(Research Article)

10

IJPSR (2020), Volume 11, Issue 9

INTERNATIONAL JOURNAL

Received on 22 September 2019; received in revised form, 24 April 2020; accepted, 22 August 2020; published 01 September 2020

SUSTAINED RELEASE MULTI-PARTICULATES FORMULATION OF STEREO-SELECTIVE MOLECULE OF KETOPROFEN BY FLUID BED PROCESSOR

Bhupendra G. Prajapati^{*} and Alpesh Patel

Department of Pharmaceutics, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Ganpat Vidyanagar, Kherva, Mehsana - 384012, Gujarat, India.

Keywords:

Dexketoprofen Trometamol, Pellets, Fluid Bed Technology, Central composite design Correspondence to Author: Dr. Bhupendrag G. Prajapati Associate Professor, Department of Pharmaceutics, Shree S. K. Patel College of Pharmaceutical Education and

Research, Ganpat University, Ganpat

E-mail: bhupen27@gmail.com

Vidyanagar, Kherva, Mehsana -

384012, Gujarat, India.

ABSTRACT: The aim is to prepare sustained release multi-particulates dosage form of Dexketoprofen trometamol, which is the active isomer of ketoprofen. Utilization of active moiety with minimum drug dose and administration frequency sustainedrelease multi-particulates dosage form is explored. Sustained release pellets of the dexketoprofen trometamol were developed by the fluidized bed technology, in which drugs along with a binder and anti-adherent agents, were loaded onto microcrystalline cellulose inert beads. These drug-loaded pellets were again coated with Kollicoat SR 30D as sustained-release coating polymer, triethyl citrate as plasticizer and talc as an anti-adherent. The formulation was further statistically optimized for agglomerates formation, process efficiency, and drug release profile using central composite design (CCD). Results show that 16.9 to 18.5% w/w sustained release coating with 9.0-14.6% w/w talc and 8.1 to 16.5% w/w triethyl citrate concentration gives desired drug product quality attributes. Sustained-release multi-particulates were successfully developed for dexketoprofen trometamol, which maybe explored to manufacture various dosage forms like capsules, compressed tablets, pellets in sachet etc. for ease of patient compliance.

INTRODUCTION: Chirality phenomenon has play a major role in the synthesis and development of new drug therapy to achieve better therapeutics index ¹. A molecule is referred to as chiral if it is not superimposable to its mirror image. The best example of chirality is our hand ². Majority molecules of importance to living systems are chiral *e.g.*, amino acids, sugars, proteins, and nucleic acids ³. Major advantages of chiral switching include: (1) an improved therapeutic index through increased potency and selectivity and decreased side-effects; (2) a faster onset of action; (3) a reduced propensity for drug-drug interactions, and (4) exposure of the patient to a lower dosage ⁴.

Dexketoprofen trometamol (DT) is a water-soluble salt of the dextrorotatory enantiomer of the NSAID ketoprofen ⁵. Racemic Ketoprofen has been used since 1973 as an anti-inflammatory, analgesic and antipyretic active drug substance and is one of the most potent *in-vitro* inhibitors of prostaglandin synthesis ^{6, 7}. Dexketoprofen trometamol administration was found to be highly effective in treatment of moderate to severe pain when used as an analgesic in osteoarthritis, dysmenorrhea, gynecologic, orthopedic, and dental surgery ⁸. This effect is because of the S (+)-enantiomer of dexketoprofen while R (-) - enantiomer is devoid of such action ⁹. DT is not official in any pharmacopeia ⁶.

DT is well absorbed in the gastrointestinal tract when administered orally owing to its high aqueous solubility. Commercial oral DT tablets are needed to be administered 3-6 times daily due to DT's shorter elimination half-life $(1.2-2.5 \text{ h})^{-10}$. Additionally, side effects of oral immediate-release DT tablets include gastrointestinal disturbances such as gastrointestinal discomfort, nausea, diarrhea, and gastrointestinal bleeding like other NSAIDs. A sustained-release oral formulation of DT has the potential of reducing the frequency of administration and side effects and thus improve patient compliance.

These multiple-unit doses are usually formulated in the form of suspensions, capsules, or orally disintegrating tablets, showing a number of advantages over the single-unit dosage system. The subunits of multiple-unit preparations distribute readily over a large surface area in the gastrointestinal tract, and these small particles (<2 mm) behave like liquids leaving the stomach within a short period of time. Their small size also enables be well distributed them to along the gastrointestinal tract that could improve the bioavailability, which potentially could result in a reduction in local drug concentration, risk of toxicity, and side-effects ¹¹

Widely used techniques to manufacture sustainedrelease pellets are extrusion-spheronization and bottom spray fluidized bed coating process. Amongst these two techniques, extrusionspheronization is a shorter process compare to fluidized bed coating but produce the irregular size of pellets which leads to variation in drug product critical quality attributes (*i.e.*, drug release). Therefore to achieve narrow particle size distribution and batch to batch consistency in terms of finished product quality, a fluid bed coating technique is more preferable.

During this research work, drug loading was done on microcrystalline cellulose (MCC) spheres (Celphere CP 305) using a various drug to binder ratio to provide maximum drug loading process efficiency. Neutral, insoluble substrate without smell or odor, having high mechanical strengths, and narrow particle size distribution make these Celphere CP 203 as a good candidate for drug loading and sustained release coating in wurster coating process. This drug-loaded pellets are then coated with Kollicoat SR 30D as sustained-release coating polymer, triethyl citrate as plasticizer, and micronized talc as an anti-tacking agent to get final pellet size of 400-700 micron. During research work, sustained-release coated pellets were also optimized using statistical design *i.e.*, central composite. Sustained release pellets were evaluated for particle size by sieve analysis, coating process efficiency, and dissolution.

MATERIALS AND METHODS:

Materials: Dexketoprofen trometamol (Emcure Pharmaceuticals Ltd) was used as a model drug. MCC spheres (300-500µm, Celphere CP-305, Asahi KASEI, Japan) were selected as a substrate for coating. Polyvinyl pyrrolidone (Kollidon 30, BASF Germany) was selected as a binder during drug loading process. Triethyl citrate (Merck) was used as plasticizer during sustained release coating process. Micronized talc (Luzenac Pharma M, Imerys) was selected as anti-tacking agent during drug loading and sustained release coating process.

Manufacturing of Drug-Loaded Pellets: Drug of dexketoprofen loading trometamol was performed onto MCC sphere (300-500 μm, Celphere CP-305, Asahi KASEI, Japan) by applying drug layering suspension of dexketoprofen trometamol, which is prepared by dissolving dexketoprofen trometamol into purified water with different binder concentration. Binder concentration was selected in a range of 0-7.5% of drug. Micronized talc (2% of drug) is added to the solution to minimize static charge generation and agglomerates formation during spraying process¹². Drug loading was done in Wurster coater (ACG Pam Glatt, Model: GPCG 1.1). The final drugloaded pellets have 110.625 mg of dexketoprofen trometamol in 218.370 mg of drug pellets.

TABLE 1.	COMPOSITION ()F DEXKETOPROFEN	TROMETAMOL	DRUG LOADED PELLETS
$\mathbf{I} \mathbf{A} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{I}$		T DEALETOI NOT EN	INUMERATION	DRUG LOADED I ELLEIS

Ingredients	DFBP 1 (mg)	DFBP 2 (mg)	DFBP 3 (mg)	DFBP 4 (mg)
Microcrystalline Cellulose Sphere	100.000	100.000	100.000	100.000
(Celphere CP305)				
Dexketoprofen Trometamol	110.625	100.625	100.625	110.625
Povidone K30	0.000	2.766	5.531	8.297
Talc (micronized)	2.214	2.214	2.214	2.214
Purified Water	q.s. to 20% w/w	q.s. to 20% w/w	q.s. to 20% w/w	q.s. to 15% w/w
Total	212.840	215.605	218.370	221.136

International Journal of Pharmaceutical Sciences and Research

Manufacturing of Sustained Release Coated Pellets: Sustained release coating on drug-loaded pellets were done using liquid dispersion of Kollicoat SR30 D as sustained-release polymer which contains polyvinyl acetate (PVAc, 27%) stabilized with polyvinyl pyrrolidone (PVP, Povidone, 2.7%) and sodium lauryl sulphate (SLS, 0.3%), Triethyl citrate as a hydrophilic plasticizer and micronized talc as an anti-tacking agent. Sustained-release coating was done in a range of 10-28% with solid dispersion content of 20% w/w. Triethyl citrate was used as a plasticizer at 10% w/w concentration of dry polymer solid weight, and Talc was added as an anti-tacking agent at 5% w/w concentration of total solid material. To prepare sustained release coating dispersion (20% w/w), the Part quantity of purified water was added into the dispersion under mild stirring. TEC was added to this dispersion and stirred for 30 min to make homogeneous dispersion. Talc was dispersed into remaining purified water under continuous stirring, and this dispersion was added to previously prepared polymer dispersion. This dispersion was filtered through #60 to remove any lumps in dispersion.

This dispersion was then sprayed onto drug-loaded pellets too get final sustained-release coated micropellets of 400-700 μ m. Till the completion of the spraying process, the dispersion was continuously stirred to avoid talc sedimentation.

TABLE 2:	COMPOSITION	OF DEXKETOPROFEN	TROMETAMOL	SUSTAINED RE	LEASE COATED PELLETS

Ingredients	SFBP1 (mg)	SFBP2 (mg)	SFBP3 (mg)	SFBP4 (mg)
Drug loaded pellets	218.374	218.374	218.374	218.374
Kollicoat SR 30D dry solid polymer	18.907	30.251	41.595	52.940
Triethyl citrate	1.891	3.097	4.160	5.294
Talc (micronized)	1.040	1.664	2.288	2.912
Purified water	q.s.	q.s.	q.s.	q.s.
Total	240.212	253.386	266.417	279.519
Concentration of sustained release dispersion	20 %	20%	20%	20%
% of sustained release coating	10%	16%	22%	28%

TABLE 3: COATING PROCESS PARAMETERS

Parameters	Drug	Sustained-
	loading	release coating
Machine/Product Bowl	GPC	G 1.1 /2.4 litre
Air distribution plate		С
Spray nozzle diameter (mm)		1.0
Inlet air temperature (°C)	40-55	30-45
Product bed temperature (°C)	32-38	25-35
Fluidization air volume (cfm)	45-95	45-75
Atomization air pressure (Bar)	0.8-1.2	1.0-1.3
Spray rate (g/min)	3-15	2-10
Drying temperature (°C)	55-60	45-50
Drying time (min)	15	30

Statistical Optimization of the Sustained Release

Coating: After getting satisfactory results for drug release from the feasibility trial of sustained-release coated pellet, % sustained release coating, amount of plasticizer and anti-tacking agent in sustainedrelease coating formulation were optimized using design of experiment tool, *i.e.*, central composite design (CCD Design). During optimization study, solid content in dispersion was kept constant at 20% w/w. As % sustained release coating weight gain, amount of plasticizer, and anti-tacking agent exhibits an important role for controlling drug release from pellets, these factors were selected as independent parameters during formulation optimization study using central composite design using three center points. The dependent responses were selected as the amount of agglomerates and drug release at 1, 4, 7, and 10 h.

TABLE 4: SUMMARY OF CCD DESIGN

Independent		Level
variable	-1	+1
% Coating weight gain	10.00	25.00
% w/w of plasticizer with	5.00	20.00
respect to dry polymer		
% w/w of Talc with respect	5.00	20.00
to total coating solid		
Response to be studi	ed	Limit
Coating Process Efficie	ncy	NLT 90%
Agglomerates		NMT 3% w/w
Drug Release at 1 h		15 - 25%
Drug Release at 4 h		40 - 50%
Drug Release at 7 h		65 - 80%
Drug Release at 10 h	ı	NLT 90%

Evaluation of Pellets: Drug loaded pellets and sustained-release coated pellets were evaluated for particle size distribution by using an analytical sieving method. Coating process efficiency (% w/w) was calculated for both drug loading and sustained release coating process using the following equation.

% Coating process efficiency = Wt. of Final Coated Pellets – wt. of Starter Pellets \times 100 / Amount of Solid sprayed from dispersion

Assay of drug-loaded pellets was carried out to determine the actual drug content inside the drug pellets. Sustained-release coated pellets were evaluated for *in-vitro* drug release in 500 mL SGF (pH 1.2) followed by SIF (pH7.4) using paddle apparatus (USP Apparatus –II) at 50 RPM. Drug release was compared to marketed product Oruvail 150 mg (Ketoprofen Capsules) by similarity factor (f_2), mean dissolution time (MDT), and mean residence time (MRT). An f_2 value between 50-100 suggests that the two dissolution profiles are similar, and the mean dissolution profiles are assumed to differ by no more than 10% at any time point ^{13, 14}.

$$f2 = 50.\log\left\{ \left[1 + \left(\frac{1}{n}\right) \sum_{t=1}^{n} W(Rt - Tt)^2 \right]^{-0.5} * 100 \right\}$$

Where Rt and Tt are the per cent dissolved at each time point for reference (R) and test (T) products.

RESULTS:

Preliminary Trials of Drug Loaded Pellets: Process efficiency is one of the important critical quality attributes for effective drug loading process and to control the amount of drug-loaded onto pellets (*i.e.*, assay). Wurster coating process dependent and independent involves many variables which affect process efficiency. The preliminary trial drug-loaded pellets were taken to study binder amount level on drug pellets assay, process efficiency, agglomerates, and fines formation, which are summarized in Table 5.

Process feasibility was defined as completion of process without any agglomerates observation, and the intermittent process stops. Ranking for Process feasibility was assigned as 1 (Very poor), 2 (Poor), 3 (Good), 4 (very good).

TABLE 5: RESULTS OF DRUG LOADED PELLETS OF DT

Parameters		Concentration of Binder						
		0 %	2.5 %	5 %	7.5%			
% Process Efficie	71.3	84.0	91.2	93.4				
% Agglomerates	>25#	0.35	0.75	1.1	15.6			
% Fines	<40#	14.3	5.5	0.3	0.1			
LOD at 105 °C	С	0.4	0.8	1.1	1.0			
Process feasibil	Very good	Very good	Good	Poor				

Preliminary Trials of Sustained Release Coating: Preliminary trials of sustained-release coated pellets were evaluated for % process efficiency, assay, particle size distribution, and drug release profile.

TABLE 6: RESULTS OF SUSTAINED RELEASE PELLETS

Parameters	% of the sustained-release coating						
		10%	16%	22%	28%		
Process Efficiency	89.6	91.5	92.3	90.9			
Assay		100.5	99.1	100.0	100.3		
Particle Size Distribution	>25#	0.5	0.7	0.3	0.5		
(by sieve analysis)	<40#	0.3	0.4	0.2	0.4		

TABLE 7: DRUG RELEASE PROFILE OF SUSTAINED RELEASE PELLETS

Time (h)	Specification	Marketed	10% SR	16% SR	22% SR	28% SR
	Limit	Product	Coated	Coated	Coated	Coated
1	15-25%	16.4 ± 2.4	47.5 ± 1.4	27.6 ± 1.7	10.5 ± 2.2	6.4 ± 1.4
2		29.2 ± 1.7	60.8 ± 2.3	40.6 ± 1.6	26.5 ± 1.7	11.5 ± 0.6
4	40-50%	43.7 ± 2.0	70.8 ± 2.0	59.2 ± 1.6	33.2 ± 1.2	20.7 ± 1.3
6		60.5 ± 2.0	90.1 ± 0.6	67.1 ± 2.5	47.7 ± 1.7	35.5 ± 1.2
7	65-80%	77.4 ± 2.0	97.1 ± 1.3	83.6 ± 3.2	61.8 ± 2.3	45.0 ± 1.7
10	NLT 90%	89.3 ± 1.9	99.2 ± 1.2	90.2 ± 0.4	81.4 ± 2.0	65.2 ± 1.6
12		93.3 ± 0.8	99.3 ± 2.2	101.0 ± 0.3	93.4 ± 1.3	78.5 ± 2.6
Simi	larity factor (f_2)	-	30.79	50.89	51.16	32.76
Mean Disso	lution Time (MDT) (h)	4.39	2.36	4.07	5.48	6.27
Mean Resid	dence Time (MRT) (h)	3.60	2.31	3.35	4.05	4.63

FIG. 1: COMPARATIVE DISSOLUTION PROFILE OF DIFFERENT SUSTAINED RELEASE COATING WEIGHT GAIN BATCHES

TABLE 6. RESULTS OF SUSTAINED RELEASE COATING OF HIMILATION USING CCD DESIGN													
Trials Run	1	2	3	4	5	6	7	8	9	10	11	12	13
Independent factors selected													
% Coating weight gain	10.0	17.5	6.89	17.5	17.5	17.5	17.5	25.0	10.0	17.5	25.0	28.11	17.5
TEC concentration	5.0	12.5	12.5	12.5	12.5	12.5	1.89	20.0	20.0	23.11	5.0	12.5	12.5
Talc concentration	5.0	23.11	12.5	12.5	1.89	12.5	12.5	5.0	20.0	12.5	20.0	12.5	12.5
Responses understudied													
Agglomerates	4.9	0.1	0.5	0.6	11.2	0.1	0.3	6.5	2.1	1.0	1.9	0.6	0.3
Efficiency	94.1	88.9	90.4	95.6	96.1	93.8	88.5	94.5	86.0	92.1	85.9	95	94.2
				Dru	g relea	se prof	ïle						
Time (h)					% Dr	ug rele	ease						
1	43.2	25.9	71.9	18.3	13.2	21.0	32.4	10.1	52.9	26.8	13.1	6.0	19.2
4	75.0	54.2	94.8	44.9	39.0	47.1	54.2	40.1	87.9	57.9	30.1	20.9	45.9
7	98.1	77.8	97.1	73.8	69.8	76.0	90.1	59.2	98.7	88.1	53.2	42.0	72.4
10	96.9	100.8	99.6	96.8	98.1	97.5	96.5	75.9	99.8	98.7	66.8	66.1	99.0

TABLE 8: RESULTS OF SUSTAINED RELEASE COATING OPTIMIZATION USING CCD DESIGN

DISCUSSION:

Drug Loading: Binder quantity play crucial role in adhesion of drug onto inert starter core pellets. Low binder concentration in drug layering suspension may results in powder loss during the drug loading process, which reduces assay of drug pellets. Higher binder concentration yields viscous and sticky dispersion, which results in agglomerates generation due to sticking of pellets with each other that necessitates slow spray rate and higher product bed temperature. Binder optimization trial in drug loading showed that there was an increase in process efficiency with an increase in the binder concentration. 5 & 7.5% w/w concentration of Povidone K30 with respect to drug amount gives greater than 90% process efficiency while a higher amount of agglomerates were observed for drug layering trial with 7.5%.

Based on preliminary trials for drug loading, Povidone concentration is selected as 5% of drug substance quantity. This gave good process feasibility and good adhesion of the drug onto the MCC pellets. Talc at 2% of total drug layering solid mass shows better anti-tacking property to remove unnecessary static charges as well as agglomeration generation during spraying process.

Sustained Release Coating: Sustained release coating formulation and process both play vital role in controlling drug release from the pellets. The feasibility trials for sustained release coating were taken by applying different % of weight gain. As the coating weight gain increases from 10 to 28% w/w, the drug release profile significantly decreases. 16% w/w weight gain give comparable drug release to that of the marketed product (Oruvail- Ketoprofen Extended-Release capsules) with f2 value of above 50. Even Mean dissolution time (MDT) and mean residence time (MRT) of pellets is comparable to that of a brand product. This selected 16% w/w coating weight gain was further optimized by varying levels of components to get appropriate robust formulation, which gives satisfactory quality attributes of dosage forms within narrow possible changes.

Sustained Release Coating Formulation Optimization: Sustained release coating formula optimization was done using response surface methodology *i.e.*, CCD design with three center point. Three dependent responses were investigated, which are amount of agglomerates, coating process efficiency, and drug release at 1, 4, 7, and 10 h. Fit summary of various investigated dependent responses were summarized in **Table 9**.

TARLE 9.	FITS	SUMMARY	OF	RESPONSES	UNDER	STUDIED
IADLE 7.	LIID	SUMMANT	U	KEDI UNDED	UNDER	STUDIED

Source	Sum of Squares	Df	Mean Square	F Value	p-value Prob > F	Comments				
	Res	ponse Y ₁ :	Agglomerates (%	w/w)	•					
Mean vs. Total	69.69	1	69.69							
Linear vs. Mean	67.96	3	22.65	3.17	0.0779					
2FI vs. Linear	8.89	3	2.96	0.32	0.8104					
Quadratic vs. 2FI	54.73	3	18.24	88.15	0.0020	Suggested				
Cubic vs. Quadratic	0.49	1	0.49	7.80	0.1078	Aliased				
Response Y₂: Coating process efficiency										
Mean vs. Total	109900	1	109900							
Linear vs. Mean	100.03	3	33.34	5.45	0.0206					
2FI vs. Linear	12.76	3	4.25	0.60	0.6365					
Quadratic vs. 2FI	40.33	3	13.44	20.49	0.0168	Suggested				
Cubic vs. Quadratic	0.18	1	0.18	0.20	0.6965	Aliased				
	R	esponse Y	3: Drug release at	1 h						
Mean vs. Total	9639.69	1	9639.69							
Linear vs. Mean	3566.21	3	1188.74	15.38	0.0007					
2FI vs. Linear	81.67	3	27.22	0.27	0.8477					
Quadratic vs. 2FI	581.84	3	193.95	18.15	0.0199	Suggested				
Cubic vs. Quadratic	28.27	1	28.27	14.96	0.0608	Aliased				
	R	esponse Y	4: Drug release at	4 h						
Mean vs. Total	36835.69	1	36835.69							
Linear vs. Mean	5034.82	3	1678.27	29.69	<0.0001					
2FI vs. Linear	99.68	3	33.23	0.49	0.7035					
Quadratic vs. 2FI	405.15	3	135.05	104.90	0.0016	Suggested				
Cubic vs. Quadratic	1.44	1	1.44	1.18	0.3904	Aliased				
	R	esponse Y	5: Drug release at	7 h						
Mean vs. Total	76354.90	1	76354.90							
Linear vs. Mean	3299.75	3	1099.92	19.54	0.0003					
2FI vs. Linear	51.27	3	17.09	0.23	0.8756					
Quadratic vs. 2FI	443.73	3	147.091	38.13	0.0069	Suggested				
Cubic vs. Quadratic	5.05	1	5.05	1.53	0.3412	Aliased				
	Re	esponse Y	6: Drug release at 1	0 h						
Mean vs. Total	109400	1	109400							
Linear vs. Mean	1313.89	3	437.96	5.84	0.0170	Suggested				
2FI vs. Linear	27.91	3	9.30	0.086	0.9650					
Quadratic vs. 2FI	589.92	3	196.64	10.33	0.0433	Suggested				
Cubic vs. Quadratic	54.56	1	54.56	43.19	0.0244	Aliased				

TABLE 10: ANOVA RESULT OF DEPENDENT PARAMETERS (Y1: AGGLOMERATES)

				1		
Source	Sum of Squares	df	Mean Square	F Value	p-value Prob > F	Comments
Model	131.58	9	14.62	70.64	0.0025	Significant
A-% Coating	0.005	1	0.005	0.024	0.8863	
B-TEC conc.	0.25	1	0.25	1.18	0.3562	
C-Talc conc.	61.60	1	61.60	297.67	0.0004	Significant
AB	8.61	1	8.61	41.59	0.0076	Significant
AC	0.082	1	0.082	0.40	0.5737	
BC	0.20	1	0.20	0.96	0.4001	
A^2	0.54	1	0.54	2.62	0.2040	
\mathbf{B}^2	0.75	1	0.75	3.63	0.1529	
C^2	54.55	1	54.55	263.58	0.0005	Significant
Residual	0.62	3	0.21			-
Lack of Fit	0.49	1	0.49	7.80	0.1078	Not significant
Pure Error	0.13	2	0.063			-
Cor Total	132.20	12				

ANOVA results for agglomerate shows that model F value is 70.64, which is more than 0.05, which shows that the selected model is significant.

Here talc concentration in sustained-release coating solution affects significantly agglomerates formation during the coating process. The value of adequate precision is 28.107, which means that model can be used to navigate the design space.

TABLE 11: ANOVA	RESULT OF DEPENDENT	PARAMETERS (Y ₂ :	COATING PROCESS EFFI	CIENCY)

Source	Sum of Squares	df	Mean Square	F Value	p-value Prob > F	Comments
Model	153.12	9	17.01	25.94	0.0108	Significant
A-% Coating	10.58	1	10.58	16.13	0.0277	Significant
B-TEC conc.	6.48	1	6.48	9.88	0.0515	
C-Talc conc.	25.92	1	25.92	39.51	0.0081	Significant
AB	5.31	1	5.31	8.09	0.0654	
AC	2.63	1	2.63	4.02	0.1388	
BC	4.81	1	4.81	7.34	0.0732	
A^2	7.10	1	7.10	10.83	0.0461	Significant
B^2	33.58	1	33.58	51.18	0.0056	Significant
C^2	8.56	1	8.56	13.05	0.0364	Significant
Residual	1.97	3	0.6560			
Lack of Fit	0.1813	1	0.1813	0.2029	0.6965	Not significant
Pure Error	1.79	2	0.8933			
Cor Total	155.09	12				

ANOVA results for coating process efficiency show that model F value is 25.94, which is more than 0.05, which shows that the selected model is significant. Here coating weight gain and talc concentration in sustained-release coating process were significantly influence coating process efficiency. The value of adequate precision is 14.003, which means that model can be used to navigate the design space.

Statistical equation for the prediction of response Y_2 (Coating process efficiency) is: $94.62 + 1.63*A + 1.27*B - 2.55*C + 1.63*A*B + 1.15*A*C + 1.55*B*C - 1.02*A^2 - 2.22*B^2 - 1.12*C^2$

TABLE 12: ANOVA RESULT OF DEPENDENT PARAMETERS (Y3: DRUG RELEASE AT 1 h)

Source	Sum of Squares	df	Mean Square	F Value	p-value Prob > F	Comments
Model	4229.72	9	469.97	43.99	0.0050	Significant
A-% Coating	2171.40	1	2171.40	203.24	0.0007	Significant
B-TEC conc.	15.68	1	15.68	1.47	0.3124	
C-Talc conc.	80.65	1	80.65	7.55	0.0709	
AB	3.46	1	3.46	0.3238	0.6092	
AC	26.72	1	26.72	2.50	0.2119	
BC	51.49	1	51.49	4.82	0.1157	
A^2	480.82	1	480.82	45.00	0.0068	Significant
B^2	94.80	1	94.80	8.87	0.0587	
C^2	11.34	1	11.34	1.06	0.3787	
Residual	32.05	3	10.68			
Lack of Fit	28.27	1	28.27	14.96	0.0608	Not significant
Pure Error	3.78	2	1.89			
Cor Total	4261.77	12				

ANOVA analysis results for drug release at 1 h shows that model F value is 43.99, which is more than 0.05, which shows that the selected model is significant.

Here coating weight gain plays a significant role in drug release at 1 h. The value of adequate precision

is 22.988, which means that model can be used to navigate the design space.

 $\begin{array}{l} Statistical equation for the prediction of response Y_3 (Drug release at 1 h) is: 20.55-23.30*A - 1.98*B + 4.49*C + 1.32*A*B - 3.65*A*C - 5.07*B*C + 8.41*A^2 + 3.73*B^2 - 1.29*C^2 \end{array}$

Source	Sum of Squares	df	Mean Square	F Value	p-value Prob > F	Comments
Model	5539.65	9	615.52	478.13	0.0001	Significant
A-% Coating	2730.60	1	2730.60	2121.10	< 0.0001	Significant
B-TEC conc.	6.84	1	6.84	5.32	0.1044	
C-Talc conc.	115.52	1	115.52	89.73	0.0025	Significant
AB	43.23	1	43.23	33.58	0.0102	Significant
AC	39.02	1	39.02	30.31	0.0118	Significant
BC	17.44	1	17.44	13.54	0.0348	Significant
A^2	264.63	1	264.63	205.56	0.0007	Significant
\mathbf{B}^2	193.78	1	193.78	150.52	0.0012	Significant
C^2	2.56	1	2.56	1.99	0.2535	
Residual	3.86	3	1.29			
Lack of Fit	1.44	1	1.44	1.18	0.3904	Not significant
Pure Error	2.43	2	1.21			
Cor Total	5543.51	12				

TADIE 12. ANO	VA DESULT (E DEDENDENT	DADAMETEDS (V	A DDUC DELEASE AT	г л ь
IADLE 15: ANU	VA KESULI U	'F DEPENDEN I	PAKAMEIEKS (1	4: DKUG KELEASE A I	140

ANOVA results for drug release at 4 h shows that model F value is 478.13, which is more than 0.05, which shows that the selected model is significant.

Here coating weight gain and talc concentration both play a significant role in drug release at 4 h. The value of adequate precision is 74.262, which means that model can be used to navigate the design space.

Statistical equation for the prediction of response Y_4 (Drug release at 4 h) is: 45.73-26.13*A -1.31*B + 5.37*C + 4.65*A*B - 4.42*A*C - 2.95*B*C + 6.24*A² + 5.34*B² + 0.6132*C²

Source	Sum of Squares	df	Mean Square	F Value	p-value Prob > F	Comments
Model	3794.75	9	421.64	108.68	0.0013	Significant
A-% Coating	1518.01	1	1518.01	391.29	0.0003	Significant
B-TEC conc.	2.00	1	2.00	0.5155	0.5246	
C-Talc conc.	32.00	1	32.00	8.25	0.0639	
AB	34.92	1	34.92	9.00	0.0577	
AC	11.11	1	11.11	2.86	0.1891	
BC	5.24	1	5.24	1.35	0.3291	
A^2	53.87	1	53.87	13.89	0.0337	Significant
B^2	329.43	1	329.43	84.92	0.0027	Significant
\mathbf{C}^2	3.23	1	3.23	0.8338	0.4285	
Residual	11.64	3	3.88			
Lack of Fit	5.05	1	5.05	1.53	0.3412	Not significant
Pure Error	6.59	2	3.29			
Cor Total	3806.39	12				

For drug release at 7 h, ANOVA results show that model F value is 108.68, which is more than 0.05, which shows that the selected model is significant. Here coating weight gain imparts a significant role in drug release at 7 h. The value of adequate precision is 33.595, which means that model can be used to navigate the design space. The statistical equation for the prediction of response Y_5 (Drug release at 7 h) is:

74.51 - 19.48*A -0.7071*B + 2.83*C + 4.18*A*B - 2.36*A*C + 1.62*B*C - 2.81*A^2 + 6.96*B^2 - 0.6897*C^2

TADLE 13, ANOVA RESULT OF DEI ENDENTTARAMETERS (16, DRUG RELEASE AT 10 II)	TABLE 15: ANOVA	RESULT OF	DEPENDENT	PARAMETERS	(Y ₆ : DRUG	RELEASE A	AT 10 h)
--	-----------------	-----------	-----------	------------	------------------------	------------------	----------

Source	Sum of Squares	df	Mean Square	F Value	p-value Prob > F	Comments
Model	1931.72	9	214.64	11.28	0.0355	Significant
A-% Coating	561.13	1	561.13	29.49	0.0123	Significant
B-TEC conc.	2.42	1	2.42	0.1272	0.7450	
C-Talc conc.	3.64	1	3.64	0.1915	0.6912	
AB	12.55	1	12.55	0.6593	0.4762	
AC	9.88	1	9.88	0.5190	0.5233	

International Journal of Pharmaceutical Sciences and Research

Prajapati and Patel, IJPSR, 2020; Vol. 11(9): 4359-4369.

BC	5.48	1	5.48	0.2882	0.6286	
A^2	586.46	1	586.46	30.82	0.0115	Significant
B^2	24.85	1	24.85	1.31	0.3361	-
C^2	6.62	1	6.62	0.3480	0.5968	
Residual	57.09	3	19.03			
Lack of Fit	54.56	1	54.56	43.19	0.0224	significant
Pure Error	2.53	2	1.26			
Cor Total	1988.81	12				

ANOVA results for drug release at 10 h shows that model F value is 11.28, which is more than 0.05, which shows that the selected model is significant. Here coating weight gain plays a significant role in drug release at 10 h. The value of adequate precision is 9.955, which means that model can be used to navigate the design space.

The statistical equation for the prediction of response Y_6 (Drug release at 10 h) is:

99.23 - 11.84*A + 0.7778*B + 0.9546*C + 2.50*A*B - 2.22*A*C + 1.66*B*C - 9.29*A² - 1.91*B² - 0.9868*C²

The overall conclusion of ANOVA results was revealed that % weight gain and Talc concentration are more significant parameters that affect the responses understudied, *i.e.* (agglomerates, process efficiency, and drug release).

FIG. 2: OVERLAY COUNTER PLOT OF % COATING WEIGHT GAIN AND TEC CONCENTRATION RESPONSES STUDIED

FIG. 3: OVERLAY COUNTER PLOT OF % COATING WEIGHT GAIN AND TALC CONCENTRATION ON RESPONSES STUDIED

FIG. 4: OVERLAY COUNTER PLOT OF TEC AND TALC CONCENTRATION ON RESPONSES STUDIED

Yellow color area-design space in depicted overlay plot yield desired parameter settings for which all dependent responses will always be within the accepted level.

CONCLUSION: Based on this research work, it was concluded that sustained-release coated pellets were successfully developed for dexketoprofen trometamol drug-using kollicoat SR 30D as a ready-mix polymer with triethyl citrate as plasticizer and talc as an anti-tacking agent. Wurster coating process yields uniform and narrow particle size distribution range pellets. Yellow zone in overlay plot gives appropriate formulation components level setting, which will give robust pellets formulation having desired quality attributes.

ACKNOWLEDGEMENT: The authors are thankful to Emcure Pharmaceuticals Limited for their support in this research work.

CONFLICTS OF INTEREST: We authors, the undersigned research article entitled "Sustained Release Multi-particulates Formulation of a stereoselective molecule of Ketoprofen by fluid bed processor" confirm that we do not have any conflict of interest in connection to the proposed research work.

REFERENCES:

- 1. Jayakumar R, Vadivel R and Ananthi N: Role of Chirality in Drugs. Organic & Medicinal Chem IJ 2018; 5(3): 555661.
- 2. Chhabra N, Aseri ML and Padmanabhan D: A review of drug isomerism and its significance. Int J App Basic Med Res 2013; 3: 16-8.

- 3. Inaki M, Liu J and Matsuno K: Cell chirality: its origin and roles in left–right asymmetric development. Phil Trans R Soc 2016; 371: 1710.
- 4. Calcaterra A and D'Acquarica I: The market of chiral drugs: Chiral switches versus de novo enantiomerically pure compounds. J Pharm Biome Anal 2018; 147: 323-40.
- Eroglu CN, Durmus E and Kiresi D: Effect of low-dose dexketoprofen trometamol and paracetamol on postoperative complications after impacted third molar surgery on healthy volunteers: A pilot study. Med Oral Patol Oral Cir Bucal 2014; 19(6): e622-7.
- 6. Trivedi JB and Chaudhari BG: Spectrophotometric methods for simultaneous estimation of thiocolchicoside and dexketoprofen trometamol in pharmaceutical dosage form. International Journal for Pharmaceutical Research Scholars 2012; 1(1): 55-61.
- Mulla TS, Rao JR, Yadav SS, Bharekar VV and Rajput MP: Development and validation of HPLC method for simultaneous quantitation of paracetamol and dexketoprofen trometamol in bulk drug and formulation. Pharmacie Globale: International Journal of Comprehensive Pharmacy 2011; 2(07): 1-4.
- 8. Anil A, Kaya FN, Yavascaoglu B, Mercanoglu Efe E, Turker G and Demirci A: Comparison of postoperative analgesic efficacy of intraoperative single-dose intravenous administration of dexketoprofen trometamol and diclofenac sodium in laparoscopic cholecystectomy. Journal of Clinical Anesthesia 2016; 32: 127-33.
- Piirainen A, Kokki H, Immonen S, Eskelinen M, Hakkinen MR, Hautajarvi H and KokkiM: A dose-finding study of dexketoprofen in patients undergoing laparoscopic cholecystectomy: a randomized clinical trial on effects on the analgesic concentration of oxycodone. Drugs R D 2015; 15(4): 319-28.
- Sweed NM, Basalious EB and Nour SA: Sustained release multiple unit dosage form for the oral day delivery of dexketoprofen trometamol. J Pharm Res 2017; 1(3): 000114.
- 11. Abdul S, Chandewar AV and Jaiswal SB: A flexible technology for modified-release drugs: Multiple- unit pellet system (MUPS). J Cont Release 2010; 147(1): 2-16.
- 12. Rowe RC, Sheskey PJ and Quinn ME: Handbook of Pharmaceutical Excipients, Published by the Pharmaceutical Press and the American Pharmacists Association. 6th edition 2009; 728-31.
- 13. Moellenhoff K, Dette H, Kotzagiorgis E, Volgushev S and Collignon O: Regulatory assessment of drug dissolution

profiles comparability *via* maximum deviation. Statistics in Medicine 2018; 37(20): 2968-81.

14. Simionato LD, Petrone L, Baldut M, Bonafede SL and Segall AI: Comparison between the dissolution profiles of

nine meloxicam tablet brands commercially available in Buenos Aires, Argentina. Saudi Pha J 2018; 26(4): 578-84.

How to cite this article:

Prajapati BG and Patel A: Sustained release multi-particulates formulation of stereo-selective molecule of ketoprofen by fluid bed processor. Int J Pharm Sci & Res 2020; 11(9): 4359-69. doi: 10.13040/IJPSR.0975-8232.11(9).4359-69.

All © 2013 are reserved by International Journal of Pharmaceutical Sciences and Research. This Journal licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

This article can be downloaded to Android OS based mobile. Scan QR Code using Code/Bar Scanner from your mobile. (Scanners are available on Google Play store)