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ABSTRACT: Innovation in technology is required to change the world. 

Bioelectronic medicine is the consolidation of molecular medicine, 

neuroscience, engineering, and computing to develop a device to diagnose 

and treat diseases. The mechanisms of Bioelectronic medicine for neural 

control of a biological process that underlie disease and the development of 

devices to modulate these specific neural circuits as therapy using electrons 

instead of drugs. Bioelectronic medicine has emerged at a convergent 

epicenter in health care, technology, and science. Bioelectronic medicine is a 

new way to treat disease. Today patients are treated by either drug, which 

can lead to a side effect or drive up costs, which can mask pain signals but 

they usually can't mask the central cause of disease. With the rapid rise in 

technology for the precision detection & modulation of electrical signaling 

patterns in the nervous system is a new class of treatment known as 

bioelectronic medicines. Specifically, the peripheral nervous system will be 

at the center of this advance, as the functions it controls in chronic disease 

are extensive. The vision for bioelectronic medicine is one of the tiny, 

implantable devices that can be attached to individual peripheral nerves. 

Such devices will be able to decipher & modulate neural signaling patterns, 

achieving therapeutic effects that are targeted at signal function of a specific 

organ. This new field was exploring the potential to treat Paralysis, Diabetes, 

Rheumatoid arthritis, chronic disease, Hypertension, blind diseases etc. 

INTRODUCTION: Bioelectronic medicine is 

devices that use electricity to regulate biological 

processes, treat diseases, or restore lost 

functionality. BEMS can interact with excitable 

tissue in 3 distinct manners: they can induce, block 

& sense electrical activity. Specifically, the 

peripheral nervous system will be at the center of 

this advance, as the function it controls in chronic 

disease is extensive.  
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The vision for bioelectronic medicines is one of the 

nano, implantable devices that can be attached to 

individual peripheral nerves. Such devices will be 

able to decipher & modulate neural signaling 

patterns, achieving a therapeutic effect that is 

targeted at the signal function of a specific organ. 

The bioelectronic field has been able to move 

forward recently with the development of more 

complex devices and novel materials that have 

been engineered down to the nanoscale.  

These revolutionary breakthroughs in our ability to 

miniaturize device components create flexible and 

biocompatible materials and design more efficient 

and expandable components for computation and 

power, which reduce the side-effects, miniatu-

rization, and cost reduction. BEms need to target 
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various sites in the human body and operate in a 

closed-loop manner 
1, 2

. Bioelectronic devices can 

already be found in many applications in the 

medical sector. Indeed, electronic medical devices 

are now a mature technology. Examples include 

deep-brain stimulations to treat Parkinson's disease 
3
, neural stimulation to treat epilepsy or paralysis 

4
, 

cochlear and vestibular implants for hearing and 

balance 
5, 6,

 and retinal prosthetic devices to treat 

blindness or vision loss 
7, 8

. The human urinary 

tract is complex and sophisticated; it includes our 

kidneys, ureters, bladder, and urethra, and its 

natural control mechanisms pass through both the 

central as well as the peripheral nervous system 

(PNS). Restoration of full control of the urinary 

tract could, therefore, be possible via a variety of 

approaches; some of those could require a 

distributed wireless system of BEMs, in which each 

unit is responsible for specific functionality, but all 

are communicating and working together in a 

coordinated fashion to deliver the required therapy. 

The potential of this new field of medicine to be 

precise than drugs at reaching their targets. The 

main problem with drugs is that they not only treat 

diseased cells but also go everywhere else in the 

body. Even the best drugs have a side effect on 

other organs 
9, 10

.  

If bioelectronics technology enables real-time 

monitoring of treatment adherence and effecti-

veness, the impact on mortality and morbidity 

outcomes could be profound. Bioelectronic devices 

are also used in the central nervous system 
11, 12

.  

Novel methods in machine learning, symbolic 

reasoning, and signal processing are under 

development to improve the deconvolution of the 

electrical activity in both the central and peripheral 

nervous systems. Progress in the new field of 

bioelectronic medicine and underlying neuro-

physiological and molecular mechanisms make it 

possible to target specific circuits to treat disease 

and improve organ function 
13

. That prospect 

certainly promises a significant leap forward in 

both treatment efficacy and safety, based upon 

utilizing electrons to replace drugs 
14

. 

Components of Bioelectronic: In bioelectronic 

medicine, interfaces are required to access the 

peripheral nerves, which are listed below, and some 

are shown in Fig. 1. 

 Electrode: Silicone based penetrating 

electrode 
15, 16

, polymer based fine, time, life & 

cuff electrode arrays 
17, 18

, Complementary 

metal oxide semiconductor.  

 Material: Noble metal, Alloys, Platinum, 

Platinum- iridium, Gold, Laser patterned  

 Gold or Platinum    iridium foil (12 

micrometer), lithographically patterned gold or 

Platinumthin (300 nm), Films on polyamide or 

polylene, thermally evaporated Ultra Thin (35 

nm) 

 Polymer: Polyimide 
19-22

, parylene 
23-25

, 

polydimethyl siloxane (PDMS) 
26-28

, liquid 

Crystal polymer 
29-30

, SU-8 photoresist 
31, 32

, 

polyurethane 
33

, Sheet or film (polyimide). 

 Light: Emitting diodes for optogenetic 

stimulation, receiving elements for wireless 

Power transfer, such as inductors, antenns and 

ultrasonic transducer. 

 
FIG. 1: COMPONENT OF BIOELECTRONIC 

Mechanism of Bioelectronic Medicine: All body 

organ functions are regulated through neural 

circuits communicating by electrical impulses; it 

should theoretically be possible to interpret the 

electrical language of diseases. By extension, it 

could be possible to stimulate or inhibit the 

malfunctioning pathways with tiny electrodes in 

order to correct the defect. This micro-

manipulation of the nervous system targeting 

impulses(action potentials) to specific cells within 

neural circuits could conceivably be exploited to 

manipulate abroad range of bodily functions, such 

as controlling appetite or blood pressure or 

stimulating the release of insulin in response to 

rising blood sugar, Strategy to isolate the nerve 

bundles sending efferent signals involved in 
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specific diseases from the peripheral nervous 

system to the brain, and blocking them will likely 

involve an invasive procedure 
34, 35

. BEMs help 

includes: 1) Understanding molecule/cell-electronic 

Interfaces. 2) Understanding cellular responses and 

the variabilities to stimulation (electrical, 

mechanical, chemical, thermal, and the like). 3) 

Ability to collect and analyze essential data on the 

state of bimolecular and cells (chemical, physical, 

structural, functional). 3) Ability to monitor, in 

real-time, the biochemistry of a single cell or a 

population of cells, which requires comprehension 

of interaction between molecules. Ability to deliver 

appropriate therapeutic materials and stimuli in 

real-time; and ability to detect, identify and 

quantify thousands of different biomarkers 

simultaneously 
36

. The vagus nerve, which connects 

the brainstem to several organ systems in the body, 

has a putative connection with the splenic nerve, 

part of the sympathetic nervous system.  

It is through this connection that a technique called 

vagal-nerve stimulation is thought to reduce 

inflammation, which is shown in Fig. 2. 

Current Researches in Bioelectronic Medicine: 

1. Bioelectronic in Hypertension: Anti-

hypertensive drug therapy is successful only to a 

point, leaving a significant percentage of patients 

nationwide with blood pressure measurements 

above guidelines despite being treated with at least 

three agents at maximally tolerated doses, 

consistent with a diagnosis of resistant 

hypertension 
37

. The sympathetic nervous system is 

an effective homeostatic mechanism for 

modulating hemodynamic in times of stress and 

illness. Unfortunately, in some patients, this 

mechanism escapes physiologic control by carotid 

sinus, which is shown in Fig. 3 and through various 

mechanisms lead to resistant hypertension 
38, 39

. 

 

  
             FIG. 2: MECHANISM OF BIOELECTRONIC                         FIG. 3: BAROREFLEX ACTIVATION  

                                        MEDICINE                                                                THERAPY IN HYPERTENSION 

Baroreflex activation therapy in Hypertension, the 

system for delivering BAT (Barostim neo system, 

CVRx, Inc., Minneapolis, Minnesota) consists of a 

carotid sinus lead and a pulse generator 
40

. The lead 

comprises a 40 -cm lead body that terminates in a 

circular backer 7 mm in diameter 
41

 with a 
2
mm 

iridium oxide–coated platinum-iridium disk 

electrode centered on the backer 
42, 43

.  

The pulse generator is implanted in the fashion of a 

pacemaker, by making a subcutaneous 

infraclavicular chest wall pocket to hold the pulse 

generator 
44, 45

. Electrode implantation begins by 

surgically exposing the carotid sinus through a 

transverse cervical incision over the carotid 

bifurcation 
46, 47

. Sensitivity is measured by 

observing hemodynamic changes associated with 

acute baroreflex activation, namely, reductions in 

heart rate and/or BP associated with increased 

parasympathetic traffic and / or decreased sym-

pathetic traffic, respectively 
48, 49

. With the correct 

position identified, the electrode is directly affixed 

by applying 6 sutures 
50

, evenly spaced around the 

perimeter of the electrode backer through the 

backer and adventitia 
51, 52

.  

The opposite end of the lead is brought to the pulse 

generator pocket by means of a subcutaneous 

tunnel and attached to the pulse generator. All 

incisions are then closed, and the procedure is 
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complete 
53, 54

. Therapy is initiated at a moderate 

level in the absence of side effects such as 

excessive reductions in heart rate or BP 
55-57

. 

2. Bioelectronic in Rheumatoid Arthritis: 

Rheumatoid arthritis (RA) is a chronic autoimmune 

disease, which is characterized by pain, swelling, 

and stiffness of joints, due to synovial inflammation 
58, 59

. During active disease, the joints are the 

persistence of synovial inflammation leads to the 

development of bone erosions and finally joint 

deformities 
60, 61,

 which is shown in Fig. 4. 

Bioelectronic medicine is increasingly becoming 

applied in clinical trials 
62

.  

Patients suffering from rheumatoid arthritis that 

were implanted with a vagus nerve stimulator to 

activate the inflammatory reflex showed significant 

improvement of clinical signs and symptoms also 

in patients with previously therapy-resistant disease 
63, 64

. Signals through the vagus are transduced 

through the nerve and trigger 
65, 66

. Activation of 

inflammatory cells is reduced 
67; 68

. This is reduced 

production of systemic inflammation mediators 
69, 

70
. Also, reduced activation of circulating immune 

cells decreased inflammation, decreased joint 

damage, and reduced joint pain 
71,

 which is shown 

in Fig. 5. 

  
          FIG. 4: BONE EROSIONS AND JOINT DEFORMITIES      FIG. 5: BIOELECTRONIC IN RHEUMATOID ARTHRITIS

3. Bioelectronic in CNS Disease: VNS (vagus 

nerve stimulation) therapy has been approved as a 

treatment for epilepsy in Europe in 1994, and in the 

USin 1997 
72-73

, in the US, VNS has also been 

approved for the treatment of depression 
74, 75

. VNS 

can be performed after neurosurgical implantation 

of a vagus nerve stimulator; in 2012, 100,000 vagus 

nerve stimulators had been implanted 
76, 77

. The 

device consists of two parts: a pulse generator and 

a lead with electrodes. The pulse generator contains 

the battery and the stimulation system 
78

 and is 

positioned subcutaneously below the left clavicle 

on the pectoral muscle 
79

. It is connected to the left 

vagus nerve in the neck via the lead, with three 

helices at the end: one positive electrode, one 

negative electrode, and an anchor tether 
80,

 
81

. The 

three helices are placed around the vagus nerve to 

deliver the electrical pulse of the pulse generator 
82

. 

During surgery, the vagus nerve is electrically 

stimulated to test the impedance and functionality 

of the device, which can be accompanied by 

bradycardia and short-lasting systole 
83, 84

. After 

implantation, VNS therapy can be initiated starting 

at a low dosage of stimulation with an output 

current of 0.25 mA 
85, 86

. Dosage is increased 

slowly with steps of 0.25 mA to a maximum output 

current of 3.5 mA 
87

 because toleration to the 

stimulation is built up with the use of the VNS 

device 
88,

 
89

. Implantation of the three helices 

around on the left vagus nerve containing a positive 

electrode, a negative electrode, and an anchor 

tether, which is shown in Fig. 6. The electrodes are 

connected to the lead, which is attached to the pulse 

generator 
90, 91

. 

 
FIG. 6: IMPLANTATION OF THE THREE HELICES 

AROUND ON THE LEFT VAGUS NERVE CONTAINING A 

POSITIVE ELECTRODE, NEGATIVE ELECTRODE AND 

AN ANCHOR TETHER 
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4. Bioelectronic in Spinal Cord: Regaining motor 

function is of high priority to patients with spinal 

cord injury (SCI) 
92

. A variety of electronic devices 

that interface with the brain or spinal cord, which 

have applications in neural prosthetics and neuro-

rehabilitation are in development 
93, 94

. Brain-

machine interfaces that decode motor intentions 

from cortical signals are enabling patient-driven 

control of assistive devices such as computers and 

robotic prostheses 
95

, whereas electrical stimulation 

of the spinal cord and muscles can aid in retraining 

of motor circuits and improve residual capabilities 

in patients with SCI 
96, 97

. Next-generation 

interfaces that combine recording and stimulating 

capabilities in so-called closed-loop devices 
98, 99

, 

like BMI (Brain-Machine Interfearance), which is 

shown in Fig. 7. Will further extend the potential 

for neuroelectronic augmentation of injured motor 

circuits 
100, 101

. Emerging evidence suggests that 

integration of closed-loop interfaces into inten-

tional motor behaviors has therapeutic benefits that 

outlast the use of these devices as prostheses 
102, 103

. 

Brain-machine Interfearance: Brain-machine 

interfaces (BMIs) that record and decode signals 

from the brain enable volitional control of assistive 

devices 
104, 105,

 and modify patterns of cortical 

activity through the process of neurofeedback 
106, 

107
. The translation of invasive BMIs from animal 

studies to patients suggests that these technologies 

could control functional electrical stimulation for 

the restoration of movement to paralyzed limbs 
108-

110
. Functional limb movements involving the 

coordinated activity of multiple muscles 
111-113

 and 

the activation of spinal circuitry in combination 

with volitional intent could have therapeutic 

benefits 
114,115

. 

 
FIG. 7: CLOSED-LOOP DEVICES LIKE BMI

5. Bioelectronics in Blind Disease: For the 

treating retinal disease, bioelectronic medicine play 

critical role. Bioelectronic medicine it’s a device 

that is implanted in the retina, which is shown in 

Fig. 8. 

 
FIG. 8: BIOELECTRONIC IN BLIND DISEASE 

It includes a retinal prosthesis for restoring vision 

to the blind, thereby significantly improving 

patient’s quality of life. This implantation treated 

blind disease. 

CONCLUSION: Recently, Bioelectronic is being 

used more widely to describe this multidisciplinary 

field. Progress is required in all of these sectors for 

innovation in cross-cutting areas, including 

measurement and characterization, fabrication, and 

power sources. That several technologies are now 

moving from preliminary clinical trials. Continued 

progress in the development of technologies for 

monitoring and manipulation of neural activity 

will, hopefully, lead to a new generation of devices 

to injured neural circuits. In this Review, we have 
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discussed progress in the new field of bio-

electronic medicine, and underlying neuro-

physiological and other mechanisms make it 

possible to target specificcircuits to treat disease 

and improve affected organ functions. So, indeed 

bioelectronics is a career of the future, and it 

promises a lot to the general public, too, as 

electronics are very economical when they go into 

mass production. That prospect certainly promises 

a significant leap forward in both treatment safety 

and efficacy, by replacing electrons on the place of 

drugs. 
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