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ABSTRACT: Catalase, guaiacol peroxidase and polyphenol oxidase 

are antioxidant enzymes that are important in the metabolism of 

reactive oxygen species and can be induced by environmental stresses 

including chromium (Cr), heavy metal toxic to living organisms. In-

vitro regenerated shoots of carnation (Dianthus caryophyllus L.) were 

exposed to K2Cr2O7, and the activities of these antioxidant enzymes 

were analyzed. A significant reduction in the POD activity was 

observed at 2
nd

 week of culture, followed by a slight increase in the 

activity in the 4
th

 week of culture. Maximum PPO activity was 

detected during the 3
rd

 week of culture, which was comparable to the 

control cultures. A significant reduction in CAT activity was found in 

the 4
th

 week. The chlorophyll content did not change significantly in 

the shoot buds developed up to 4
th

 week of culture. 

INTRODUCTION: The genus Dianthus belongs 

to family Caryophyllaceae. It comprises around 

300 species, of which D. caryophyllus (commonly 

known as carnation) is the commercially most 

important cut flower of the world. Due to its 

excellent keeping quality, a wide range of forms, 

the ability to withstand long-distance transportation 

and remarkable ability to rehydrate after continuous 

shipping, it is preferred by growers to roses and 

chrysanthemums in several flower-exporting 

countries 
1
. To fulfill the increasing demand and to 

establish an efficient reproducible system for 

transformation studies, numerous micropropagation 

protocols have been devised via organogenesis 
2-6

 

and somatic embryogenesis 
7-10

 in Dianthus sp. 
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Enhanced in-vitro growth is a multi-factorial event. 

Induction by diverse plant hormones is generally 

considered to be the most important factor and is 

by far the most widely studied. Another factor, 

which has been increasingly recognized in recent 

times, is the addition of heavy metals in culture 

medium for improved plant regeneration. A review 

of some exemplary evidence-based research and 

approaches resulted in wider acceptance of several 

heavy metals as culture medium components. Also, 

natural or artificial selection systems can be set to 

select the heavy-metal tolerant genotypes or 

populations adapted to toxic concentrations of 

metal ions. Especially for urban areas, ornamentals 

can beautify the environment and also resolve 

heavy metal pollution at the same time. It will have 

great and practical significance to screen out 

remediation plants from ornamental resources 
11

.  

According to an elementary experiment from 

herbaceous ornamentals, Calendula officinalis 
12

, 

Coronopus didymus 
13,

 and Malva rotundifolia 
14 

had strong Cd tolerance. 

Keywords: 

Carnation, Chromium,  

Abiotic stress, Antioxidant activity 

Correspondence to Author: 

Dr. Smita Purohit 

Associate Professor, 

Department of Botany, The IIS 

University, Jaipur - 302020, 

Rajasthan, India.  

E-mail:  smita.purohit@iisuniv.ac.in 



Purohit et al., IJPSR, 2020; Vol. 11(9): 4420-4425.                                       E-ISSN: 0975-8232; P-ISSN: 2320-5148 

International Journal of Pharmaceutical Sciences and Research                                                                              4421 

Plant tolerance to a particular metal is governed by 

an inter-related network of physiological and 
molecular mechanisms, to be understood essentially 
for developing plants suitable for phytoremediation 

of the contaminated sites. Plant capability for 

hyperaccumulation can be improved by genetic 

manipulations or the chelator-regulated strategies. 

The problem of low-biomass phytoremediators can 

be overcome by increasing plant yield and metal 

uptake by engineering common plants with hyper 

accumulating genes 
15, 16

. 

Improvement of plants by genetic engineering, i.e., 

by modifying characteristics like metal uptake, 

transport, and accumulation and plant’s tolerance to 

metals, opens up new possibilities of phyto-

remediation 
17-19

. Considerable research has been 

focused an assessing metal tolerance in plants using 

tissue culture techniques 
20-24

. Tissue cultures are 

useful in developing stress-tolerant cell lines in a 

relatively short period. Thus, metal toxicity appears 

to be an area where emerging methods in plant 

tissue culture may complement conventional crop 

improvement programs by providing additional 

means of screening and/or selection for improved 

levels of tolerance. 

Therefore, the aim of this work was to identify the 

tolerance levels or the effect of Cr on in-vitro 

regenerated plantlets and to study the activity of 

certain antioxidant enzymes of D. caryophyllus. 

MATERIALS AND METHODS: 

Plant Material and Explant Preparation: Seeds 

of D. caryophyllus were surface sterilized with 0.1 

% (w/v) mercuric chloride for 3 minutes, followed 

by four washes with sterile distilled water. Nodal 

segments of 0.5mm were aseptically dissected out 

from 21 days old aseptically raised seedlings on 

half-strength MS 
25

 medium. MS medium 

supplemented with 3% (w/v) sucrose and 1% (w/v) 

agar with pH 5.8±0.01 was used throughout the 

course of the study. Nodal segments of 0.5mm 

were aseptically dissected out from 21 days old 

seedlings and cultured on solid MS medium 

containing 2.2 μM BAP + 2.7 μM NAA 

supplemented with 3% (w/v) sucrose and 1% (w/v) 

agar with pH 5.8±0.01 for shoot induction. The 

cultures were incubated at 16 h photoperiod at 

26±1 °C. The explants were cultured on shoot 

induction medium with 0, 2, 4, 8, 10, 25 µM of 

K2Cr2O7 for four weeks separately. Shoots 

regenerated from each treatment were collected to 

study the morphogenic and physiological responses 

pairs of leaves were used and cut into small pieces 

(3-4mm). The distal half of the leaf was removed, 

and only the proximal part was cultured into liquid 

MS medium containing 5 μM 2, 4-D supplemented 

with 3% (w/v) sucrose, and pH set at 5.8±0.01. The 

liquid culture was maintained in the dark for 28 

days on a rotary shaker (120 rpm) in the growth 

chamber at 26±1 °C.  

Enzymatic Activity: In-vitro shoots developed on 

7, 14, 21, and 28
th

 day were used for enzyme 

extraction. For total enzyme extracts, 1g tissue was 

homogenized with a mortar and pestle in 2ml of 

ice-cold 50 mM potassium phosphate buffer (pH 

7.0) containing 1 mM EDTA, 1 mM sodium 

ascorbate and 0.5 M NaCl. After centrifugation 

(20,000 × g, 20 min) the supernatant was used for 

the determination of catalase, peroxidase and 

polyphenol oxidase activity. 

Catalase Assay: Catalase (CAT, EC 1. 11. 1. 6) 

activity was assayed from the rate of H2O2 

decomposition as measured by the decrease of 

absorbance at 240 nm, following the procedure of 

Aebi 
26

. The reaction mixture contained 0.0625 cm
3
 

of 50mM sodium phosphate buffer (pH 7.0), 0.075 

cm
3
 H2O2 (3%) and 0.01 cm

3
 enzyme extract. 

Polyphenol Oxidase: Polyphenol oxidase (PPO, 

EC 1. 14. 18. 1) activity was determined according 

to the method of Raymond, Rakariyatham 
27

 at 40 

°C. The reaction mixture contained 2.5cm
3
 0.2M 

phosphate buffer (pH 6.8), 0.2cm
3
 20mM 

pyrogallol and 0.02cm
3
 enzyme extract. The 

increase in absorbance was recorded at 430 nm. 

Peroxidase Assay: Peroxidase (POD, EC 1. 11. 1. 

7) activity was assayed by Guaiacol-H2O2 method 
28

. The reaction mixture was made by mixing 0.2 

ml enzyme extract, 1 ml of 1% Guaiacol, 0.2 ml of 

50 mM H2O2. Peroxidase activity was determined 

spectrophotometrically by monitoring the 

formation of tetraguaiacol at 470 nm after every 15 

seconds. One unit of peroxidase activity 

corresponds to the levels of enzyme activity were 

expressed as moles of H2O2 destroyed/min/mg 

protein. 
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Chlorophyll (Chl) Estimation: Chlorophyll was 

estimated in the periods for 0, 7, 14, 21, and 28 

days of treatment by the method of Arnon 
29

. 1g 

regenerated shoots (4 weeks old) were chilled in 

deep freeze (-20 ºC) and then homogenized in 80 % 

acetone, centrifuged at 10,000 rpm for 10 min. The 

supernatant obtained was used for chlorophyll 

estimation. The absorbance of the supernatant was 

read at 645 nm and 665 nm against 80% acetone 

solvent. The amount of chlorophyll was calculated 

according to the following equation and the total 

amount of expressed as mg chlorophyll/g fresh 

weight: 

 

Where, A = absorbance at a specific wavelength 

W = weight of tissue taken 

V = volume taken for Chl estimation 

Rooting and Acclimatization: Shoots upto 2 cm 

and more in length were excised and transferred on 

to rooting medium consisting of full-strength MS 

medium supplemented with 0.5mg/l IBA. Plantlets 

with a well-developed shoot and root systems were 

carefully taken out and washed with tap water to 

remove agar. These plantlets were then transferred 

to earthen pots containing garden soil and organic 

manure (1:1). Humidity was maintained initially by 

covering the pots with polythene bags. The 

experiment was repeated three times. 

Statistical Analysis: Three repetitions per 

treatment were made, and enzyme activities were 

assayed three times. The mean of all repetitions and 

standard deviation of each observation from the 

mean was calculated from the data obtained. 

The cultures were examined after five weeks. Data 

were subjected to one-way analysis of variance 

(ANOVA) by Fischer’s least significant difference 

(P = 0.05). 

RESULTS: Nodal explants were cultured on MS 

medium supplemented with 2.2 µM BAP + 2.7 µM 

NAA and different concentrations of K2Cr2O7 (0, 2, 

4, 8, 10, 25µM). There was an obvious difference 

in the shoots between the treated and the untreated 

(control) cultures. Incorporation of K2Cr2O7 in the 

medium induced positive response. The explants 

showed swelling during the first week of culture. 

The initiation of shoot bud induction occurred at 

the end of the second week of the culture. It was 

observed that the number of shoots increased with 

the increase in the concentration of K2Cr2O7 from 2 

to 10µM beyond which at 25µM, the number of 

shoots did not increase in Table 1. Hyperhydric 

condition of shoots was not observed in cultures 

grown in medium incorporated with K2Cr2O7 Fig. 

1, which is a major problem in Dianthus cultures. 

A significant reduction in the POD activity was 

observed at 2
nd

 week of culture, followed by slight 

increase in the activity in the 4
th

 week of culture. 

Maximum PPO activity was detected during the 3
rd

 

week of culture, which was comparable to the 

control cultures. A significant reduction in CAT 

activity was found in the 4
th

 week. The chlorophyll 

content did not change significantly in the shoot 

buds developed up to 4
th

 week of culture. 

TABLE 1: NUMBER OF SHOOTS INDUCED FROM NODAL SEGMENTS OF DIANTHUS CARYOPHYLLUS CULTURED 

ON MS MEDIUM SUPPLEMENTED WITH 2.2 µM BAP + 2.7 µM NAA AND DIFFERENT CONCENTRATIONS OF 

K2Cr2O7. (CULTURE PERIOD: 6 WEEKS) 

K2Cr2O7 in Primary 

Culture (µM) 

% Response No. of shoot 

buds/explants Mean 

± S.D. 

K2Cr2O7 in 

second stage 

subculture (µM) 

% 

response 

No. of shoots proliferated 

(Mean ± S.D.) 

0
c 

46 4.0 ± 0.5 0 52 9.5 ± 0.5 

2.0 53 5.2 ± 0.7 2.0 56 8.0 ± 0.5 

0 73 7.4 ± 0.7 

4.0 

 

80 6.2 ± 1.4 4.0 84 6.9 ± 1.4 

0 89 5.1 ± 0.5 

8.0 66 8.6 ± 0.8 8.0 58 10.7 ± 0.6 

0 67 13.1 ± 1.1 

10.0 60 8.8 ± 0.7 10.0 62 12.4 ± 0.5 

0 74 12.8 ± 0.7 

25.0 40 3.1 ± 0.7 25.0 57 3.7 ± 0.4 

0 78 4.4 ± 0.8 



Purohit et al., IJPSR, 2020; Vol. 11(9): 4420-4425.                                       E-ISSN: 0975-8232; P-ISSN: 2320-5148 

International Journal of Pharmaceutical Sciences and Research                                                                              4423 

  

  
FIG. 1: SHOOT BUDS INDUCED FROM NODAL EXPLANTS OF D. CARYOPHYLLUS ON MEDIUM SUPPLEMENTED 

WITH 2.2µM BAP + 2.7µM NAA AND (A) WITHOUT K2Cr2O7, (B) WITH 10µM K2Cr2O7, (C) PROLIFERATED ON 

WITHOUT K2Cr2O7 MEDIUM INDUCED ON SIMILAR MEDIUM AND (D) PROLIFERATED ON 10µM K2Cr2O7 

INDUCED ON SIMILAR MEDIUM 

 

  
FIG. 2: ENZYME ACTIVITY DURING SHOOT BUD INDUCTION FROM NODAL SEGMENTS TAKEN FROM ASEPTICALLY 

RAISED MATURE PLANTS OF DIANTHUS CARYOPHYLLUS CULTURED ON MS MEDIUM SUPPLEMENTED WITH BAP 

(0.5 mg l-1) + NAA (0.5 mg l-1) + K2Cr2O7 (0-25 µM) (a) CAT ACTIVITY, (B) POD ACTIVITY AND (C) PPO ACTIVITY 

DISCUSSION: The tissue culture studies can 

augment the study of uptake behavior of nutrient 

and non-nutrient elements by providing intact 

plants for the quantitative estimate of the potential 

A 

B C 
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of heavy metal tolerance and also to study certain 

kinetics involved in the root absorption and 

subsequent transfer to shoots while maintaining the 

physiological and structural integrity of the system. 

The present investigations have shown the 

tolerance levels of in-vitro regenerated D. 

caryophyllus plantlets to increasing levels of 

potassium dichromate. 

The most widespread visual evidence of metal 

toxicity is a reduction in plant growth as metal 

toxicity increases. However, as different metals 

have different sites of action within the plant, the 

overall visual toxic response differs between 

metals. Chromium compounds are highly toxic to 

plants and are detrimental to their growth and 

development. Although some crops as not affected 

by low Cr concentration 
30

, Cr is toxic to most of 

the higher plants at 100 µM.kg
-1

 dry weight
31

. In 

the present study, the highest level non-toxic to 

carnation plants was found to be 10 µM. Hence the 

minimum level of intolerance incarnation was 

found to be 25 µM in-vitro. 

Chromium is a non-essential element and 

considered toxic to plants at very high 

concentrations 
31

. The range of high Cr 

concentrations in plant tissues before toxicity 

symptoms was observed was from about 5 ppm for 

barley, corn, oats, and citrus to 175 ppm for 

tobacco 
32

. In the present study, Dianthus cultures 

could grow at minimal levels of chromium, and 

increased amounts too led to regeneration but with 

pale-colored shoots. The excess of metals has been 

reported to have deleterious effects on the content 

and functionality of the photosynthetic pigments 
33

. 

This can be caused by the inhibition of the pigment 

synthesis, the formation of metal-substituted 

chlorophylls of reduced functionality, or the direct 

oxidative damage of the pigments 
34

. Several 

authors have reported damages on the reaction 

centers or the peripheral antennae complexes of 
PSII in response to high concentrations of metals 35. 

Tissue culture responses are greatly influenced by 

three main factors viz. whole plant physiology of 

donor, in-vitro manipulation, and in vitro stress 

physiology. In-vitro cultures are also good models 

for studying the effect of different metals on the 

oxidative stress and antioxidants that follow. Under 

Cr heavy metal stress, the overall antioxidant 

activity was found maximum at the highest 

concentration (25µM). The activity of CAT, POD, 

and PPO increased significantly in cultures exposed 

to Cr supplemented media. The function of these 

enzymes is to scavenge the toxic radicals produced 

during oxidative stress and thus help plants to 

survive through such conditions.POD induction is a 

general response of vascular plants to the uptake of 

a toxic amount of metals 
36

. Also, PPO has been 

reported to function in oxygen scavenging by 

oxidation of phenols 
37

. 

CONCLUSION: Although this study did not take 

into consideration the whole plant, the observations 

made herewith in-vitro cultures may supplement 

the known facts and can be beneficial for the 

production of metal tolerant carnation plants. 
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