IJPSR (2020), Volume 11, Issue 9

INTERNATIONAL JOURNAL

Received on 17 December 2019; received in revised form, 14 August 2020; accepted, 21 August 2020; published 01 September 2020

ARMACEUTICAL SCIENCES

SUSTAINABLE USE OF HIGH ALTITUDE MEDICINAL AND AROMATIC PLANT FOR SOCIO-ECONOMIC DEVELOPMENT IN UTTARAKHAND: A REVIEW

P. Nainwal^{*1} and N. Singh²

Department of Pharmacognosy ¹, School of Pharmacy ², Graphic Era Hill University, Clement Town, Dehradun - 248002, Uttarakhand, India.

Keywords:

Medicinal, Aromatic, Uttarakhand, Agriculture, Socio economy Correspondence to Author:

Dr. Pankaj Nainwal

Associate Professor, School of Pharmacy, Graphic Era Hill University, Clement Town, Dehradun - 248002, Uttarakhand, India.

E-mail: drpankajnainwal@gmail.com

ABSTRACT: The present paper reveals the socio-economic benefits for the peoples of the Uttarakhand state. The demand for medicinal and aromatic plants of Uttarakhand is quite inflated, and many of these plants grow only in the Himalayan states. The State has diverse agrogeo climate conditions, which is most suitable for Medicinal and aromatic plant cultivation. Uttarakhand is blessed with a variety of soils and agro-climatic conditions, ranging from Sub-Tropical to Alpine, which is a mega biodiversity hotspot for a wide range of wild and cultivated Medicinal and aromatic plants. Due to the low point of agricultural production, lack of industrial development, poverty, and unemployment, peoples migrate to exploit biodiversity to improve their socio-economy. There is a socio-economic pressure to migrate on the plain districts for better livelihood opportunities.

INTRODUCTION: Uttarakhand, located in the northern part of India and is located between 28 °C 43' N to 31 °C 27' N (Latitude) and 77°C 34' E to 81 °C 02' E (Longitude), is well known for plentiful biological as well as cultural diversity. Almost the entire region of Uttarakhand is covered by mountains (approximately 93%), and forests show up on about 64% of the mountains. The total geographical region of the state is 53,483 sq. Km.; it is split into 13 districts within two revenue divisions and one tribal division ¹. Of the total geographical region, about 19% is under permanent snow cover, glaciers and steep slopes ².

The total population of the state is 1.01 Crores (Census 2012), with over three-fourths of the total population dependent on agriculture for their livelihood ³. Medicinal and Aromatic Plants constitute a major segment of the flora, which provides raw materials for use in the pharmaceuticals, cosmetics, and drug industries ⁴.

The demand for herbal medicine is increasing throughout the world. Annual turnover of herbal medicine in India is estimated at 1.7 lakh metric tons, for which 960 plant species are in active trade ⁵. Uttarakhand State is enriched with forest and valuable water resources. The populations of high altitude areas of Himalayan regions have limited options to earn money for their daily needs due to the uneconomic nature of cereals production *i.e.*, low returns from agricultural production ⁶. Despite the abundance of innumerable flora and fauna, most of the people are marginalized and still live on a subsistence level.

Due to the low point of agricultural production, lack of industrial development, poverty, and unemployment, peoples migrate to exploit biodiversity to improve their socio-economy. There is a socio-economic pressure to migrate on the plain districts for better livelihood opportunities 7,8 .

Migration from rural areas in Uttarakhand is a serious problem with a comparison between 2001-2011 census data showing a very slow decadal growth of population in most of the mountain districts of the state ⁹.

Medicinal and aromatic plants collection provides an extra source of income, which compensate for low agricultural production. Uttarakhand endows with a high diversity of Medicinal and aromatic plants ¹⁰. A total of 964 species of medicinal plants are known to occur out of which 614 are herbs, 190 are shrubs, and 160 are trees ¹¹.

This paper aims at the cultivation and sustainable use of high altitude medicinal and aromatic plants for socio-economic development, which may lead to rural employment and, ultimately, the increased state economy.

The socio-economic development would provide better opportunities for industrial development and stop the falling population, specially in the hilly areas of Uttarakhand. **Trade of Medicinal and Aromatic Grown in Uttarakhand:** The demand for Medicinal and aromatic plants of Uttarakhand is quite inflated, and many of these plants grow only in the Himalayan states. The State has diverse agro-geo climate conditions, which is most suitable for Medicinal and aromatic plant cultivation^{12, 13}.

Uttarakhand is blessed with a variety of soils and agro-climatic conditions, ranging from Sub-Tropical to Alpine, which is a mega biodiversity hotspot for a wide range of wild and cultivated Medicinal and aromatic plants ¹⁴. More than 2000 unique plants with medicinal properties are found in State.

The state has 3.66lac ha cultivable wasteland which can be utilized for the cultivation of aromatic crops. 324 Medicinal and aromatic plants attribute to approximately 200 metric tone/yr by volume is cultivated.

Most of the cultivated and off-farm Medicinal and aromatic plants are grown only in the state's provinces of Garhwal, Kumaun, and Jaunsar region ¹⁵.

Many of these medicinal plants are only grown in the subsistence level and are not exploited to the commercial scale.

S. no.	Local Name	Botanical Name	Locality
1	Amla	Phyllanthus emblica	All Garhwal and Kumaon mandal
2	Ashagandha	Withania somnifera	Rudraprayag, Uttarkashi, Jaunsar
3	Ativisha	Aconitum heteroplullum Wall	Dehradun, Jaunsar, Chamoli, Haridwar
4	Bay Leaf/Tej patta	Cinnamomum tamala	Dehradun, Tehri, Almora, Haridwar
5	Bedu	Ficus palmate	Nainital, Pithoragarh
6	Burans	Rhododendron arboretum	Tehri, Uttarkashi, Chamoli
7	Deodar	Cedrus deodara Ber	Uttarkashi, Chamoli
8	Hisalu	Rubus ellipticus	Tehri, Pithoragarh, Chamoli, Almora
9	Daruharidra	Berberis aristata	Tehri, Pauri, Nainital, Haridwar
10	Jurinea	Jurinea macrocephala	All Garhwal and Kumaon mandal
11	Kafal/Kaphal	Myrica esculenta	Tehri, Nainital, Almora, Chamoli
12	Keeda Jadi	Ophiocordyceps sinensis	Chamoli, Pithoragarh
13	Khumani(Apricot)	Prunus armeniaca	Chamoli, Uttarkashi
14	Kilmor	Ziziphus mauritiana	Chamoli, Rudraprayag, tehri and Uttarkashi
15	Malta	Citrus X sinensis	Uttarkashi, Chamoli,
16	Patherchatta	Bergenia ciliate	Tehri, Pauri, Chamoli
17	Plum	Prunus persica	Chamoli, Uttarkashi, Tehri
18	Reetha	Sapindus mukorossi	Tehri. Chamoli, Uttarkashi

 TABLE 1: MISCELLANEOUS LIST OF PLANTS GROWN IN UTTARAKHAND ADVANTAGEOUS FOR TRADE 16

International Journal of Pharmaceutical Sciences and Research

Botanical and family	Medicinal importance	Parts in commerce and approximate annual demand in India	Sources of raw material	Method for cultivation or plantation
Saussurea lappa (Decne). S. costus (Costus roots, Kuth, Asteraceae)	Main ingredient of the medicines prepared for skin disease	Roots, annually 100-200 metric tonne.	Cultivation of the crops, roots may be produced in a hectare of land	Propagated through seeds, 2-3 years gestation period, it may be cultivated in specific locations only
Picrorrhizia kurrooa Royle ex Benth.(Kutki, Scrophulariaceae)	Well known hepatoprotective herbal drug and also useful in the cure of diabetes	Stolons and roots, 200- 500 metric tonne	Cultivation of the crops, stolons and roots may be produced in a hectare	Propagated through vegetative methods(through cutting), 2-3 years gestation period, could be cultivated in specific locations only
Sapindus mukorossi.(Soap nut, Reetha or Ritha, Sapindaceae)	Motly used in herbal shampoo and soaps due to antidandruff properties. Its is also a pycho- medicinal plant.	Fruits, annual demand 200-500 metric tonne	In majority it is harvested from the trees growing in off-farm premises, some of the current supply is from existing plantation	Propagated through seeds, 1-2-year-old seedlings are planted, fruits may be harvested from 8-10 years old trees
<i>Cinnamomum tamala</i> Nees (Indian Bay leaf, Tejpat, Lauraceae)	Mainly used in spice, however, recently proved its utility in the cure diabetes. Also useful in treating cold and cough	Leaves, annual demand 500-100 metric tonne	Off-farm harvesting is in practice, majority of current supply is from existing trees and random plantation	Propagated through seeds, 2-3 years old seedlings are planted, leaves may be harvested after 7-9 years of plantation.
Phyllanthus emblica Aonla (Amla, Euphorbiaceae)	Mostly used in to treat fever, jaundice, anaemia and eyes diseases. Also useful in case of diabetes	Fruit and seed, annual demand 2000-5000 metric tonne	Off-farm and cultivated harvesting is in practise, majority of the current supply is from existing and new plantations.	Propagated through seeds, 1 year old seedlings are planted, fruits may be harvested after 7-8 years of plantation.
Withania somnifera Ashgandh(Ashvagandha, Solanaceae)	Mostly used to treat bronchial asthama, rhematic ailments, insomnia and cardiac ailments.	Roots, annual demand 500-1000 metric tonne	Cultivation of the crops, majority of the current supply is from organised plantation at different regions.	Propagation through seeds, about 35-40 days seedlings are planted, roots may be harvested after 6 months of plantation.
Ophiocordyceps sinensis Cordyceps mushroom (keeda jadi/ Ophiocordycipitaceae)	Mostly used to treat cancer, stress reliever, increases stamina and sperm count.	Roots and mushrooms, annual demand 170-280 metric tonne	Off farm harvesting and cultivation of crops, majority of current supply is from existing trees.	Propagation through grains, about 28-30 days seedlings are planted, roots may be harvested after 15-20 weeks.
Rhododendron arboretum Snow rose(burans/Ericaceae)	Mostly used to treat heart and liver diseases and act as an anti- diabetic	Flower, annual demand 1000-2000 units	Cultivation of the crop, Majority of the current supply is from subsistence farming.	Propagation through seeds, about 12-20 days seedlings are planted, flowers may be harvested after 1-2 years of plantation.
Berginia ciliate Pakhan	Mostly used as	Roots, annual demand	Off-farm anf	Propagation through

TABLE 2: OVERVIEW OF MEDICINAL IMPORTANCE AND OTHER FACTS OF SOME UNIQUE PLANT SPECIES ¹⁷⁻¹⁹

International Journal of Pharmaceutical Sciences and Research

bhed(pashanbheda/saxifr	antipyretic,	200-500 metric tonne	cultivation of the	rhizome, about 18-20
agaceae)	hepatoprotective,		crop, majority of	days seedlings are
	diuretic and		the current supply	planted, roots may be
	antilithiatic <i>etc</i> .		is from existing	harvested after 6 months
			plantations.	of plantation.
Myrica esculenta	Mostly used to	Fruit, annual demand	Off-farm	Propagation through wild
Bayberry(kaphal/Myrica	cure ulcers, cancer	expected to be 200-500	harvesting is in	seed dispersal, gestation
cceae)	and paralysis.	metric tonne	practise, majority	period is variable, fruits
			of the current	may be harvested after 3-
			supply is from	4 months of plantation
			wild existing	
			plantations.	
Rubus ellipticus	Mainly used as a	Fruit, annual demand	Off-farm	Propagation through wild
Himalayan	renal tonic and to	expected to be 200-500	harvesting is in	seed dispersal, gestation
raspberry(hisalu/hisar/	treat coughs,	metric tonne	practise, majority	period is variable, fruits
Rosaceae)	fevers, colic and		of the current	may be harvested after 3-
	sore throat.		supply is from	4 months of plantation
			wild existing	
Durana Anno ania aa	Mainly used as	Emit annual damand	Cultivation of	Dropogation through and
A prioot(abullu/khumani/	antiovidents	Fruit, annual demand	berwested arons	dispersal about one year
	boosts ava gut	lakh matric tonno	majority of the	soldlings are planted
Rosaceae)	and skin heath	lakii metric tonne	current supply is	fruit may be harvested
	and skin neath.		from existing and	after 8-10 years of
			new plantations	plantation
Citrus X sinensis	Mainly used to	Fruit, annual demand	Cultivation of	Propagation through seed
Sweet Orange	maintain	expected to be 0.362	harvested crops.	dispersal, about one year
(Malta/Rutaceae)	cholesterol, boots	lakh metric toone	majority of the	seedlings are planted.
()	Vitamin C and		current supply is	fruit may be harvested
	antioxidants		from existing and	after 2-3 years of
			new plantations.	plantation.
Prunus persica	Mainly used to	Fruit, annual demand	Cultivation of	Propagation through seed
Peach(Pulam/Plum/	strengthen	expected to be 0.579	harvested crops,	dispersal, about one year
Rosaceae)	immune system,	lakh metric tonne	majority of the	seedlings are planted,
	anti-aging, and		current supply is	fruit may be harvested
	neurodegenerative		from existing and	after 2-3 years of
	diseases.		new plantations.	plantation.
Swetia chirayita	Mainly used for	Leaves, stem, bark,	Cultivation of	Propagation through seed
Chirayita((Chirata	fever,	annual demand 500-	harvested crops,	dispersal, about 25-30
/Gentians)	constipation, loss	1000 metric tonne	majority of the	seedlings are planted,
	of appetite, skin		current supply is	leaves may be harvested
	diseases and		from existing and	after 1 years of
	intestinal worms.		new plantations.	plantation.
Permelia parlata	Mainly used as	Flowers, annual demand	Cultivation of	Propagation through
Chadela(Dagad/Permena	inflommatory and	1000-2000 metric tonne	the majority of the	about 25, 20 soudlings are
ceae)	approdicion drugs		aurrent supply is	about 25-50 seedings are
	aphiouistae urugs.		from existing	harvested after 1 years of
			nlantations	plantation
Iurinea macrocenhala	Mainly used to	Stem bark annual	Off-farm	Propagation through
Guggal	cure toothache	demand 1000-2000	harvesting is in	vegetative propagation
doop(timru/teipal/compo	cough, fever and	metric tonne	practise, the	branch may be harvested
sitae)	give warmth.		majority of the	after 1 year of plantation.
,	8		current supply is	
			from existing wild	
			plantations.	
Berberis aristata	Mainly used to for	Fruit and leaves, annual	Off-farm	Propagation through seed
Liverin(Chitra/Berberida	the treatment of	demand 500-1000 metric	harvesting is in	dispersal, about 25-30
ceae)	ophthalmic	tonne	practise, majority	seedlings are planted;
	infections along		of the current	fruit may be harvested

International Journal of Pharmaceutical Sciences and Research

	with antiperiodic,		supply is from	after 3-4 months of
	antidiarrheal		wild existing	plantation.
	properties		plantations.	
Ficus palmate Himalayan	Mainly used for	Fruit, annual demand	Off-farm	Propagation through seed
fig(Bedu/Moraceae)	the diseases of	expected to be 0.282	harvesting is in	dispersal, about 25-30
	lungs and the	lakh metric tonne	practise, majority	seedlings are planted;
	bladder.		of the current	fruit may be harvested
			supply is from	after 3-4 months of
			wild existing	plantation.
			plantations.	
Aconitum heterophyllum	Mainly used to	Leaves, annual demand	Cultivation of	Propagation through
Wall Atisiva	boost the eye, skin	200-500 metric tonne	harvested crops,	vegetative propagation,
(Atis/Ranunculaceae)	and ingestion		majority of the	branch may be harvested
	processes.		current supply is	after 1 years of
	Prevents diarrhoea		from existing and	plantation.
	and dysentery.		new plantations.	

CONCLUSION: Uttarakhand is blessed with the perfect climate for the production of numerous medicinal and aromatic plants, which may ultimately help to increase the state's economy and industrial revenue by the supplies of the raw drugs or the extracted product ²⁰. We have analyzed the production of the Uttarakhand state's Medicinal and aromatic plants, which gives insights about the export volume and value of the different product categories under Medicinal and aromatic plants.

Amongst the different product categories, medicinal plants and fruits and flavors are the most important export commodities under Medicinal and aromatic plants category and shares a major percentage, both in terms of volume and value. Although India is dominating the exports to other developing countries in terms of volume but Chinese interest in high valued Medicinal and aromatic plants has significantly increased the export value ²¹.

Uttarakhand high altitude regions may increase the yield up to 2-3 folds, providing more preserving environmental conditions for better cultivation and propagation of the crops. Many of the unique varieties of fruits and plants are grown at the subsistence level with poor scientific techniques, which leads to the scanty agro produce.

Besides, there are many potential causes of growth rarity in Medicinal and aromatic plants, including habitat specificity, narrow range of geographical distribution and exploitation of land use, the introduction of non-natives, habitat alteration, and heavy livestock grazing ²². The use of proper training and scientific techniques may help people

to understand the culturing process well and would provide a number of employments with increased wages to the local people of the state. The state has immense potential for medicinal plant cultivation, and it can become one of the important options for sustainable livelihood for the hilly area.

ACKNOWLEDGEMENT: Nil

CONFLICTS OF INTEREST: Nil

REFERENCES:

- Chandra PK, Pramod CK, Butola JS and Sundriyal RC: Trends in the marketing of some important medicinal plants in Uttarakhand, India, International Journal of Biodiversity Science, Ecosystem Services & Management 2013; 9(4): 324-29.
- 2. Kala CP: High Altitudes Medicinal and aromatic plants: Jaypee Publication, New Delhi 2018; 185-94.
- 3. Suresh GK, Bandana A, Santosh R, Kala RH, Bhattarai R and Dipesh P: Export of medicinal and aromatic plant materials from Nepal, Botanica Orientalis-Journal of Plant Science 2016; 10: 24-32.
- Chauhan RS: Socioeconomic improvement through medicinal and aromatic plants (Medicinal and aromatic plants) Cultivation in Uttarakhand, India. Journal of Sustainable Agriculture 2010; 34: 647-58.
- Kalauni D and Joshi A: Status of medicinal and aromatic plant (Medicinal and aromatic plants) and socio-economic influence. Acta Scientific Agriculture (ISSN: 2581-365X) 2018; 2(9): 123-30.
- Chauhan RS, Nautiyal BP and Nautiyal MC: Trade of Threatened Himalayan Medicinal and Aromatic Plants-Socioeconomy, Management and Conservation Issues in Garhwal Himalaya, India, Global Journal of Medical Research Microbiology and Pathology 2018; 13(2): 9-18.
- Joshi BC and Joshi RK: The Role of Medicinal Plants in Livelihood Improvement in Uttarakhand, International Jounal of Herbal Medicine 2014; 1(6): 55-58.
- 8. Joshi B: Recent trends of rural out-migration and its socioeconomic and environmental impacts in Uttarakhand Himalaya. Journal of Urban and Regional Studies on Contemporary India 2018; 4(2): 1-14.

- 9. IP-UK-Medicinal & Aromatic Sector Profile, Government of Uttarakhand 2019; 1-34.
- Rokhsareh RA, Moghaddasib R and Hosseinic SS: Export target markets of medicinal and aromatic plants. Journal of Appl Res on Med and Aromatic Plants (Article In Press).
- Chandola A and Singh SK: Status and scope of medicinal plants in Bhagirathi Valley of Garhwal, Uttaranchalconservation strategy. Indian Forester 2003; 129(8): 950-63.
- Ved DK and Goraya GS: Demand and supply of medicinal plants. Foundation for Revitalization of Local Health Traditions, Bangalore, India 2008.
- Kala CP: Medicinal plants and sustainable development. Nova Science Publishers, New York, Edition 10th, USA 2018.
- Kala CP: Medicinal Plants of Uttarakhand: Diversity, Livelihood and Conservation. Biotech Books, Delhi, India 2018.
- 15. Kala CP: Medicinal plants conservation and enterprise development. Medicinal Plants 2016; 1(2): 79-95.

- 16. Alok RR and Singh R: Contribution of medicinal plants in economic growth. WJPPS 2017; 6(11): 367-72.
- 17. Kala CP: Medicinal and aromatic plants: Boon for enterprise development. Medicinal Aromatic Plants Abstract 2018; 2(4): 134-39.
- Kala CP: Medicinal and Aromatic Plants of Tons Watershed in Uttarakhand Himalaya. Applied Ecology and Environmental Sciences 2019 (Rev); 3(1): 16-21.
- 19. Tuteja U: Agriculture Profile of Uttarakhand, Agricultural Economics Research Centre University of Delhi, 2018.
- Ghayur A and Luncian P: Cultivation of Medicinal Plants in Uttarakhand, Economic & Political Weekly 2009; 44(10): 99-104.
- 21. Khanuja V: Employee contract farming to boost area under cultivation for essential oil bearing crops. In Business enabling of aromatic plants and products. Chemical weekly 2007; 180-84.
- 22. Farooqui AA and Sreeramu BS: Cultivation of medicinal and aromatic crops, University Press Ltd., Hyderabad, India 2012 (Rev. Edition).

How to cite this article:

Nainwal P and Singh N: Sustainable use of high altitude medicinal and aromatic plant for socio-economic development in Uttarakhand: a review. Int J Pharm Sci & Res 2020; 11(9): 4238-43. doi: 10.13040/IJPSR.0975-8232.11(9).4238-43.

All © 2013 are reserved by International Journal of Pharmaceutical Sciences and Research. This Journal licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

This article can be downloaded to ANDROID OS based mobile. Scan QR Code using Code/Bar Scanner from your mobile. (Scanners are available on Google Playstore)