Pharmaceutical Sciences 2012; 6(4): 124127.
2. Vamsi S, Raviteja M and Kumar GS: In-vitro antiurolithiatic potential of various extracts of Muсипа pruriens. International Journal of Pharmaceutical Sciences and Research 2014; 5(9): 3897-3902.
3. Butterweck V and Khan SR: Herbal medicines in the management of urolithiasis: alternative or complementary? Planta Med. 2009; 75 (10): 1095-103.
4. Rao PN, Glenn MP and John PK: Urinary Tract Stone Disease 2011; Publisher -Springer-Verlag London Ltd., 2011.
5. Sumanth M and Mustafa SS: Antistress, Adaptogenic and immunopotentiating activity roots of Boerhavia diffusa in mice. Int J Pharmacol 2007; 3(5): 416-420.
6. Ujowundu CO, Igwe CU, Enemor VH, Nwaogu LA and Okafor OE: Nutritive and Anti-nutritive properties of Boerhavia diffusa and Commelina nudiflora leave. Pakistan J Nutr 2008; 7(1): 90-92.
7. Pierangeli G, Vital G and Rivera W: Antimicrobial activity and cytotoxicity of Chromolaena odorata (L. f) King and Robinson and Uncaria perrottetii (A. Rich) Merr Extracts. J. Medicinal Plants Res 2009; 3(7): 511-518.
8. Simoh S and Zainal A: Chemical profiling of Curcuma aeruginosa Roxb. Rhizome using different techniques of solvent extraction. Asian pacific journal of tropical biomedicine 2015; 5(5): 412-417.
9. Kokate CK: Pharmacognosy, Published Nirali Prakashan 2008: 107-111.
10. Singleton VL, Orthofer R and Lamuela-Raventos RM: Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteau reagent. Methods Enzymol 1999; 299: 152-178.
11. Madaan R, Bansal G, Kumar S and Sharma A: Estimation of total phenols and flavonoids in extracts of Actaea spicata roots and antioxidant activity studies. Indian Journal of Pharmaceutical Sciences 2011; 73(6): 666-669.
12. Sun, Conceicao B, Ricardo-Da L, Silva JM and Spranger I: Separation of grape and wine proanthocyanidins according to their degree of polymerization. Journal of Agricultural and Food Chemistry 1998; 46, 1390-1396.
13. Medeiros-Neves B, Barros FMCD, Poser GLV and Teixeira HF: Quantification of coumarins in aqueous extract of Pterocaulon balansae (Asteraceae) and Characterization of a New Compound. Molecules 2015; 20: 18083-18094.
14. Alhakmani F, Kumar S and Khan SA: Estimation of total phenolic content, in-vitro antioxidant and antiinflammatory activity of flowers of M. oleifera. Asian Pacific Journal of Tropical Biomed 2013; 3(8): 623-627.
15. Asker H and Davies D: Purification of rat liver enzymes involved in the oxidation of glyoxylate; Biochimica et Biophysica Acta 1983; 761: 103-108.
16. Kong D and Zhang Y: Inhibition of xanthine oxidase by liquiritigenin and isoliquiritigenin isolated from Sinofranchetia chinensis. Cell Mol Life Sci 2000; 57: 500505.
17. Segel IH: Biochemical calculations. $2^{\text {nd }}$ edition. New York: John Wiley \& Sons 1976; ISBN: 978-0-47177421-1.
18. Nisha C, Kumar A, Vimal BM, Bai D and Pal A: Docking and ADMET prediction of few GSK-3 inhibitors divulges 6-bromoindirubin-3-oxime as a potential inhibitor. J Mol Grap Model 2016; 65: 100-107.
19. Frankel E: Nutritional benefits of flavonoids. International conference on food factors: Chemistry and Cancer Prevention Nutritional benefits of flavonoids 1995; C6-2.
20. Kessler M, Ubeand G, and Jung L: Anti and prooxidant activity of rutin and quercetin derivatives. J Pharm and Pharmacol 2003; 55: 131-142.
21. Cook NC and Samman S: Flavonoids chemistry, metabolism, cardioprotective effects and dietary sources. Nutr Bioche 1996; 7: 66-76.
22. Miller SN, Paganga N, Tijburg L, Bolwell and Rice-Evans C: Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Archives of Biochemistry and Biophysics 1995; 322: 339-346.
23. Okwu DE: Evaluation of Chemical composition of indigenous species and flavoring agents. Global Journal of Pure Applied Sciences 2001; 7: 455-459.
24. Killedar S and More H: Estimation of tannins in different parts of Memecylon umbellatum Burm. Journal of Pharmacy Research 2010; 3(3): 554-556.
25. Formagio A, Volobuff C, Santiago M, Cardoso C, Vieira M and Pereira Z: Evaluation of antioxidant activity, total flavonoids, tannins and phenolic compounds in Psychotria leaf extracts. Antioxidants 2014; 3: 745-757.
26. Rice-Evans C, Miller J and Paganga G: Structureantioxidant activity relationship of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996; 20: 933-956.
27. Rebecca J and Robbins: Anthocyanins contents, profiles and color characteristics of red cabbage extracts from different cultivars and maturity stages. Journal of Agricultural and Food Chemistry 2003; 51(10): 28662887.
28. Ghatak, A, Chaturvedi P and Desai N: Indian grape wines: a potential source of phenols, polyphenols and antioxidants. International Journal of Food Properties 2014; 17: 818-828.
29. Yusha'u M, Olonitola S and Aliyu B: Prevalence of extended-spectrum $\beta$-lactamases (ESBLs) among members of the Enterobacteriaceae isolates obtained from Muhammad Abdullahi wase specialist hospital, Kao, Nigeria. International Journal Pure and App Sciences 2007; 1(3): 42-48.
30. Del Rio LA, Pastori G, Palma J, Sandalio L, Servilla F, Corpas F, Jimenez A, Lopez-Huertas E and Hernandez J: The activated oxygen role of peroxisomes in senescence. Plant Physiology 1998; 116: 1195-1200.
31. Duraipandiyan V, Ayyanar L and Ignacimuthu S : Antimicrobial activity of some ethnomedicinal plants. Asian Journal of Microbiology 2006; 5: 334-337.
32. Ghatak, A, Bhembre N, Kamath A, Mehta S, Mendonca M, D'souza A, Chaturvedi P and Desai N : Antiproliferative, antioxidant activity and total phenolic content of Mitragyna parvifolia (Roxb.) Korth. International Journal of Pharmacy and Pharmaceutical Sciences 2014; 6: 632-637.
33. Jasper C, Maruzzella J and Henry P: The antimicrobial activity of perfume oils. Journal of American Pharmacists Association 1958; 47: 471-476.
34. Mahboubi M, Kazempour N and Bol AR and Nazar: Total phenolics, total flavonoids, antioxidant and antimicrobial activities of S. striata Boiss extracts. Jundishapur Journal of Natural Pharma Products 2013; 8(1): 15-19.
35. Dukes. Phytochemical and Ethnobotanical Databases. 2013. www.ars-gov/cgi-bin/duke/.
36. Santos C, Salvadori M, Mota V, Costa L, de Almeida A and de Oliveira G: Antinociceptive and antioxidant activities of phytol in-vivo and in-vitro models. Neurosciences Journal 2013; 949452.
37. Pejin B, Savic A, Sokovic M, Glamoclija J, Ciric A and Nikolic M: Further in-vitro evaluation of antiradical and antimicrobial activities of phytol. Natural Product Research 2014; 28(6): 372-6.
38. Woyengo T, Ramprasath V and Jones P: Anticancer effects of phytosterols. European Journal Clinical Nutrition 2009; 63(7): 813-20.
39. Imanaka H, Koide H, Shimizu K, Asai T, Kinouchi Shimizu N and Ishikado A: Chemoprevention of tumor metastasis by liposomal beta-sitosterol intake. Biological Pharma Bulletin 2008; 31(3): 400-4.
40. Rathee P, Rathee D, Rathee D, Rathee S: In-vitro cytotoxic activity of $\beta$-sitosterol triacontane isolated from Capparis deciduas (Forsk.) Edgew. Asian Pacific Journal of Tropical Medicine 2012; 5(3): 225-30.
41. Saleem M: Lupeol, a novel anti-inflammatory and anticancer dietary triterpene. Cancer Letters 2009; 285(2): 109-15.
42. Lee T, Poon R, Wo J, Ma S, Guan X and Myers J: Lupeol suppresses cisplatin-induced nuclear factor - kappaB activation in head and neck squamous cell carcinoma and inhibits local invasion and nodal metastasis in an orthotopic nude mouse model. Cancer Research 2007; 67(18): 8800-9.
43. Wde LM, Santos DF, Sannomiya M, Rodrigues C, Vilegas W and Varanda E: Modulatory effect of Byrsonima basiloba extracts on the mutagenicity of certain direct and indirect-acting mutagens in Salmonella typhimurium assays. Journal of Medicinal Food 2008; 1(1): 111-9.
44. You Y, Nam N, Kim Y, Bae K and Ahn B: Antiangiogenic activity of lupeol from Bombax ceiba. Phytotherapy Research 2003; 17(4): 341-4.
[^0]All © 2013 are reserved by International Journal of Pharmaceutical Sciences and Research. This Journal licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
This article can be downloaded to Android OS based mobile. Scan QR Code using Code/Bar Scanner from your mobile. (Scanners are available on Google Play store)


[^0]:    How to cite this article:
    Gophane SR and Khobragade CN: Chemical profiling, adme prediction of Boerhavia diffusa Linn. and Crateva nurvala Buch. Ham in the management of urolithiasis. Int J Pharm Sci \& Res 2019; 10(2): 890-16. doi: 10.13040/IJPSR.0975-8232.10(2).890-16.

