IJPSR (2020), Volume 11, Issue 10

INTERNATIONAL JOURNAL

Received on 18 October 2019; received in revised form, 19 June 2020; accepted, 25 August 2020; published 01 October 2020

A SYSTEMATIC REVIEW ON DEVELOPMENT AND EVALUATION OF CONTROLLED RELEASE AND FAST DISSOLVING FORMULATIONS FOR ANTI-DIABETIC DRUGS OVER PAST DECADE

Manojkumar K. Munde^{*1,2}, Nilesh S. Kulkarni² and Dhanya B. Sen¹

Department of Pharmacy¹, Sumandeep Vidyapeeth Deemed to be University, Piparia, Vadodara - 391760, Gujarat, India.

PES Modern College of Pharmacy (for Ladies)², Moshi, Pune - 412105, Maharashtra, India.

Keywords:

Diabetes mellitus, Formulations, Excipients, Evaluation

Correspondence to Author: Manojkumar K. Munde

Research Scholar, Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Vadodara -391760, Gujarat, India.

E-mail: manojpcist@gmail.com

ABSTRACT: Diabetes mellitus is the heterogeneous metabolic disorder caused by the high blood sugar level. Untreated high blood sugar can damage kidneys, eyes, nerves and other organs. Type 1 diabetes mellitus disorder is caused by the lack of insulin hormone while type 2 diabetes mellitus is a disorder of insulin resistance by β cells of the pancreas. For the management of type 2 diabetes mellitus different drugs are available as single or combination forms like Pioglitazone, Repaglinide, Metformin, Voglibose, Glipizide. Several research activities were carried out for its development, formulation and evaluation by the development of controlled-release and fastdissolving formulations. The extensive literature review revealed information related to the formulation of sustain/fast release dosage form for the antidiabetic drugs. Newer techniques were used by the researcher for the formulation of dosage forms as solvent diffusionevaporation technique, Reverse phase evaporation technique, emulsion solvent evaporation technique and Hot melt extrusion granulation technique. The review represents the types of formulation, methods used, excipients used and evaluation parameters of developed dosage forms and their correlation with therapeutic success.

INTRODUCTION: Diabetes mellitus is the heterogeneous metabolic disorder caused by the high blood sugar level. Insulin moves sugar from the blood into cells and used as energy. Untreated high blood sugar can damage kidneys, eyes, nerves, and other organs ¹. There are two important types of diabetes mellitus.

QUICK RESPONSE CODE	DOI: 10.13040/IJPSR.0975-8232.11(10).4874-83			
	This article can be accessed online on www.ijpsr.com			
DOI link: http://dx.doi.org/10.13040/IJPSR.0975-8232.11(10).4874-83				

a) Type 1 Diabetes Mellitus: Type 1 diabetes mellitus is caused by the lack of insulin hormone. In type 1 diabetes mellitus use of insulin is required and which is given to the patient in injection form.

b) Type 2 Diabetes Mellitus: Type 2 diabetes mellitus is the common type of diabetes, and it is a disorder of insulin resistance by β -cells of the pancreas. In this condition, treatment includes the use of oral drugs, which increases the amount of insulin secreted by β -cells of pancreas².

There are different ways for the classification of antidiabetic drugs, which depend on nature, age, and lifestyle of the person as well as other factors ³.

FIG. 1: CLASSIFICATION OF ANTIDIABETIC DRUGS

Glibenclamide (**GB**): Glibenclamide is a sulfonylurea derivative and it is used for treatment of type 2 diabetes mellitus. Its route of administration is oral. It undergoes the hepatic first-pass effect and has a short half-life. The patient has to take the drug in several divided doses to maintain the desired therapeutic effect 4 .

Gliclazide (GC): Gliclazide is a sulfonylurea derivative, and it is used for type 2 diabetes mellitus. The daily dose of gliclazide is 40 mg daily and increases upto the 320 mg daily. Gliclazide has high bioavailability (100%) from tablets, and

absorption is not affected by food. The half-life of this drug is approximately 11 h $^{5, 6}$.

Glimepiride (GM): Glimepiride is the first drug under third-generation sulfonylurea; it is very potent and has a long duration of action. Glimepiride is used for the treatment of type 2 diabetes mellitus. It causes hypoglycemia by stimulating the release of the insulin from pancreatic β -cells and raising the sensitivity of peripheral tissue to the insulin. Glimepiride also has an ability to promote the movement of sugar from the blood to the β -cells⁷.

FIG. 2: SITE OF ACTION OF ANTIDIABETIC DRUGS

Pioglitazone (PZ): Pioglitazone comes under the class of thiazolidinedione. It is used in the treatment of type 2 diabetes mellitus. Pioglitazone is BCS class II drug category and has poor aqueous solubility. Pioglitazone shows a delayed onset of action 8 .

Repaglinide (**RG**): Repaglinide is an oral antihyperglycemic agent and also known as meglitinide. It also acts as binding to β cells of the pancreas and stimulates insulin release. Repaglinide comes under the BCS class II drug category. In the upper part of the intestinal tract, it is poorly absorbed. It is an extensive hepatic first-pass metabolism and bioavailability up to 56 % ⁹.

Metformin (**MF**): Metformin is a widely accepted, oral antihyperglycemic agent. It comes under the BCS class III drug category and it has the site-specific absorption in the gastrointestinal tract and bioavailability up to 60%. The half-life of the drug is 1.5 to 4.5 h and the recommended dose is 500 mg two or three times daily ¹⁰.

Voglibose (VB): Voglibose is an alpha-glucosidase inhibitor used in the treatment of lowering the blood glucose level in diabetic patients. It also has the ability to increase glucagon-like peptide (GLP)-1 secretion in humans 11 .

TABLE 1: RESEARCH WORK CARRIED OUT BY RESEARCHERS FOR ANTIDIABETIC FORMULATION AND EVALUATION PUBLISHED IN 2010

S.	API	Type of formulation	Excipient used	Evaluation par	rameters	Ref.
no.		and method used		Parameter	outputs	no.
1	Glipizide	Sustained-release	Eudragit® S100, Ethyl	Particle size range	71-289(mm)	12
		Glipizide microspheres	cellulose, ethanol,	% Recovery yield	$96.26 \pm 2.15\%$	
		emulsion (solvent	Dichloromethane, n-	Encapsulation efficiency	26.79±2.57 %	
		diffusion-evaporation	butanol	Drug release at 12 h	$100.91 \pm 2.86\%$	
		technique)				
2	Acarbose	Sustained release matrix	Hydroxypropyl Methyl	Uniformity of weight	352±2.11(mg)	13
		tablets (Direct	cellulose (HPMC),	Friability	0.36±0.02 %	
		compression technique)	Eudragit, Lactose	Crushing strength	5.4 ± 0.71 (Kg/cm ²)	
			Microcrystalline	% of polymer to the total	42.9 %	
			Cellulose (MCC), Talc,	tablet weight		
			Magnesium (Mg.)	-		
			stearate			

TABLE 2: RESEARCH WORK CARRIED OUT BY RESEARCHERS FOR ANTIDIABETIC FORMULATION AND EVALUATION PUBLISHED IN 2011

S.	API	Type of	Excipient Used	Evaluatio	on parameters	Ref.
no.		formulation and		Parameter	outputs	no.
		method used			-	
3	Glimepiride and	Mucoadhesive	HPMC K4M, Carbopol-	Average weight	200±2.562 (mg)	14
	Parecoxib	tablet (Direct	934P, Sodium Carboxy	Thickness	8.1±0.0469 (mm)	
	combination	compression	Methylcellulose-H, Poly	SurfacepH	6.68 ± 0.15	
		technique)	vinyl Pyrrolidone-K30	Water absorption	49.99 ±1.22%	
			(PVP), Saccharin sodium,	Mucoadhesion	23.68 ± 2.59	
			Amaranth, Ethanol, Mg.	strength	(g)	
			stearate	Drug content	99.97±8.54%	
4	Metformin HCl	Floating bilayer	HPMC K4M, HPMC E-	Hardness	$3.5 \pm 0.35 (\text{Kg/cm}^2)$	15
	and Pioglitazone	tablets (Direct	15, Carbopol, Sodium,	Thickness	0.35 ± 0.15 (mm)	
	HCl combination	compression	bicarbonate, Citric acid,	Weight variation	$5.1\pm0.98\%$	
		technique)	Mg. stearate, Lactose,	Floating lag time	$2 \pm 0.28 \min$	
			PVP	Floating duration	12 ± 1.8 h	
				Drug content	$97 \pm 1.1\%$	

TABLE 3: RESEARCH WORK CARRIED OUT BY RESEARCHERS FOR ANTIDIABETIC FORMULATION AND EVALUATION PUBLISHED IN 2012

S.	API	Type of formulation	Excipient used	Evaluation parameters		Ref.
no.		and method used		Parameter	Outputs	no.
5	Glimepiride	Sustained release	HPMC (15cps),	Thickness	3.80±1.20 (mm)	16
		matrix tablets (Direct	Hyderxypropyl	Hardness	3.20 ± 0.40 (Kg/cm ²)	
		compression)	cellulose (HPC),	Friability	0.24±0.12%	

			Ethylcellulose, MCC,	Drug content	99.42±1.46%	
			Mg. stearate, Talc	In-vitro release study	99.93%	
				(at the end of 12 h)		
6	Glimepiride	Immediate-release	Lactose	Weight	399.9±0.74%	17
	-	tablets (Wet	Monohydrate,	Variation		
		granulation	Croscarmellose	Hardness	3.5 ± 0.35 (Kg/cm ²)	
		Technique)	(CCS), Sodium starch	Friability	0.12±0.00 %	
			glycolate (SSG),	Disintegration time	58.5±0.35 min	
			Povidone k 30,	Assay	98.3 %	
			Avicel PH 102, Mg.	•		
			stearate St-arch			

TABLE 4: RESEARCH WORK CARRIED OUT BY RESEARCHERS FOR ANTIDIABETIC FORMULATION AND EVALUATION PUBLISHED IN 2013

S.	API	Type of formulation	Excipient used	Evaluation	parameters	Ref.
no.		and method used		Parameter	Outputs	no.
7	Metformin	Niosomes (Reverse	Span, Cholesterol,	Mean particle size	223.5±2.7 μm	18
	HC1	phase evaporation	Diabasic calcium	Polydispersity index	0.38±0.1	
		(REV) technique)	phosphate (DCP),	Zeta potential	+8.7±1.2 mV	
		Matrix tablet	Dioleoyltrimethyl	Entrapment efficiency	83.36%	
		(Nonaqueous wet	ammonium-propane			
		granulation technique)	(DOTAP)			
8	Metformin		HPMC K 4M, HPMC	Weight	$0.43\pm0.02\%$	19
	HCl and		K 15M, HPMC K	Variation		
	Glipizide		100M, Starch, PVP K-	Friability	0.21 ±0.06%	
	combination		30, Lactose, Citric	Hardness	$8.00 \pm 0.27 \ (\text{Kg/cm}^2)$	
			acid, Sodium	Thickness	7.48 ± 0.05 (mm)	
			bicarbonate, MCC,	Drug content	99.01±0.12%	
			Erythrosine lake,	In-vitro release	94.83%	
			Talcum powder, Mg.			
			stearate			

TABLE 5: RESEARCH WORK CARRIED OUT BY RESEARCHERS FOR ANTIDIABETIC FORMULATION AND EVALUATION PUBLISHED IN 2014

S.	API	Type of	Excipient used	Evaluatio	on parameters	Ref.
no.		formulation and	-	Parameter	Outputs	no.
		method used			_	
9	Gliclazide	Modified release	HPMC K15M, HPMC	Weight variation	507.2 ± 0.63 %	20
		tablet	K100M, Ethyl	Hardness	$4.35 \pm 0.24 (\text{Kg/cm}^2)$	
		(Wet granulation	Cellulose, Sodium bi-	Friability	0.025 %	
		technique)	carbonate, Mg. sterate,	Drug content	$96.57 \pm 0.039~\%$	
			Talc, Lactose	First-order	0.973	
10	Metformin	Bilayer tablets (Solid	Eudragit RS100,	Weight	1530 ±20.20(mg)	21
	HCl and	dispersions	Eudragit RLPO,	Thickness	7.2± 0.057 (mm)	
	Acarbose	technique)	Potassium	Hardness	$12.5 \pm 0.046 (\text{Kg/cm}^2)$	
	combination		permanganate,	Friability	$0.55 \pm 0.011\%$	
			Caboxymethyl	Drug content	98.4%	
			cellulose sodium,	Disintegration	48min	
			MCC, Mg. stearate,	time		
			Polyethylene glycol	Swelling	30.7%	
			(PEG) 6000, PVP K30			
11	Metformin	Extended-release	MCC PH 102, HPMC	Thickness	5.9(mm)	22
	HC1	tablets (Wet	(K4M, K200M,	Weight variation	$799 {\pm}~0.7\%$	
		granulation	K15M, K100M),	Friability	0.30%	
		technique)	Aerosil, Povidone,	Hardness	$7.1 (\text{Kg/cm}^2)$	
			Mg. stearate, Isopropyl	% Drug	100%	
			alcohol(IPA)	content		
				In-vitro drug	53.7%	
				release		

S. no.	API	Type of formulation	Excipient used	Evaluation	parameters	Ref.
		and method used		Parameter	Outputs	no.
12	Glimepiride	Sustained release	Carbopol,	Average weight	378 ±0.8 (mg)	23
		tablet	Ethylcellulose,	Average diameter	$13.24 \pm 0.36 \text{ (mm)}$	
		(Direct compression	Methocel K4 MCR,	Average thickness	$2.26 \pm 0.32 \text{ (mm)}$	
		technique)	K15 MCR, K100	Friability	0.352%	
			MCR, Xanthum	Hardness	20.91 ± 0.053	
			gum, Lactose,		(Kg/cm^2)	
			Povidone K-30 Mg. stearate,	Radial tensile strength	0.445 (Kg/mm ²)	
			Talc	Axial tensile strength	0.151 (Kg/mm ²)	
13	Metformin	Effervecent floating	HPMC K 100M,	Weight variation	0.54 %	24
15	HCl	tablets (Wet	HPMC K 200 CR,	test	0.54 /0	24
	IICI	granulation technique)	Corbopol 941 P,	Thickness	5.12 (mm)	
		granulation technique)	MCC pH 101,	Diameter	J.12 (IIIII)	
					$12.0 (V_{a}/am^{2})$	
			PVP-30K, HPMC K	Hardness	13.9 (Kg/cm ²) 0.782 %	
			100 L, Sodium	Friability		
			bicarbonate,	Floating lag time	60 min	
			Colloidal silicon dioxide, Mg. stearate.	Duration of floating	12 h	
14	Climonirida	East dissolving tablets		Hardnass	$2.2 (V_{a}/cm^{2})$	25
14	Glimepiride	Fast dissolving tablets (Direct compression	Avicel PH 101, Mannitol, Cross	Hardness Friability	$3.2 (Kg/cm^2)$ 0.41%	25
		technique)	povidone, Sodium	Thickness		
		technique)	saccharin, Sodium		2.5 (mm)	
			,	Average weight of	126 (mg)	
			lauryl sulfate (SLS),	tablet	$144(C_{})$	
			Mg. stearate, SSG,	Wetting time	144 (Sec)	
			CCS	Drug content	99.2%	
1.7	D' 1'			Disintegration time	116 (sec)	26
15	Pioglitazone	Control release tablet	HPMC K4M,	Diameter	7.96±0.049 (mm)	26
	HCl	(Solid dispersion by	Ethylcellulose,	Thickness	2.2±0.45 (mm)	
		kneading technique)	MCC, Mg. stearate	Average weight	278.29±6.60 (mg)	
				Hardness	5.0 ± 0.356 (Kg/cm ²)	
				Friability	0.574±0.55 %	
				Drug content	98.83±2.053%	
16	Repaglinide	Mucoadhesive	Polycarbophil,	Mean particle size	24.30 +1.00 μm	27
		microspheres	Dichloromethane,	Percentage of drug	78.9%	
		(Double emulsion	Span80, Liquid	entrapment		
		technique)	paraffin, N-hexane	efficiency		
				Percentage	84.11%	
				mucoadhesion		
17	Repaglinide	Nanoemulsion	Oleic acid, Isopropyl	Droplet size	97.15±9.16 μL	28
		(o/w nanoemulsion	myristate (IPM),	Polydispersity	0.198 ± 0.017	
		technique)	Glycerol triacetate	index		
			(Triacetin), Caproyl	Viscosity	23.857±0.541 cP	
			90, Propylene glycol	Refractive index	1.8502 ± 0.008	
			(PG), Monocaprylic	Conductivity	501.18±5.76 S/m	
			ester (Sefsol 218),			
			Propylene glycol			
			laurate			

TABLE 6: RESEARCH WORK CARRIED OUT BY RESEARCHERS FOR ANTIDIABETIC FORMULATION AND EVALUATION PUBLISHED IN 2015

TABLE 7: RESEARCH WORK CARRIED OUT BY RESEARCHERS FOR ANTIDIABETIC FORMULATION AND EVALUATION PUBLISHED IN 2016

S. no.	API	Type of formulation	Excipient used	Evaluation	parameters	Ref.
		and method used	-	Parameter	Outputs	no.
18	Glimepiride	Fast disintegrating	CP,SSG, CCP, MCC,	Weight variation	99.75±0.89%	29
		tablets (Direct	Mg. stearate, Aerosil,	Thickness	2.2±0.18 (mm)	
		Compression	Erythritol, Orange	Hardness	$2.8\pm0.08~(\text{Kg/cm}^2)$	
		technique)	flavor	Friability	0.72±0.11 %	
		-		Drug content	98±0.37 %	

				In-vitro dissolution	14.25 h	
				studies In-vivo	26 ± 0.20 min	
					26±0.39 min	
				disintegration time Uniformity of	920.45±8.525 (mg)	
				weight	920.45±0.525 (ilig)	
19	Metformin	Core-in-cup tablet	HPMCK100,	Thickness	7.02±0.052 (mm)	30
17	HCl,	(Direct compression	PVPK30,	Diameter	$13.08\pm0.018(\text{mm})$	50
	Pioglitazone	technique)	Microcrystalline	Hardness	6.92 ± 0.582 (Kg/cm ²)	
	and	1,	cellulose powder	Friability	0.42±0.055 %	
	Glimepiride		(MCCP), Mg.	Disintegration time	2.15±0.062 min	
	combination		stearate, Talc, Aerosil,	Drug content	101.42±0.548%	
			SSG, SLS	Floating lag time	5.2 min	
20	Metformin and	Bilayer tablets	HPMC K100M,	Total floating time	18- 24 h	31
	Sitagliptin	(Direct compression	Sodium carboxy	Tablet density	0.846 g/ml	
	combination	technique)	methyl cellulose,	Swelling study	97.61%	
			Lactose, MCC, Pre	Average weight	945.07 ±1.38 (mg)	
			gelatinized starch,	Hardness	$6.7 \pm 0.5 (\text{Kg/cm}^2)$	
			CCS, SSG,	Thickness	$6.5 \pm 0.63 (\text{mm})$	
			Crosspovidone,	Friability	0.75%	
			Sodium bicarbonate,	Drug content	99.67 ±0.42 %	
			Mg. stearate, IPA, Ferric iron oxide red	Disintegration time	$52 \pm 2.5 \min_{0.2,200}$	
			Ferric Iron oxide red	Cumulative % drug release	92.20%	
				<i>In-vitro</i> drug release	97.65%	
				Weight variation	449.25±1.82%	
21	Acarbose	Floating tablets	HPMC K4M,	Hardness	$4.58 \pm 0.192 (\text{Kg/cm}^2)$	32
	110010000	(Direct compression	Carbopol-934P,	Friability	0.1592±0.0196 %	
		technique)	Sodium bicarbonate,	Thickness	5.60±0.0088 (mm)	
		• ·	Tartaric acid, Citric	Diameter	11.22±0.00095 (mm)	
			acid, Lactose, Talc,	Percentage of drug	96.83±6.18%	
			MCC, Mg. stearate	content		
				Lag time	38.33 ± 3.55 min	
				Swelling study	96%	
22	Notoolinido	Sustained released	LIDMC V15M	Avg. Wt Thickness	319.2 ± 0.8 (mg)	33
22	Nateglinide	tablet (Direct	HPMC K15M, Xanthum gum, Guar	Hardness	4.91±0.23 (mm) 5.6±0.152 (Kg/cm ²)	33
		compression	gum, Avicel PH 102,	% Friability	0.68 %	
		technique)	Mg.stearate, Talc	% Drug content	100.21±0.20 %	
		(coninque)	Mig.stourate, Tale	In-vitro dissolution	95%	
				study		
				Thickness	0.4 (mm)	
23	Glibenclamide	Bilayer matrix Tablet	Lactose, MCC,	Diameter	1.3 (mm)	34
	and Metformin	(Direct compression	Mg. stearate, Aerosil,	Hardness	$4 (Kg/cm^2)$	
	HCl	technique)	Starch, HPMC	Weight variation	4.2%	
	combination		K100M, HPMC 4KM	Friability	0.7%	
				Assay	99.73%	
2.4	NT / 1· · 1		T-1 1 11 1	% yield	80%	25
24	Nateglinide	Floating microspheres (Emulsion solvent	Ethylcellulose, Eudragit S-100,	Average particle size	66 µm	35
		evaporation	Ethanol,	Percentage floating	78%	
		technique)	Dichloromethane,	Floating time	15 min	
			Tween-80	Drug entrapment	85.95%	
				efficiency		

TABLE 8: RESEARCH WORK CARRIED OUT BY RESEARCHERS FOR ANTIDIABETIC FORMULATION AND EVALUATION PUBLISHED IN 2017

S.	API	Type of	Excipient used	Evaluation	parameters	Ref.
no.		formulation and		Parameter	Outputs	no.
		method used			_	
25	Glimepiride	Sublingual tablet	Mg-stearate, Mais	Assay	103%	36
		(Direct compression	starch, Sucralose,	Friability	0.40%	
		technique)	Lemon flavor,	Weight variation	0.1141%	

			1 200	TT 1		
			Aerosil 200,	Hardness	$4.5(\text{Kg/cm}^2)$	
			Aerosil, Flulac,	Disintegration time	21 sec	
			Dicalcium			
	~	~	phosphate			
26	Glimepiride	Sustained release	HPMCK4, PVA,	Weight variation	351.66±0.47%	37
		matrix tablet	Carbopol,	Hardness	7.25 ± 0.014 (Kg/cm ²)	
		(Direct compression	Mannitol, MCC,	Friability	0.67±0.014%	
		technique)	Talc,L actose	Thickness	6.46±0.094(mm)	
				Content uniformity	99.51±0.004 %	
				In-vitro drug release	94.864 %	
27	Pioglitazone	Control	HPMC K4M, Ethyl	Hardness	5.5 ± 0.324 (Kg/cm ²)	38
	HC1	release tablets	cellulose, MCC,	Friability	0.553±0.34%	
			Mg. stearate	Drug Content	99.314±2.02%	
				In-vitro drug release	98.73±2.12%	
28	Pioglitazone	Mouth dissolving	Crospovidone,	Hardness	$3.7 (Kg/cm^2)$	39
	HC1	tablets (Direct	CCS, SSG, MCC,	Friability	0.68%	
		compression	Lactose, Talc, Mg.	Thickness	4.23(mm)	
		technique)	stearate, Aspartame	Disintegration time	34 min	
		• ·	-	Wetting time	98.3 sec	
				Drug content	96.5%	
29	Pioglitazone	Mouth dissolving	Crospovidone,	Hardness	$3.5(Kg/cm^2)$	
	HCl	tablets (Wet	CCS, SSG, MCC,	Friability	0.74%	
		granulation	Lactose, Talc, Mg.	Thickness	4.25(mm)	
		technique)	stearate, Aspartame	Disintegration time	27 min	
		1 /	· •	Wetting time	14 sec	
				Drug content	96.5%	
30	Nateglinide	Buccal films	Chitosan,	Thickness	0.48 ±0.02 (mm)	40
	e	(solvent evaporation	Carbopol, PVP,	Weight	178.23 ±0.91 (mg)	
		technique)	HPMC, PG	Fold. end	320±5.0	
		1 /	,	Surface pH	6.73±0.005	
				Percentage moisture	5.21±0.07%	
				absorption (PMA)		
				Percentage moisture	5.97±0.12%	
				loss (PML)		
				Swelling percentage	120.9±0.9%	
				Drug content	49.50±0.22%	

TABLE 9: RESEARCH WORK CARRIED OUT BY RESEARCHERS FOR ANTIDIABETIC FORMULATION AND EVALUATION PUBLISHED IN 2018

S. no.	API	Type of formulation	Excipient used	Evaluation parameters		Ref.
		and method used		Parameter	Outputs	no.
31	Metformin HCl	Orodispersible tablets	Treated agar,	Hardness	4 ± 0.23 (Kg/cm ²)	41
		(Direct compression	Avicel-101,	Friability	0.4 %	
		technique)	Mg. stearate,	Wetting time	26.66 sec	
			Talc, Manitol	In-vitro dispersion	15.60 sec	
				time		
				Disintegration time	11.4 min	
				Drug content	7.82 %	
32	Glimepiride	Sustained release	Tamrind seeds,	Diameter	7.98±0.021 (mm)	42
	-	tablet (Direct	Ethylcellulose,	Thickness	4.1±0.05 (mm)	
		compression	MCC, Lactose,	Weight variation	323.79±0.59%	
		technique)	Talc, Mg. stearate	Hardness	$6.2\pm0.08\%$	
				Friability	0.56±0.00%	
				Drug content	100.55±0.021%	
33	Pioglitazone HCl	Immediate release	CCS: CP, CP:	Hardness	$4.2 \pm 0.027 (\text{Kg/cm}^2)$	43
		tablets (Direct	SSG, SSG: CCS,	Friability	0.92±0.212 %	
		Compression	MCC, Lactose,	Thickness	3.2±0.40 (mm)	
		technique)	Talc, Magnesium	Disintegration time	19±1.63 min	
			dioxide (MgO)	Wetting time	40±0.21 min	
				Drug content	98.7±0.102 %	
				In-vitro drug Release	99.3±0.33 %	

Munde et al., IJPSR, 2020; Vol. 11(10): 4874-4883.

34	Pioglitazone HCl	Dual release tablet	Avicel PH 102,	Average weight	1052±4.9 (mg)	44
	and Metformin	(Hot melt Granulation	Copovidone, SSG,	Thickness	5.99±0.02 (mm)	
	HCl combination	technique)	Crospovidone, Red	Hardness	$85 \pm 4.18 (\text{Kg/cm}^2)$	
			iron oxide,	Friability	0.21%	
			Mg. stearate	Disintegration time	68 min	
				Assay	99.82%	
35	Nateglinide	Floating tablets	Ethyl Cellulose,	Weight variation	499 ± 0.236 %	45
		(Direct compression technique)	Carbopol 930,	Thickness	$5.6 \pm 0.03 \text{ (mm)}$	
			Sodium	Hardness	$5.5 \pm 0.237 (\text{Kg/cm}^2)$	
			bicarbonate,	Friability	$0.35 \pm 0.078\%$	
			citric acid,	Drug content	$100.99 \pm 0.14\%$	
			PVP k-30, Talc,	Total floating time	>24 min	
			Mg. stearate	In-vitro drug release	98.92%	
				studies		
36	Repaglinide	Sustained release	HPMC K 100M,	Thickness	1.87±0.09 (mm)	46
		matrix (Wet	HPMC K4M,	Hardness	6.2 ± 0.10	
		granulation technique)	HPMC K 15M,		(Kg/cm^2)	
			Talc, PVP K30,	Friability	0.30±0.17%	
			Calcium Stearate,	Drug content	99.14%	
			CCS, IPA	In-vitro dissolution	99.15%	
				study		
37	Empagliflozin	Spherical	Caesalpinia	Diameter	7.03±0.03 (µm)	47
		agglomerates (Direct	spinosa,	Thickness	2.49±0.04 (mm)	
		compression	HPMCK100M,	Hardness	$8.31\pm0.05(\text{Kg/cm}^2)$	
		technique)	Sodium alginate,	Friability	0.41±0.03%	
		-	Mg. sterate,	Drug content	99.85±0.13%	
			MCCPH112			

TABLE 10: RESEARCH WORK CARRIED OUT BY RESEARCHERS FOR ANTIDIABETIC FORMULATION AND EVALUATION PUBLISHED IN 2019

S. no.	API	Type of formulation	Excipient used	Evaluation parameters		Ref.
		and method used		parameter	Outputs	no.
38	Gliclazide	Poorly water-soluble	Starch-1500,	Weight variation	$1.17\pm0.05\%$	48
		Gliclazide tablet	Spray-dried	Friability	0.16 ± 0.04 %	
		(Direct compression	Lactose, SSG,	Hardness	$3.2 \pm 0.45 (\text{Kg/cm}^2)$	
		technique)	Mg. stearate,	Disintegration time	$21 \pm 3.0 \text{ min}$	
			Cross povidone	Drug content	$99.87 \pm 0.51\%$	
39	Canagliflozin	Solid Dispersions	Eudragit® E PO,	Solubility in	0.10 ± 0.005	49
		(Solvent evaporation	Methyl	distilled water	(mg/ml)	
		method)	methacrylate,	Solubility in 0.75%	10.08 ± 0.506	
				SLS solution	(mg/ml)	
				In-vitro dissolution	80%	

CONCLUSION: Over the past decade, several research were carried out for the development and evaluation of fast dissolving and controlled release formulations for anti-diabetic drugs. For the drug which possesses limited or poor solubility were considered for solubility enhancement approaches. Various formulations were developed with improved solubility by using techniques as wet granulation, niosomal drug delivery, nanoemulsion, sublingual tablets, buccal films, mouth dissolving tablets, orodispersible tablets, spherical agglomerates and solid dispersion. This resulted in improvement of drugs bioavailability. Similarly, sustain or control release dosage forms were developed with the purpose of maintaining drug concentration within a therapeutic range over a period of time.

This is achieved through the development of floating tablets, effervescent floating tablets, floating or mucoadhesive tablets. Such dosage forms were useful for the chronic treatment of type 2 diabetes mellitus. This review emphasizes on the management of type 2 diabetes mellitus through the formulation of a dosage form to maintain blood sugar level, which resulted in patient compliance.

ACKNOWLEDGEMENT: The authors are very grateful to the Principal and Management of Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University for providing necessary facilities for the completion of this literature review.

CONFLICTS OF INTEREST: Nil

REFERENCES:

- Piero MN, Nzaro GM and Njagi JM: Diabetes mellitus- a devastating metabolic disorder. Asian Journal of Biomedical and Pharmaceutical Sciences 2014; 04(40): 1-7.
- 2. Deshmukh CD and Jain A: Diabetes Mellitus: A Review. International Journal of Pure and Applied Bioscience 2015; 3(3): 224-30.
- Abdul A, Abdul-Mohsen AA, Naseem A, Abdullah MA and Fahad IA: Transdermal systemic delivery of antidiabetic drugs: formulation and delivery strategies. Drug Discovery Today 2015; 20(10): 1217-27.
- Prasanna RI and Sankari KU: Design, evaluation and *in vitro–in vivo* correlation of glibenclamide buccoadhesive films. International Journal of Pharmaceutical Investigation 2012; 2(1): 26-33.
- Xu H, Williams KM, Liauw WS, Murray M, Day RO and McLachlan AJ: Effects of St John's wort and CYP2C9 genotype on the pharmacokinetics and pharmacodynamics of gliclazide. British Journal of Pharmacology 2008; 153: 1579-86.
- Hong and S.S: Accelerated oral absorption of gliclazide in human subjects from a soft gelatin capsule containing a PEG 400 suspension of gliclazide. Journal of Controlled Release 1998; 51: 185-92.
- Ning and X: Strategies to improve dissolution and oral absorption of glimepiride tablets: solid dispersion versus micronization techniques. Drug Development and Industrial Pharmacy 2011; 37: 727-36.
- 8. Elbary and AA: Formulation and hypoglycemic activity of pioglitazone-cyclodextrin inclusion complexes. Drug Discoveries & Therapeutics 2008; 2: 94-107.
- 9. Jain and SK: A novel calcium silicate based microspheres of repaglinide: *in-vivo* investigations. Journal of Controlled Release 2006; 113: 111-16.
- Mandal U: Formulation and optimization of sustained release matrix tablet of metformin HCl 500 mg using response surface methodology. Yakugaku Zasshi 1998; 127: 1281-90.
- 11. Kaku K: Efficacy of voglibose in type 2 diabetes. Expert Opinion on Pharmacotherapy 2014; 15: 1181-90.
- 12. Phutane P, Shidhaye S, Lotlikar V, Ghule A, Sutar S and Kadam V: *In-vitro* evaluation of novel sustained release microspheres of glipizide prepared by the emulsion solvent diffusion-evaporation method. Journal of Young Pharmacists 2010; 2(1): 35-41.
- 13. Ganesh K, Juyal V and Badoni PP: Formulation and evaluation of matrix tablets of acarbose. Drug Invention Today 2010; 2(5): 264-67.
- 14. Narasimha RD, Srinath MS, Hindustan AA, Sravanthi M and Kavitha K: Formulation and *in-vitro* evaluation glimepiride and parecoxib mucoadhesive tablets for diabetics associated with pain and inflammation. Pelagia Research Library Der Pharmacia Sinica 2011; 2(2): 101-09.
- 15. Goswami L, Mukhopadhyay S and Durgapal S: Formulation and evaluation of combined floating bilayer tablet of metformin and pioglitazone. Journal of Pharmacy Research 2011; 4(3): 645-46.
- 16. Mohd AH, Babu VL and Pal N: Formulation and evaluation of sustained release matrix tablets of glimepiride based on combination of hydrophilic and hydrophobic polymers. Journal of Applied Pharmaceutical Science 2012; 2(6): 101-07.

- 17. Hari Har PM and Duraivel S: Effect of different binders and super disintegrants on formulation of glimepiride immediate release tablets by wet granulation method. International Journal of Pharmaceutical and Clinical Research 2012; 4 (4): 44-47.
- Azza AH, Hafez M and Wageh S: Formulation and evaluation of metformin hydrochloride-loaded niosomes as controlled release drug delivery system. Drug Delivery 2013; 20(3-4): 120-26.
- 19. Uttam M and Tapan KP: Formulation and *in-vitro* studies of a fixed-dose combination of a bilayer matrix tablet containing metformin HCl as sustained release and glipizide as immediate release. Drug Development and Industrial Pharmacy 2008; 34(3): 305-13.
- Sanjay KS, Shailender M and Manish: Formulation and *invitro* evaluation of modified release tablets of gliclazide (antidiabetic drug). International Journal of Pharmacy and Pharmaceutical Sciences 2014; 6(2): 259-61.
- 21. Tiwari R, Gupta A and Joshi M and Gaurav T: Bilayer tablet formulation of metformin HCl and acarbose: a novel approach to control diabetes. PDA Journal of Pharmaceutical Science and Technology 2014; 68(2): 138-52.
- 22. Uday BGG, Sri VPJ, Avadhanam PK, Reddy G, Reddy S and Manikanta SK: formulation and design of metformin hydrochloride extended-release tablets. Pharma Tutor 2014; 2(11): 112-19.
- 23. Samira K, Mohiuddin AB and Sohel R: Formulation and *in-vitro* evaluation of glimepiride sustained release tablets: comparison with immediate release tablets. Bangladesh Pharmaceutical Journal 2015; 18(2): 157-62.
- Anshuman K, Tripathi PK, Srivashtava A and Ratan V: Formulation and evaluation of effervecent floating tablets of antidiabetic drug. Journal of Drug Delivery & Therapeutics 2015; 5(6): 43-55.
- 25. Itishree JD, Deepthi R, Rajashekar Y and Himansu BS: Design & characterization of glimepiride fast dissolving tablets. International Journal of Pharm Tech Research 2015; 8(7): 01-11.
- Sruti RM, Bhabani SN, Sethy S, Ellaiah P and Gitanjali M: Formulation design and *in-vitro* evaluation of control release tablet of pioglitazone HCl solid dispersion. Indian Journal of Novel Drug Delivery 2015; 7(2): 83-91.
- 27. Balaji M, Abhay A, Gyati SA, Singh S, Ramya M, Omprakash S and Niranjan K: Formulation and characterization of polycarbophil coated mucoadhesive microspheres of repaglinide. Journal of Pharmaceutical Sciences and Research 2015; 7(11): 972-77.
- Juber A, Hefazat HS, Sheeba F, Badruddeen, Mohammad K and Mohammed A: Nanoemulsion: for improved oral delivery of repaglinide. Drug Delivery 2016; 23(6): 2026-34.
- 29. Satheesh J, Laxman A and Ramesh NJ: Glimepiride fast disintegrating tablets: formulation, evaluation and *in-vivo* disintegration and dynamic studies. International Journal of Pharmacy and Pharmaceutical Sciences 2016; 8(5): 271-78.
- Radhika PR, Loganathan P and Sampathkumar R: Formulation and evaluation of anti-diabetic drugs as corein-cup tablet. World Journal Of Pharmacy And Pharmaceutical Sciences 2016; 5(9): 1628-46.
- 31. Prakash SP, Pravin SU, Chaudhari PD and Pradnya SB: Formulation development and evaluation of bilayer floating tablet of antidiabetic drugs. Scholars Research Library Der Pharmacia Lettre 2016; 8 (21): 34-54.
- 32. Sandeep R, Surinder K, Falguni D and Divya SK: Formulation and evaluation of oral floating tablets of an

anti diabetic drug. World Journal Of Pharmacy And Pharmaceutical Sciences 2016; 5(7): 1067-79.

- Sridevi Gand Madhavi L: Formulation and evaluation of nateglinide sustained release tablets. International Journal of Pharmaceutical Sciences and Drug Research 2016; 8(1): 07-12.
- 34. Ravi D, Suresh B, Sri Harsha T, Pavithra M, Leelavathi G and Grace R: Formulation and evaluation of bilayer matrix tablet of glibenclamide and metformin. World Journal of Pharmacy and Pharmaceutical Sciences 2016; 5(10): 1116-45.
- Noopur P, Archana NS and Kamal M: Formulation and evaluation of floating microspheres of nateglinide. International Journal of Pharma Sciences and Research 2016; 7(11): 453-64.
- Wafa AM, Ahmed AA, Abobakr KA, Zakaria AS, Nahlah MN and Mohamed K: Formulation and evaluation of new glimepiride sublingual tablets. Hindawi Journal of Pharmaceutics 2017; 1-5.
- 37. Sonali BD, Hrishikesh AJ and Rajendra NP: Formulation and evaluation of glimepiride matrix tablets with various combinations of polymers. World Journal of Pharmacy and Pharmaceutical Sciences 2017; 6(2): 960-80.
- Sruti RM, Bhabani SN, Ellaiah P and Gitanjali M: *In-vitro* and *in-vivo* evaluation of controlled release tablets of pioglitazone HCl solid dispersion. International Journal of Pharma Research And Health Sciences 2017; 5(1): 1592-98.
- 39. Bandi A and Polepaka A: Formulation and *in-vitro* evaluation of pioglitazone hydrochloride mouth dissolving tablets. European Journal of Pharmaceutical and Medical Research 2017; 4(10): 348-54.
- 40. Nagaveni P, Chandrasekhar K and Jayachandra RP: Formulation and evaluation of mucoadhesive drug delivery of anti-diabetic drugs. Journal of Global Trends in Pharmaceutical Sciences 2017; 8(2): 3940- 48.
- 41. Pankaj B and Shikha BC: Formulation and evaluation of orodispersible tablets of metformin hydrochloride using

agar as natural super disintegran. International Journal of Pharmaceutical Sciences and Research 2018; 9(10): 4220-28.

- 42. Mayuri M, Neetesh J and Mahesh G: Development of sustained release formulation of glipizide using natural polymer from *Tamrindus indica* for better patient compliance. Journal of Drug Delivery & Therapeutics 2018; 8(6-A): 1-6.
- 43. Ramana BV and Murthy TEGK: Formulation and evaluation of immediate release tablets of pioglitazone hydrochloride by employing modified superdisintegrants. International Journal of Pharmaceutical Sciences and Research 2018; 9(6): 2335-46.
- 44. Mhase SR, Nanjwade BK, Sarkar AB and Srichana T: Development and evaluation of dual release tablet of metformin and pioglitazone for the treatment of diabetes mellitus. Pharmaceutica Analytica Acta Open Access Journals 2018; 9(4): 1-5.
- 45. Tellagorla T, Gangadharappa HV, Panchumarthy R, Akhil N and Leelavathi K: Formulation and evaluation of sustained-release effervescent floating tablets of nateglinide. IOSR Journal of Pharmacy 2018; 8(4): 45-54.
- 46. Gaurav A, Shilpi A and Shagun G: Formulation & evaluation of sustained release matrix tablet of repaglinide. Open Access Biostatistics and Bioinformatics 2019; 1(2): 1-9.
- 47. Venkata SKK and Kothapallibonnath CS: Characterization and evaluation of empagliflozin spherical agglomerates by direct compression method. International Journal of Recent Scientific Research 2018; 9(2): 24394-98.
- Mir RA, Kaniz FA, Subrata P and Bytul MR: Formulation development and evaluation of poorly water-soluble gliclazide tablet containing aerosil 380 as carrier. Pharmacology & Pharmacy 2019; 10(9): 396-405.
- 49. Agrawal R, Patel N and Raval M: Novel amorphous solid dispersions of canagliflozin hemihydrate in Eudragit® E Po. International Journal of Pharmaceutical Sciences and Research 2019; 10(6): 2923-33.

How to cite this article:

Munde MK, Kulkarni NS and Sen DB: A systematic review on development and evaluation of controlled release and fast dissolving formulations for anti-diabetic drugs over past decade. Int J Pharm Sci & Res 2020; 11(10): 4874-83. doi: 10.13040/JJPSR.0975-8232. 11(10).4874-83.

All © 2013 are reserved by the International Journal of Pharmaceutical Sciences and Research. This Journal licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

This article can be downloaded to Android OS based mobile. Scan QR Code using Code/Bar Scanner from your mobile. (Scanners are available on Google Play store)