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ABSTRACT: The NSAIDs are popular in reducing acute and chronic 

inflammation as they have no abuse liability. QSAR (Quantitative structure-

activity relationship) approach is a very useful and widespread technique for 

drug design. 2D QSAR models are based on descriptors derived from a two-

dimensional graph representation of a molecule. The 2D QSAR study was 

performed on selected twenty-four compounds from synthesized indole 

derivatives for elucidating the structural requirements for COX-2 inhibition 

using multiple linear regression method. Statistically, significant models were 

generated using VLife Molecular Design Suite 3.5 software. The 

physicochemical parameters contributed significantly to biological activity. 

Amongst all the models generated, model 3 was found to be best with high r
2
 

(squared correlation coefficient) of 0.9382. Model is robust as q
2
 (cross-

validated squared correlation coefficient) value is also high as 0.8557 with good 

predictive power as indicated by pred_r
2
 = 0.7443. The model showed two 

alignment independent (AI) descriptors T_2_O_0 and T_2_N_7 as well as two 

physicochemical descriptors –ve Potential Surface Area and SA Most 

Hydrophobic contributing for activity. The present study may prove to be helpful 

in the development and optimization of existing indole derivatives as anti-

inflammatory agents with selective COX-2 inhibition. 

INTRODUCTION: NSAIDs inhibit cyclo-

oxygenase (COX), the enzyme responsible for the 

conversion of arachidonic acid to prostaglandins. 

COX exists in 2 isoforms. COX-1 is a ubiquitous 

constitutive isozyme producing prostaglandins 

responsible for homeostatic functions such as 

maintenance of GI mucosal integrity. COX-2 is 

largely a cytokine-induced isozyme producing 

prostaglandins that mediate pain and inflammation 
1
. NSAIDs inhibit both COX-1 and COX-2 to 

varying degrees.  
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Thus, the therapeutic effects of conventional 

NSAIDs are derived from the inhibition of COX-2, 

while the adverse effects of these agents, 

particularly in the upper GI tract, arise from 

inhibition of COX-1 activity 
2
. Much recent effort 

thus has been made to produce selective inhibitors 

of cyclooxygenase-2 (COX-2) in the belief that 

these will lack the gastrointestinal damaging effects 

of traditional non-steroidal anti-inflammatory drugs 

(NSAIDs) 
3, 4, 5

.  

Diarylheterocycle class of compounds has been 

investigated extensively as COX-2 inhibitors. 

Literature survey revealed that indole derivatives, 

pyrazoline derivatives, and pyrimidine derivatives 

independently possess good anti-inflammatory, 

analgesic activity, and selective COX-2 inhibitory 

effects 
6, 7, 8, 9, 10, 11

. Hence, we focused at achieving 

greater selectivity for COX-2 enzymes with the use 
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of indole nucleus and other structural features of 

different COX-2 inhibitors (pyrazoline derivatives, 

pyrimidine derivatives, and sulfinyl methyl group) 

in the designed molecules. Thus, the concept of 

chemical derivatization of the indole nucleus with 

pyrazoline and pyrimidine was attempted. Three 

series of the target molecules are synthesized. The 

compounds synthesized were subjected to 

preliminary pharmacological evaluation for anti-

inflammatory and analgesic activity by using 

models like carrageenin-induced rat paw edema 

method and acetic acid-induced writhing in mice, 

respectively. The compounds were also screened 

for acute ulcerogenicity by using Wistar rats. The 

compounds viz. IA7, IA9, IA11, IA12, IB3, IB7, 

IB12, IIA2, IIA3, IIA4, IIA5, IIA10, IIB2, IIB3, 

IIB4, IIB5, IIB7, IIIA4, IIIA10, IIIA11, IIIA17, 

IIIB10, IIIB11, IIIB17 showing comparable anti-

inflammatory, analgesic activities with less 

ulceration were subjected to in-vitro cyclo-

oxygenase (COX) inhibition assays using 

Celecoxib as the reference 
12

.  

The computer-aided prediction of biological 

activity about the chemical structure of a 

compound is now a commonly used technique in 
drug discovery. Computational chemistry represents 
molecular structures as a numerical model and 

simulates their behavior with the equations of 

quantum and classical physics. Available programs 

enable scientists to easily generate and present 

molecular data including geometries, energies, and 

associated properties (electronic, spectroscopic, and 

bulk). The usual paradigm for displaying and 

manipulating these data is a table in which 

compounds are defined by individual rows, and 

molecular properties (or descriptors) are defined by 

the associated columns 
13, 14, 15

.  

QSAR (Quantitative structure-activity relationship) 

attempts to find consistent relationships between 

the variations in the values of molecular properties 

and the biological activity (% activity, IC50, ED50, 

MIC) for a series of compounds to generate a 

mathematical expression so that these rules can be 

used to evaluate new chemical entities. The 

mathematical expression can then be used to 

predict the biological response of other chemical 

structures. 2D QSAR models are based on 

descriptors derived from a two-dimensional graph 

representation of a molecule. 

A QSAR generally takes the form of a linear 

equation:  

Biological Activity = Const + (C1 × P1) + (C 2 × P2) 

+ (C3 ×P3) +..... 

Where the P1 to Pn are physicochemical parameters 

value computed for each molecule in the series and 

C1 to Cn are the coefficients of parameters. 

Physicochemical descriptors are based on the 

physicochemical properties of the molecule.   

In the present research work, a data set of twenty-

four molecules showing comparable COX-2 

inhibitory activity was subjected to 2D quantitative 

structure-activity relationship (QSAR) analyses, in 

search of newer and potent anti-inflammatory 

agents with selective COX-2 inhibition. 

Statistically, significant models were generated, 

and the most robust models for 2D QSAR were 

obtained using partial least square regression 

method coupled with a stepwise forward-backward 

method using V-Life Molecular Design Suite 

software version 3.5.  

MATERIALS AND METHODS:  

Optimization of Molecules Structure: A data set 

of twenty-four molecules showing comparable 

COX-2 inhibitory activity measured was chosen for 

the present 2D QSAR study. Table 1 the biological 

activity was expressed as IC50 values measured on 

COX-2 enzyme.  

The structures of all the compounds were drawn in 

ChemDraw ultra 8.0 software in Mol format (mol 

file). These structures were imported in VLife 

MDS 3.5 software and converted to the mol2 

format. Energy minimization was performed of 

each 3D model using Merck Molecular Force Field 

(MMFF) until the root mean square gradient values 

becomes smaller than 0.0001 kcal/mol Ao. For 

optimizing molecules using VLife MD, the set 

selected was ‘Maximum number of cycles = 10000, 

convergence criteria (RMS gradient) = 0.01’. The 

distance-dependent function in the dielectric 

properties field was checked. 1.0 value was entered 

as constant. From force field drop down list MMFF 

was selected as a force field. Analytical as 

gradients type option was selected. In advanced 

button Non Bonded Cut Off dialog box, the values 

entered are as: Electrostatic as 20.00, vdW as 10.00 

and vdW after iterations as 10. 
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TABLE 1: THE CHEMICAL STRUCTURES OF COMPOUNDS USED FOR 2D QSAR STUDY 

N

R2

R1

R3

 

S. no. Compd R1 R2 R3 

1 IA7 5-(4-methoxyphenyl)-1-

phenylpyrazoline 

4-chlorophenyl H 

2 IA9 1,5-diphenylpyrazoline 4-methoxyphenyl H 

3 IA11 5-(4-methoxyphenyl)-1-

phenylpyrazoline 

4-methoxyphenyl H 

4 IA12 5-(4-dimethyaminophenyl)-1-

phenylpyrazoline 

4-methoxyphenyl H 

5 IB3 4(4-methoxyphenyl) 

pyrimidin-2-amine 

Phenyl Phenyl 

6 IB7 4(4-methoxyphenyl) 

pyrimidin-2-amine 

4-chlorophenyl Phenyl 

7 IB12 4(4-(dimethylamino) 

phenyl)pyrimidin-2-amine 

4-methoxyphenyl Phenyl 

8 IIA2 methylsulfonyl 5-(4-chlorophenyl)-1-

phenylpyrazoline 

Phenyl 

9 IIA3 methylsulfonyl (4-bromophenyl)-1-

phenylpyrazoline 

Phenyl 

10 IIA4 methylsulfonyl 5-(4-methoxyphenyl)-1-

phenylpyrazoline 

Phenyl 

11 IIA5 methylsulfonyl 5-(4-dimethyaminophenyl)-1-

phenylpyrazoline 

Phenyl 

12 IIA10 Tosyl (5-(4-methoxyphenyl)-1-

phenylpyrazoline 

Phenyl 

13 IIB2 methylsulfonyl 4-(4-chlorophenyl) 

pyrimidin-2-amine 

Phenyl 

14 IIB3 methylsulfonyl 4-(4-bromophenyl) 

pyrimidine-2-amine 

Phenyl 

15 IIB4 methylsulfonyl 4-(4-methoxyphenyl) 

pyrimidin-2-amine 

Phenyl 

16 IIB5 methylsulfonyl 4-(4-(dimethylamino) 

phenyl)pyrimidin-2-amine 

Phenyl 

17 IIB7 Tosyl 4-phenylpyrimidin-2-amine Phenyl 

18 IIIA4 H Phenyl 3-(4-hydroxyphenyl)-

1-phenylpyrazoline 

19 IIIA10 H 4-chlorophenyl 3-(4-hydroxyphenyl)-

1-phenylpyrazoline 

20 IIIA11 H 4-chlorophenyl 3-(4-aminophenyl)-1-

phenylpyrazoline 

21 IIIA17 H 4-methoxyphenyl 3-(4-aminophenyl)-1-

phenylpyrazoline 

22 IIIB10 H 4-chlorophenyl 4-(2-amino) 

pyrimidin-4-yl) phenol 

23 IIIB11 H 4-chlorophenyl 4-(4-aminophenyl) 

pyrimidin-2-amine 

24 IIIB17 H 4-methoxyphenyl 4-(4-aminophenyl) 

pyrimidin-2-amine 

 

The optimization process was started. The energy 

and gradient of each iteration were reported in 

Output Window. After the successful termination 

of the optimization process, the final output in the 

Output Window dialog box showed both total 

energy details of the molecule before and after 

optimization. These structures were saved as 

energy minimized structures.  
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Calculation of Descriptors for QSAR: The 2D 

QSAR was launched by picking Modules in an 

appropriate sequence as per the manual. By 

selecting the QSAR Tool ‘Calculate Descriptors’ 

various physicochemical descriptors were selected. 

For performing QSAR analysis, descriptors that 

show variation for all the molecules are required. 

As the descriptors that were constant for all the 

molecules were not considered to contribute to 

QSAR and hence removed from the worksheet. 

Training and test set from the data were selected by 

manual selection method, ensuring the molecules 

have uniform spread (train and test) in terms of 

both activity and chemical space. In the generation 

of the QSAR model, we have selected eight 

molecules in test and sixteen in the training set. 

Table 2 all calculations were run on a Pentium IV 

personal computer with the window XP operating 

system. Total of 213 Descriptors was evaluated. 

TABLE 2: LIST OF SETS OF TRAINING AND TEST 

COMPOUNDS FOR QSAR STUDIES   

Training Set (16 Molecules) 

IA7 IIA10 

IA11 IIB4 

IB3 IIB5 

IB7 IIIA4 

IB12 IIIA11 

IIA3 IIIA17 

IIA4 IIIB10 

IIA5 IIIB11 

Test Set (08 Molecules) 

IA9 IIB3 

IA12 IIB7 

IIA2 IIIA10 

IIB2 IIIB17 

Then data selection was done considering the 

negative log of IC50 values under the dependent 

variable and the remaining variables considered as 

independent. Regression methods selected were 

Multiple and Forward-Backward as the Stepwise 

Variable Selection from the Select Variable 

Selection Method panel. Stepwise parameter setting 

was done as cross-correlation limit =0.5, number of 

variable in final equation = 4, term selection 

criteria as r, F test in as 4 and F test out as 3.99. 

Additional parameter settings as: Variance Cut-Off 

= 0, Scaling option = Auto Scaling. The best model 

was selected based on various statistical parameters 

such as squared correlation coefficient (r
2
), 

standard error of estimation (SE), sequential 

Fischer test (F). Quality and predictability of the 

model were estimated from the cross-validated 

squared correlation coefficient. The various 2D-

QSAR models were developed using the MLR 

method. 2D-QSAR equations were selected by 

optimizing the statistical results generated along 

with a variation of the descriptors in these models. 

The fitness/pattern plots were also generated for 

evaluating the dependence of the biological activity 

on various types of descriptors Fig. 1.  

 
FIG. 1: FITNESS GRAPH OF OBSERVED AND 

PREDICTED IC50 DATA FOR ALL 24 COMPOUNDS 

DERIVED FROM MODEL NO. 3 

The frequency of use of a particular descriptor in 

the population of equations indicated the relevant 

contributions of the descriptors. Contribution chart 

Fig. 2 signifies that the descriptors below the zero 

line have negative contribution and above the zero 

lines has a positive contribution. The best 

regression equation obtained is represented as 

model 3. 

 
FIG. 2:  CONTRIBUTION PLOT DERIVED IN MODEL NO. 3 

RESULTS AND DISCUSSION: The results of in-

vitro COX inhibition assay on the most active 

twenty-four molecules from all the series shows 

that these compounds are more selective towards 

COX-2 than COX-1. Compound IIA3, IIB2, and 

IIB4 from series II showed selectivity index of 
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54.60, 56.70 and 52.54 for COX-2 vs. COX-1. The 

compounds IIIB11 and IIIB17 from series III also 

showed a selectivity index of 29.75 and 35.27, 

respectively. The remaining compounds in series 

IA, IB, IIIA and IIIB have shown less selectivity 

index as compared to compounds in IIA and IIB 

series. The results show that the presence of a 

sulfonyl group in series IIA and IIB is favorable for 

maximum drug-receptor interactions. In the 

compounds IIIB11 and IIIB17, presence of 

hydrogen bonding groups is important for optimum 

drug-receptor interactions Table 3.  

TABLE 3: IN-VITRO COX-INHIBITION DATA OF COMPOUNDS  

S. no. Compound COX-1
a
 (IC50, µM) COX-2

 
(IC50, µM)

 
COX-2 SI

b
 (Selectivity Index) 

01 Celecoxib 28.6 0.09 317.77 

02 IA7 37.8 2.2 17.18 

03 IA9 51.2 3.7 13.83 

04 IA11 46.8 3.2 14.62 

05 IA12 49.6 2.8 17.71 

06 IB3 48.1 3.6 13.36 

07 IB7 51.5 3.1 16.61 

08 IB12 45.6 2.4 19 

09 IIA2 39.5 0.91 43.40 

10 IIA3 48.6 0.89 54.60 

11 IIA4 54.1 1.1 49.18 

12 IIA5 47.8 1.3 36.76 

13 IIA10 56.9 1.8 31.61 

14 IIB2 49.9 0.88 56.70 

15 IIB3 48.6 1.2 40.5 

16 IIB4 53.6 1.02 52.54 

17 IIB5 57.5 1.3 44.23 

18 IIB7 52.8 1.9 27.78 

19 IIIA10 44.6 3.1 14.38 

20 IIIA11 48.1 3.9 12.33 

21 IIIA17 50.6 2.6 19.46 

22 IIIA4 49.1 3.4 14.44 

23 IIIB10 39.6 2.3 17.21 

24 IIIB11 47.6 1.6 29.75 

25 IIIB17 38.8 1.1 35.27 
a
 Values are means of two determinations acquired using an ovine COX-1/COX-2 assay kit and the deviation from the mean is 

<10% of the mean value. 
b
 In-vitro COX-2 selectivity index (COX-1 IC50/COX-2 IC50). 

2D-QSAR Equation Interpretation: Among the 

generated QSAR models; model 3 was selected 

based on various statistical parameters such as 

squared correlation coefficient (r
2
), which is a 

relative measure of the quality of fit.  

Fischer’s value (F test) which represents F-ratio 

between the variance of calculated and observed 

activity, standard error (r
2
_se) representing absolute 

measure of quality of fit, and cross-validated square 

correlation coefficient (q
2
), standard error of cross-

validated square correlation coefficient (q
2
_se), 

predicted squared regression (pred_r
2
) and standard 

error of predicted squared regression (pred_r
2
se) to 

estimate the predictive potential of the models, 

respectively. 

Model 1: 

IC50 = 3.4687 (± 1.1887) SA Most Hydrophobic + 

10.9861(± 4.2795) Average +ve Potential -3.5648. 

Statistical Data: n = 16, Degree of freedom = 13, 

r
2
 = 0.8120, q

2
 = 0.6542 F test = 21.4359, r

2 
se = 

0.1728, q
2
 se = 0.2937, pred_r

2
 = 0.6180, pred_r

2
se 

= 0.1883.  

Model 2: 

IC50 = -2.2496 (± 0.0314) XA Most Hydrophilic + 

4.5372 (± 1.1283) SA Most Hydrophobic + 

13.7287 (±5.1352) Average +ve Potential -2.3174. 

Statistical Data: n = 16, Degree of freedom = 12, 

r
2
 = 0.8636, q

2
 = 0.7264, F test = 36.6845, r

2
 se = 

0.1278, q
2
 se = 0.1145, pred_r

2
 = 0.7180, pred_r

2
se 

= 0.1183.  

Model 3: 

IC50 = 0.2167 (±0.0015) T_2_O_0 - 0.0014 

(±0.0000) –ve Potential Surface Area + 4.0448 

(±0.9698) SA Most Hydrophobic -0.0143 

(±0.0000) T_2_N_7 -1.1256. 
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Statistical Data: n = 16, Degree of freedom = 11, 

r
2
 = 0.9382 , q

2 
= 0.8557, F test = 41.7199, r

2
 se = 

0.0596, q
2
 se = 0.0911, pred_r

2
 = 0.7443, pred_r

2
se 

= 0.1274.  

Interpretation of Model 3: Several models were 

generated for 2 D QSAR model development. 

Model 3 was found to be best with high r
2
 of 

0.9382. Model is robust as q
2
 value is also high as 

0.8557 with good predictive power as indicated by 

pred_r
2
=0.7443. The model showed two alignment 

independent (AI) descriptors T_2_O_0 and 

T_2_N_7 as well as two physicochemical 

descriptors -ve Potential Surface Area and SA Most 

Hydrophobic contributing for activity. From the 

derived QSAR model, it can be concluded that anti 

inflammatory activity of indole derivatives is 

strongly influenced by physicochemical descriptors. 

Alignment Independent (AI) Descriptors: 

T_2_O_0 is the count of a number of double 

bounded atoms (i.e., any double bonded atom, T_2) 

separated from oxygen atom by 0 bonds in a 

molecule and is positively contributing (54.59%). 

This indicates that double bonded oxygen atoms 

should be more for increasing activity. Thus, it can 

be predicted that the sulfonyl group in series II is 

responsible for high COX-2 selectivity of the few 

of the compounds in the series. T_2_N_7 (-14.65% 

contribution) is the count of the number of double 

bounded atoms (i.e., any double bonded atom, T_2) 

separated from nitrogen atom by seven bonds in a 

molecule and is negatively contributing (-14.65%). 

This indicates that a reduction in double bond 

characteristics surrounding nitrogen of indole ring 

at a 7
th

 bond distance will lead to an increase in 

activity. 

Physicochemical Descriptor: -ve Potential 

Surface Area is the descriptor which signifies total 

van der Waals surface area with the negative 

electrostatic potential of the molecule. This is 

contributing negatively (-14.58%) indicate that 

negative electrostatic potential on the surface 

should be reduced by attaching electron donating 

groups. 

SA Most Hydrophobic is the most hydrophobic 

value on the vdW surface, which is positively 

contributing (16.18%) indicates that more bulky 

groups will further increase the activity by 

increasing surface hydrophobicity. 

TABLE 4: INTERCORRELATION MATRIX OF DESCRIPTORS USED IN MODEL NO. 3 

Parameter T_2_O_0 –ve Potential Surface 

Area 

SA Most  

Hydrophobic 

T_2_N_7 IC50 

T_2_O_0 1     

–ve Potential Surface Area 0.2081 1    

SA Most Hydrophobic -0.1463 0.1695 1   

T_2_N_7 0.1678 0.1986 0.3151 1  

IC50 0.5192 -0.12674 -0.1687 -0.1378 1 

 

TABLE 5: OBSERVED AND PREDICTED IC50 VALUE DATA FOR TRAINING SET COMPOUNDS (16 

MOLECULES) OBTAINED FROM MODEL NO. 3 

Compound Code Observed Value Predicted Value Residual Value Residual Variance 

IA7 -0.342423 -0.376169 0.033746 0.0043 

IA11 -0.505150 -0.460390 -0.04476 0.1590 

IB3 -0.556303 -0.582001 0.025698 0.0044 

IB7 -0.491362 -0.486880 -0.004482 0.0049 

IB12 -0.380211 -0.422895 0.042684 0.1770 

IIA3 0.050610 0.010688 0.039922 0.0019 

IIA4 -0.041393 -0.074962 0.033569 0.0035 

IIA5 -0.176091 -0.116537 -0.059554 0.0006 

IIA10 -0.255273 -0.167558 -0.087715 0.0060 

IIB4 -0.041393 -0.073966 0.032573 0.0573 

IIB5 -0.113943 -0.155171 0.041228 0.0535 

IIIA4 -0.531479 -0.599633 0.068154 0.0093 

IIIA11 -0.591065 -0.541233 -0.049832 0.0157 

IIIA17 -0.414973 -0.400449 -0.014524 0.0002 

IIIB10 -0.361728 -0.395808 0.03408 0.0104 

IIIB11 -0.462398 -0.371676 -0.090722 0.0624 
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TABLE 6: OBSERVED AND PREDICTED IC50 VALUE DATA FOR TEST SET COMPOUNDS (08 MOLECULES) 

OBTAINED FROM MODEL NO. 3 

Compound Code Observed Value Predicted Value Residual Value Residual Variance 

IA9 -0.568202 -0.430638 -0.137564 0.1900 

IA12 -0.447158 -0.522218 0.07506 0.0409 

IIA2 0.040959 0.004411 0.036548 0.0713 

IIB2 0.055517 -0.045410 0.100927 0.0803 

IIB3 -0.079181 -0.043709 -0.035472 0.0122 

IIB7 -0.278754 -0.084583 -0.194171 0.0049 

IIIA10 -0.491362 -0.492239 0.000877 0.0924 

IIIB17 -0.322219 -0.518414 0.196195 0.0557 

 

The plot of observed versus predicted activity 

provides an idea about how well the model was 

trained and how well it predicts the activity of the 

external test set Table 5 and Table 6. From the 

plots it can be seen that the model is able to predict 

the activity of training set quite well (all points are 

close to regression line) as well as external test set 

up to 62% (only few points are relatively apart 

from the regression line) providing confidence in 

predictive ability of the model Fig. 1. 

CONCLUSION: The present work describes the 

2D QSAR study which generated an equation 

which signifies that the count of number of double 

bounded atoms separated from oxygen atom by 0 

bonds in a molecule is positively contributing thus 

indicating double bonded oxygen atoms should be 

more for increasing activity and total van der Waals 

surface area with negative electrostatic potential of 

the molecule contributing negatively indicating that 

negative electrostatic potential on surface should be 

reduced by attaching electron donating groups.  

It also signifies that most hydrophobic value on the 

vdW surface positively contributing and thus 

indicating that more bulky groups will further 

increase the activity by increasing surface 

hydrophobicity. It further signifies the count of the 

number of double bounded atoms (i.e. any double 

bonded atom, T_2) separated from nitrogen atom 

by seven bonds in a molecule which is negatively 

contributing (-14.65%). Thus, the results obtained 

can be used for further modification and 

optimization of the indole derivatives for better 

anti-inflammatory activity with selective COX-2 

inhibition. 
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