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ABSTRACT: Inflammation is the vascular event shown by the body against 

the external material by activating different cells and releasing various 

chemical mediators to prevent noxious effects. Many drugs like steroidal and 
non-steroidal drugs are available till the date to treat inflammation but have a 

number of side effects and centralized on to counteract the COX and LOX 

pathways. This perspective will use to search for new drugs that can work to 
target other pro-inflammatory mediators involve in inflammation and act as 

target for the inhibition of inflammatory processes and minimize the side 

effects. The therapeutic targets are any proteins, receptors, pro-inflammatory 
mediators or enzymes that can be involved in the inflammatory reaction. The 

targeted therapy acts on it and inhibits targets to combat the inflammation. 

The recent study assembles the data on novel targets and future anti-

inflammatory drugs and the best treatment for incurable inflammatory 
diseases. 

INTRODUCTION: Inflammation is the patho-

physiological response of vascular tissues to any 

injury, infectious agents, or chemicals and involves 

the five characteristic signs as redness, swelling, 

fever, pain, and loss of function. The inflammation 

is the defense mechanism of the body and also 

involve in the healing mechanism of the body; it 

prevents any noxious effects due to external 

material 
1
. However, if untreated it may produce 

diseases like rheumatoid arthritis, inflammatory 

bowel diseases, etc. The mechanism of 

inflammation involves number of cells of body and 

their secretions to produce inflammatory signs. 
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The most important cell involved in the 

inflammatory reaction is the mast cells and release 

histamine in response to stimuli 
2
. The steps 

involved in the mechanism of inflammation as 

shown in Fig. 1. 

 
FIG. 1: MECHANISM OF INFLAMMATION 
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The steroidal and non-steroidal anti-inflammatory 

drugs are helpful to minimize the symptoms of 

inflammation. The salicylates were the active 

compound in the 19
th

 century and discovered from 

the Willow species and synthesized into the aspirin 
3
. The inhibition of the mediator prostaglandin was 

the mechanisms of NSAIDs were developed in 

1970. The drugs to control selectively the COX-2 

and COX-1 that is central to physiological 

processes and whose inhibition was considered a 

major factor in the development of adverse 

reactions were discovered and developed in 1990s 
4
. The drugs from analgesics such as aspirin and 

other NSAIDs nowadays have been restricted due 

to their potential side effects. The gastrointestinal 

ulceration and bleeding, hypertension, 

hyperglycemia, renal damage is most common side 

effects of the non-steroidal anti-inflammatory drugs 
5, 6

. Besides these side effects, the greatest 

disadvantage in presently available potent drugs 

lies in their toxicity and reappearance of symptoms 

after discontinuation.  

The biochemicals play vital role in the progression 

of inflammation like interleukins 
7, 8

, tumor 

necrotic factors 
9
, MAP kinases 

10-12
, matrix 

metalloproteinases, etc. Pathophysiological studies 

indicate the presence of other chemical mediators 

and inhibition of such mediators can relief 

inflammatory diseases, thus offering new targets 

for anti-inflammatory drugs. Therefore, the present 

review gathers information on the novel targets of 

anti-inflammatory drugs and the future anti-

inflammatory agents to treat chronic and incurable 

inflammatory diseases. 

Novel Targets of Anti-Inflammatory Agents: 

 
FIG. 2: NOVEL TARGETS OF ANTI-

INFLAMMATORY AGENTS 

C5a Receptors: C5a is a 74 amino acid protein 

that is superfluous during the inflammation 

reaction, and both C5a and C3a show their 

potential by binding with receptors located on the 

surface of cells. C5a plays a crucial role in variety 

of inflammatory reactions and serves up as a target 

to battle processes 
13, 14

. The recruitment of 

neutrophils and stimulation of mast cell for 

degranulation to release histamine which causes 

vasodilation and muscle contraction due to 

activation of complement anaphylatoxins produces 

chemotactic agents [thesis Finckh 2009]. The C5a 

receptor antagonists attract the attention of new 

targets to design anti-inflammatory agents. The 

C5a interaction its receptor is well understood, a 

two-site binding model has been proposed and C-

terminal region of C5a may fit into a binding 

pocket formed around the fifth transmembrane 

domain effector site 
15

. C5a receptor antagonists are 

of two types such small peptides and non-peptides. 

Few reports indicate that anti-C5a antibodies block 

C5a actions which inhibited the complement, 

induced inflammation in rats and primates 
16

 and 

also resulted in decreased polymorphonuclear cell 

activity in-vitro including chemotaxis, chemi-

luminescence and lysosomal enzyme release 
17

.  

Based on the C5a and C5a receptor interactions, 

designed peptide antagonists consisting of 64-75 

amino acids of carboxy-terminal of C5a 
18

. 

Modification at the tail would make antagonistic 

property retaining other peptide portions intact. 

C5aRAM a monomer and C5a RAD a dimmer 

these new C-terminal tail truncated cysteine-

containing antagonists have been reported to have 

antagonistic activity on neutrophils in-vivo without 

agonistic activity with Ki 79 
19

.  

A cyclic small, six amino acids peptide, AcPhe [L-

ornithine-Pro-D cyclohexylalanine-Trp-Arg] and 

AcF-[OPdChaWR] effective against C5a and LPS-

induced neutropenia. This was acetylated analog of 

F-[OPd-ChaWR] with better metabolic stability 

and intravenous administration of this compound 

also reduced the serum TNF-α level 
20

. 

Many non-peptide small molecules have been 

synthesized and screened for C5a receptor 

antagonistic activity. The synthesis of N-(4-

dimethyl amino) phenylmethyl N-(4-isopropyl)-

phenyl-7-methoxy-1, 2, 3, 4-tetrahydronaphthalen-
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1-carboxamide that inhibited binding of 
125

I-labeled 

C5a to human neutrophils with Ki 2.2 nM. The C5a 

induced Ca
+2

 mobilization, chemotaxis, and 

superoxide species generation in human neutrophils 

also inhibited 
21

. Substituted 4, 6-diamino-

quinolines were stated to possess weak C5a 

antagonistic property targeting the site 1 binding 

region of the C5a receptor 
22

. 

p38 MAP Kinases: A member of MAP kinase 

involved in multiple signaling processes, which is 

activated in inflammation by LPS, stress or 

cytokines 
23

. The production of pro-inflammatory 

cytokines takes place due to the activation of p38 

MAP kinase along with capsase-1 which is 

involved in apoptosis of cells and activation of 

transcription factors 
24, 25

. p38 MAP kinases were 

involved in LPS-induced mesencephalic neurons 

death in rats 
26

 and phosphorylation of transcription 

factors responsible for 5-LO synthesis 
27

. Increase 

expression of COX-2 has been reported due to 

oxidative stress in antigen-stimulated mast cells is 

mediated by p38 MAP kinases resulting in 

increased levels of eicosanoids 
28

. Hence, inhibition 

of p38 MAP kinase forms a new strategy for 

treatment of inflammatory disease 
29, 30

.  

Pyridinyl imidazole as aryl or hetero aryl-

substituted imidazoles has been identified as 

potential leads for p38 MAP kinase inhibition 
31

. 

Isotopically labeled studies revealed that imidazole 

bind to p38 is molecular target, but previously 

triaryl imidazoles were known as cytokine 

production inhibitors. Generally pyridine at the Ar1 

or Ar2 demonstrated better p38 MAP kinase 

inhibition activity which is attributed to strong 

hydrogen bond formation between the nitrogen of 

pyridyl with NH of Met109 and penetration of aryl 

group into hydrophobic area of the enzyme that is 

not accessed by ATP’s 
32

. 

The pyridinyl imidazole competes at the ATP 

binding site of the enzyme were illustrated in 

crystallographic studies and biochemical 

information 
33, 34

. Though pyridinyl imidazoles 

have potent p38 kinase inhibitors they are also 

establishing hepatotoxicity due to interference with 

hepatic cytochrome P450. Thus, widespread 

investigation has been completed to take apart the 

p38 inhibition and hepatotoxicity of pyridinyl 

imidazoles 
35

.  

The synthesis of dihydroquinazolinones have been 

done and tested for p38 MAP kinase inhibitory 

activity 
36, 37

. The dihydroquinazolinones have 

similar binding interactions with the enzyme as 

those of pyrimidynyl or pyridinyl imidazoles. The 

hydrogen bond formation with the enzyme 

backbone by the carbonyl group at the 2
nd

 position 

showed a similar pattern to that of hydrogen bond 

formed by the nitrogen of pyridine or pyrimidine 

ring in imidazoles.  

The novel p38 kinase inhibitors like urease 

substituted with pyrazoles 
38, 39

, theophanies 
40

, and 

alkyl-substituted isoxazoles 
41

 and purines 
42

 were 

discovered. The urea group acts as hydrogen bond 

donor and acceptor site shown by molecular 

modeling and crystallography information. 

Disubstituted urease containing t-butyl-pyrazoles 

binds with the allosteric domain of p38 α other than 

ATP binding site. BIRB 796 a pyrazole urea 

derivative is in the clinical phase II trials, 

demonstrated inhibition potency in picomolar 

concentration. The crystallographic examinations 

reveal that large conformational changes occur 

when the urea inhibitor binds with the kinase.  

VX-745 had to be terminated after clinical trials 

phase II due to adverse effects on CNS revealed by 

the annual report of Vertex Pharmaceuticals 

Cambridge, USA, while few p38 inhibitors VX-702 

and VX-850 have shown encouraging results in 

phase II clinical trials to study the safety, 

tolerability and clinical activity.  

Matrix Metalloproteinase: MMPs are a subfamily 

of metzincins functionally related to zinc-

dependent endopeptidases, which hydrolyze 

extracellular matrix in human body 
43

. 

Identification of more than 24 MMPs have been 

reported and are divided into five subgroups based 

on the substrate specificity as stromelysins (MMP-

3, -7, 10 and -11), collagenase, (MMP-1, -8, -13 

and -18), gelatinases (MMP-2 and -9), membrane-

type MMPs (MT-MMPs) (MMP-14, -15, -16, -17, -

24 and -25) and nonclassified other MMPs (MMP-

19, -20, -23, -26, -27 and -28) 
44, 45

. The vital role 

played by activated MMPs in degradation of 

extracellular matrix during tissue repair and 

angiogenesis. The degradation of collagen types I, 

II and III carried out by MMP-2, -14 along with 

collagenases 
46, 47

.  
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Several pathological conditions like metastatic 

tumors and several inflammatory diseases such as 

inflammatory bowel disease, RA and osteoarthritis 

in which MMPs play a critical role 
48, 49

.  

Many research strategies have been progressed to 

decrease the biochemical actions of MMPs like 

hindered one or more MMP activations. The design 

of synthetic molecule that inhibits MMPs aimed to 

mimic the natural inhibition by TIMP, but more 

accomplishment is associated with synthetic small 

molecules that bind the active site of MMPs. Zinc 

is the core center for MMPs activity and thus 

synthetic molecules have investigated that bind the 

zinc moiety of MMPs. Several zinc-binding groups 

have demonstrated wide range MMP inhibition. 

The zinc-binding groups are hydroxymate, 

carboxylate 
50

, phosphoric acid, sulfonamide, 

sulfyhydril, and phosphonamide and among them 

hydroxymate have shown heartening activity.  

Several nonselective MMP inhibitors experienced 

set back during the clinical trial studies due to the 

unexpected adverse effects. These adverse effects 

of inhibitors were established due to inhibition of 

other MMPs that are involved in normal 

physiological functions, and inhibition of these 

MMPs cause excessive deposition of matrix 

leading to fibrosis 
51, 52

. Thus, selective MMP 

inhibitors have the advantage over the classical 

broad range of MMP inhibitors. As the protein 

crystal structures of several MMPs have revealed 

the binding interactions between the inhibitors and 

MMPs thus the process of new lead identification 

for selective MMP inhibitors have been expedited.  

Several broad-spectrum and selective MMP 

inhibitors have been tested in animal models and 

human clinical trials and hydroxymate MMP 

inhibitors like CGS-270230, RO-323555 and BAY-

129566 have been well studied. The selective 

collagenase inhibitory activity shown by BAY-

129566 and was effective in animal, small and 

short level clinical trials but failed in large and 

long-term clinical trials 
53

. Succinyl hydroximates 

are the first generation broad-spectrum MMP 

inhibitors. British Biotech developed Batimastat 

(BB-9421) and marimastat (BB-2516) are the two 

succinyl hydroximates 
54

. The inhibitory activity of 

hydroxymates is due to formation of strong 

hydrogen bond with carbonyl group of enzyme 

backbone. The selective MMP-2 activity of 

ilomastat analogs containing an isobutylidene 

group illustrated to fit in S1 packet of enzyme and a 

2-substituted indole analog nucleus 
55

. 

Some new hydroximates were synthesized and 

tested for MMP inhibitory activity that also 

contains phosphonamide zinc-binding group, 

compounds with an R configuration at phosphorus 

were found to be potent inhibitors 
56

. The 

piperazine carboxylic acid was novel cyclic MMP 

inhibitors and the piperazine makes central 

backbone and provides conformational stability 
57

. 

A series of α-sulfonylhydroxamic acid derivatives 

as potent MMP inhibitors have synthesized and 

explained the structure-activity relationship. A 

dialkyl substituted derivatives displayed potent 

activity against MMP-9 and MMP–13 while 

reduced action against MMP-1. These derivatives 

have also shown to have slighter activity against 

TACE 
58

. 

NF-Kb: NF-κB is a redox-sensitive transcription 

factor, heterodimeric protein composed of different 

transcription factors of the Rel family 
59

. NF-κB is 

composed of homo and heterodimers of five 

members of the Rel family including NF-κB1 

(p50), NF-κB2 (p52), Rel A (p65), Rel B and c-Rel 

(Rel) 
60

. The inhibitor protein called IKappa B 

(IκB) forms non-covalent bond with NF-κB resides 

in the cytoplasm of the cell in inactive form. Seven 

isoforms of IκBs have been identified namely 

IκBα, IκBβ, I-κBγ, IκBε, BCL3, p100 and p105 

containing 30-35 amino acids 
61

. NF-κB can be 

stimulated by LPS or inflammatory cytokines and 

free radicals which consequence in phosphorylation 

of IκBs by IKappa B Kinase Complex (IKK) on the 

conserved serine residue at N-terminal portion of 

IκB 
62, 63

. 

Activated NF-κB complex translocates into the 

nucleus and binds DNA at Kappa-B binding motifs 

such as 5-prime GGGRNNYYCC 3-prime or 5-

prime HGGARNYYCC 3-prime and provokes 

gene expression and further expression of 

cytokines, chemokine, growth factors, cellular 

ligands, and adhesion molecules 
64, 65

. NF-κB plays 

a role in several diseases, such as asthma 
66

, 

neurodegeneration, ischemia or reperfusion injury, 

hepatitis, glomerulonephritis and inflammatory 

bowel disease 
67-69

. 
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The potential role played by NF-kB in 

inflammation opened another feasible approach to 

control these inflammatory diseases. It was 

concluded that inflammatory cytokines, including 

IL-1b, IL-6, and TNF-α are induced by the 

activation of NF-kB in synoviocytes 
70

. Many of 

the NSAIDs such as aspirin and sodium salicylate 

have demonstrated to result in NF-kB inhibitory 

activity followed by inhibition of adhesion 

molecules such as vascular cell adhesion molecule-

1 (VCAM-1) and intercellular adhesion molecule-1 

(ICAM-1) 
71, 72

, which are encoded by NF-kB 

target genes.  

Several heterocyclic compounds have been 

identified as lead molecules to inhibit IKKb with 

increased selectivity. Quinazoline analogs have 

been extensively studied for selective IKKb 

inhibition, one of most potent compounds in this 

series SPC-839 with IC50 60 nM having more than 

200 times selectivity for IKKb 
73

. BMS-345541 an 

imidazoquinaxaline derivative exhibited ten folds 

selectivity for IKKb (IC50 0.3 mM) and reported to 

bind the allosteric center of the kinase instead of 

regular ATP binding site. Diaryl pyridines have 

been reported to possess more selectivity for IKKb 

inhibition, a most potent molecule in this series 

exhibited in vitro inhibition of LPS induced TNF-a 

formation with IC50 value 0.6 mM and in-vivo 

inhibition with ED50 2 mg/kg body weight 
74, 75

. 

JNK Inhibitors: The c-Jun N-terminal kinases 

(JNK) are an evolutionarily conserved family of 

serine or threonine MAP kinases. JNK was 

acknowledged in 1990 as 54 kDa stress-activated 

protein kinase 
76

. The pro-inflammatory cytokines 

such as TNF-α and IL-1β as well as environmental 

stress, such as anisomycin, UV irradiation, 

hypoxia, and osmotic shock activate JNKs 
77

. A 

wide variety of cellular processes such as 

proliferation, apoptosis, migration and 

transcriptional regulation were governed by 

members of the JNK family 
78-82

. NKs are activated 

by their serine or threonine upstream kinases, 

mitogen-activated protein kinase (MKK) namely 

MKK4 and MKK7 
83

.  

The inhibition of JNK has been reported to be a 

valuable approach in the development of agents for 

the treatment of oncological, apoptosis-related and 

inflammatory diseases 
83

. A specific JNK inhibitor, 

SP 600125 an anthrapyrazole derivative was 

identified during high throughput screening. SP 

600125 is competitive inhibitor of JNK binding at 

the ATP binding site. It has revealed to be active 

against all isoforms of JNK having 300 folds 

selectivity over other MAP kinases 
84

. AS-007149 

reported as prospective JNK inhibitor by library 

search and the effect of structural modifications on 

JNK inhibition. The SAR revealed that the 

benzothiazol-2-yl acetonitrile pyridine core plays a 

role in retaining a good level of JNK inhibition 
85

. 

The 3-(4-pyridyl)-imidazole as novel gallows for 

JNK inhibition identified in high throughput 

screening with pIC50 value 5.8 
86

. 

Inflammasome: Inflammasome is cytoplasmic 

caspase-1-activating protein complexes that 

promote maturation and secretion of the pro-

inflammatory cytokines. The activation of 

inflammasome by different stimuli triggers the 

proteolytic cleavage of pro-caspase 1 into active 

caspase 1, which, in turn converts pro-interleukin 

1b (pro-IL1b) into the mature IL1b. The 

nucleotide-binding domain leucine-rich repeat-

containing families of receptors are members of the 

innate immune system and have a critical role in 

host defense 
87-89

. These molecules are key to 

driving inflammatory responses to abnormal 

cellular conditions. Many NLRs provide this role 

on establishment by forming a multiprotein 

complex called an inflammasome. Nucleotide-

binding domain leucine-rich repeat (LRR)-

containing receptors (NLRs) are pattern recognition 

receptors (PRRs) that initiate inflammatory 

responses to a wide range of stimuli.   

The NLPR3 inflammasome is the best 

characterized and participates in immune responses 

to infectious and noninfectious agents. It consists of 

the aforesaid NLRP3 receptor, the adaptor protein 

ASC and caspases. Martinon et al., described, for 

the first time, an inducible high-molecular-weight 

complex containing NLRP3, an adaptor protein, 

and pro-inflammatory caspases, which they called 

the inflammasome 
90

. The activators of NLRP3 are 

quite varied and include environmental irritants, 

endogenous danger signals, pathogens, and distinct 

pathogen-associated molecular patterns (PAMPs) 

and have been associated with a wide range of 

diseases including infectious, auto-inflammatory, 

and autoimmune disorders 
91, 92

.  
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Adipokines: White adipose tissue has been 

recognized to be a true endocrine organ, which is 

able to secrete a wide variety of factors termed 

Adipokines 
93, 94

. In spite of their metabolic 

activities, adipokines represent a new family of 

compounds that could participate in several 

processes, including inflammation and immunity, 

and are also involved in the pathophysiology of 

rheumatic diseases 
95-97

. Adipokines consist of a 

variety of pro-inflammatory factors most of them 

being increased in obesity and appearing to 

contribute to the so-called ‘low-grade inflammatory 

state’ in obese individuals. Obesity, the condition 

that stimulates the research on adipokines, has been 

considered a risk factor for developing 

osteoarthritis 
98, 99

.  

PPARγ Receptors: PPARγ considered as 

important target in the development of new drugs 

and belongs to the nuclear family consisting of a 

group of approximately 50 transcription factors 

implicated in many different biological processes 
100

. A large number of regulatory genes in lipid 

metabolism and insulin sensitization, as well as in 

inflammation and cell proliferation were controlled 

by PPAR 
101, 102

. Its activation requires 

heterodimerization in the nucleus of the cells with 

another nuclear receptor, known as the retinoid X 

receptor α (RXR α), leading to binding of this 

heterodimer to specific DNA sequence elements 

termed peroxisome proliferator response elements 
103

.  

It has been established that these two nuclear 

factors play a central role in the regulation of 

inflammatory signaling pathways by acting on 

kinases and transcription factors, such as nuclear 

factor-kB (NF kB), c-Jun, c-Fos, and nuclear factor 

of activated T cell 
104-106

, and inhibiting mucosal 

production of inflammatory cytokines (interleukin 

(IL)-1β and tumor necrosis factor α (TNF-α)) and 

chemokines 
107

, proliferation of inflammatory cells 
108

, and expression of some adhesion molecules 
109

. 

Interestingly PPAR- γ was the first reported to 

undergo agonist-dependent simulation, which 

promotes binding to nuclear receptor co-repressor-

1 protein (NCoR) and stabilizes association with 

promoter-bound NF-kB, thus leading to the 

transrepression of inflammatory genes in 

macrophages 
110-112

.  

Other beneficial and inhibitory effects of PPAR- γ 

agonists on inflammation were reduction in the 

production of pro-inflammatory molecules in T 

lymphocytes, promotion of the expression of anti-

inflammatory mediators in the innate immune 

system, reduce cytokines (TNF-α, IL-1, and IL-6) 

productions by inhibition of genes encoding pro-

inflammatory molecules, and reduction of 

transcriptional activities Nuclear Factor- kB (NF-

kB), AP-1, and STAT 
113, 114

. PPAR- γ also reduces 

vascular smooth muscle cell proliferation, increases 

monocyte apoptosis, and suppresses 

metalloproteinase-9 expression in atherotic plaques 
115-118

.  

Novel antagonist and partial agonists of PPAR- γ 

have recently been identified; tri-terpenoids 2-

cyano- 3, 12- dioxoole-ana-1, 9- dien- 28- oic acid 

(CDDO) is a partial agonist with anti-inflammatory 

properties 
119

 and bisphenol diglycidyl ether 

(BADGE) and LG-100641 have been identified as 

antagonists for PPAR- γ
 120, 121

. Even though these 

compounds have little clinical significance, they 

can be used to understand the physiology of the 

PPAR- γ and for the identification of new ligands. 

In addition to synthetic chemical methods, research 

in natural products has also yielded potent PPAR- γ 

agonists from several medicinal plants. 

CONCLUSION: In treating the inflammatory 

diseases, NSAIDs and selective COX-2 inhibitors 

have been conventionally the most extensively used 

drugs to date. However, their long-term treatment 

has been demonstrated to have highly adverse side 

effects and it has been observed that the use of 

rofecoxib, selective COX-2 inhibitor might even 

lead to fatalities due to cardiovascular and 

thrombotic events. Pro-inflammatory cytokines and 

components of signal transduction play a central 

role in the pathology of inflammation, some 

proteinaceous cytokine inhibitors viz. infliximab 

was effective either as a monotherapy or in 

combination with other drugs effective in treating 

RA. Prolonged use of these cytokine inhibitors may 

lead to post-treatment infections, and therefore 

there is a quest to obtain small molecules that may 

inhibit these pro-inflammatory or intracellular 

signals.  

Further, the cost-effectiveness and mode of 

administration of the cytokine inhibitors are not at 
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desirable levels. Apart from these pro-

inflammatory cytokines as a target for new anti-

inflammatory drug discovery, the components of 

signal transduction like p38 kinase, JNK, and NF-

kappaB can be targeted. Some of small molecules 

that inhibit p38 kinase are in the final stages of 

clinical trials. The success of these inhibitors 

depends on how best they pass through the clinical 

trials for safe use in human beings. Therefore, the 

present review proposes that there is a paradigm 

shift in the drug design and discovery attempts 

towards anti-inflammatory diseases. 
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