IJPSR (2013), Vol. 4, Issue 3 (Research Article)

INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES AND RESEARCH

Received on 21 November, 2012; received in revised form, 21 February, 2013; accepted, 28 February, 2013

IN VITRO CYTOTOXIC EFFECT OF METHANOLIC CRUDE EXTRACTS OF OCIMUM SANCTUM

Aparna Debnath ¹ and Mohammad Musarraf Hussain*²

Department of Pharmacy, Noakhali Science and Technology University ¹, Sonapur, Noakhali-3802, Bangladesh Department of Pharmacy, Jagannath University ², Dhaka-1100, Bangladesh

Keywords:

Ocimum sanctum, Lamiaceae Leaves, Methanolic crude extracts Cytotoxic effects

Correspondence to Author:

Mohammad Musarraf Hussain

Assistant Professor, Department of Pharmacy, Jagannath University, Dhaka-1100, Bangladesh

Email: m.musarraf.hussain@gmail.com

ABSTRACT: The aim of this research is to observe the cytotoxic activities of methanolic crude extracts of *Ocimum sanctum* (Family: Lamiaceae). The leaves of *Ocimum sanctum* was extracted with organic solvent (methanol) and the extracts were fractionated by using solvent-solvent partition. The n-hexane, ethyl acetate, and chloroform soluble fractions of methanolic crude extract of *Ocimum sanctum* were screened for cytotoxic activity using brine shrimp lethality bioassay. A reputed cytotoxic agent, vincristine sulphate was used as a positive control. From the results of the brine shrimp lethality bioassay it was well predicted that n-hexane, ethyl acetate, and chloroform soluble fractions of methanolic crude extracts possess cytotoxic principles (LC_{50} 4.36 mg/mL, LC_{50} 5.37 mg/mL and LC_{50} 10.00 mg/mL respectively) comparison with positive control, vincristine sulphate (LC_{50} 0.563 mg/mL).

INTRODUCTION: *Ocimum sanctum* (Local name: Tulsi, Family: Lamiaceae) is an aromatic plant which is native throughout the world tropics and widespread as a cultivated plant and an escaped weed. It is an erect, much branched subshrub 30-60 cm tall with hairy stems and simple opposite green leaves that are strongly scented. Leaves have petioles, and are ovate, up to 5 cm long, usually slightly toothed and flowers are purplish in elongate racemes in close whorls ¹.

Ocimum sanctum has been used as a potent traditional medicinal agent in the antifungal ², acetylcholinesterage and improve cognition condition ³, immunomodulatory ^{4, 13}, antiplasmodial ^{5, 25}, radioprotective ^{6, 14}, antidiabetic ^{7, 15}, genoprotective 8, hepatoprotective ⁹, ameliorative ¹⁰, larvicidal ¹⁸, antioxidant ^{19, 20, 22}, antityrosinase activity ²⁰, reproductive ²¹, lipid lowering ²², antihyperlipidemic and cardioprotective ²³ and antidengue activity ²⁴.

METHODS AND MATERIAL:

Collection and identification of the plant: Plant sample of *Ocimum sanctum* was collected from Noakhali Science and Technology University campus in January 2010 and selected for cytotoxic activities.

Plant material preparation: The leaves of the plant were collected in fresh condition. It was sun-dried to make it suitable for grinding purpose. The coarse powder was then stored in air-tight container with marking for identification and kept in cool, dark and dry place for future use.

Extraction of plant material: The powdered leaves (700 g) were soaked in methanol (2.8 L) in May, 2010 in a desicator, through occasional shaking and stirring for 25 days. The extract was then filtered through filtercloth. The filtrate was kept to dry in fresh and clean air to afford a greenish mass of methanolic crude extarct. The methanolic crude extract was fractionate according to Modified Kupchan partitioning method (**figure 2**) into n-hexane (0.04 g), ethyl acetate (0.6 g) and chloroform (0.06) soluble fractions.

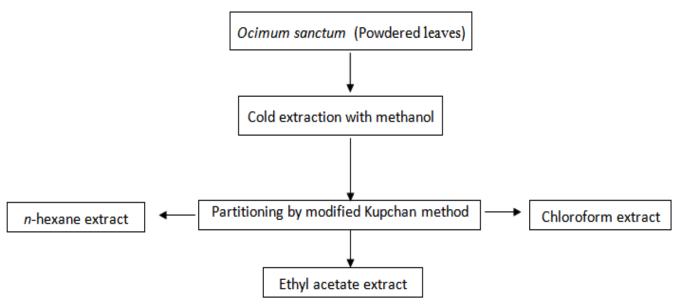


FIGURE 1: SCHEMATIC DIAGRAM OF THE CRUDE EXTRACTS OF OCIMUM SANCTUM

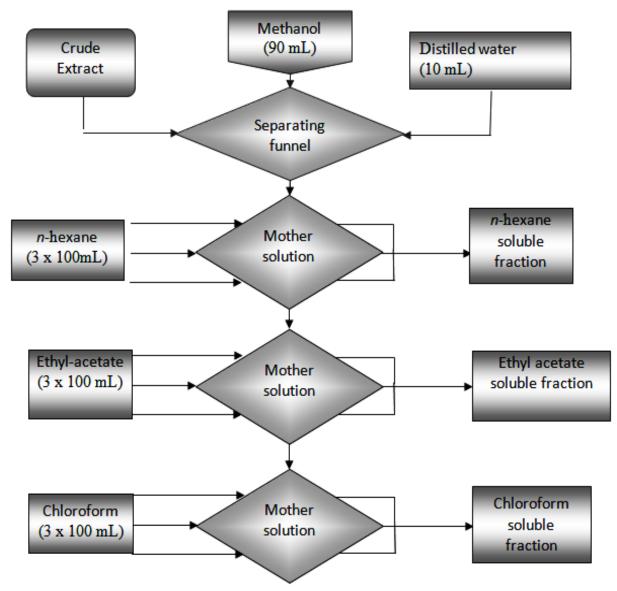


FIGURE 2: SCHEMATIC DIAGRAM OF A MODIFIED KUPCHAN PARTITIONING METHOD

RESULT AND DISCUSSION: The Brine Shrimp test (BST) represents a rapid, inexpensive and simple bioassay for testing cytotoxic and anti-tumor properties of plant extracts 11 . Following the procedure of Meyer 12 and Persoone 17 , the cytotoxic effects of the methanolic crude extracts (n-hexane, ethyl acetate and chloroform soluble fractions) were determined and the LC₅₀ values of n-hexane, ethyl acetate and chloroform soluble fractions found to be 4.365 mg/mL 5.370 mg/mL and

10.00 mg/mL respectively (**Table 1**) compared with positive control, vincristine sulphate (0.563 mg/mL). From the test it was observed that cytotoxic effects exhibited by the methanolic extract (n-hexane, ethyl acetate and chloroform soluble fractions). The effects of n-hexane, ethyl acetate, chloroform soluble fractions and vincristine sulphate on shrimp nauplii are shown in the **table 2** and **figure 3, 4, 5 and 6** respectively.

TABLE 1: LC₅₀ VALUES OF METHANOLIC CRUDE EXTRACTS OF OCIMUM SANCTUM

Methanolic crude extracts (soluble fractions)	LC_{50} (µg/m L)	Regression equation	R ²
<i>n</i> -hexane	4.365	y = 15.296x + 7.0786	0.5912
Ethyl acetate	5.370	y = 20.326x -4.3527	0.3728
Chloroform	10.00	y = 19.522x - 9.3501	0.3295
Vincristine sulphate (positive control)	0.563	y = 30.056x + 56.016	0.9168

TABLE 2: EFFECT OF *N*-HEXANE, ETHYL ACETATE, CHLOROFORM SOLUBLE FRACTIONS AND VINCRISTINE SULPHATE ON BRINE SHRIMP NAUPLII

Conc. (C, μg/mL)	Log C	Mortality (%)			LC ₅₀ (μg/mL)		Vincristine sulphate				
		<i>n</i> -hexane	Ethyl acetate	Chloroform (CF)	<i>n</i> -hexane	Ethyl acetate	CF	Conc. (C, μg/mL)	Log C	Mortality (%)	LC ₅₀ (μg/mL)
400	2.602	60	10	100	4.365	5.370	10.0	40	1.602	100	0.563
200	2.301	20	30	0				20	1.301	90	
100	2	10	20	0				10	1.000	90	
50	1.699	10	0	20				5	0.698	80	
25	1.398	10	10	20				2.5	0.397	70	
12.5	1.097	10	30	10				1.25	0.096	70	
6.25	0.796	0	0	0				0.625	-0.204	50	
3.125	0.495	0	0	0				0.3125	-0.505	30	
1.56	0.193	0	0	0							
0.78	-0.108	0	20	0							



FIGURE 3: EFFECT OF N-HEXANE SOLUBLE FRACTION ON BRINE SHRIMP NAUPLII

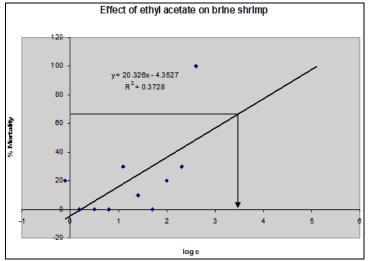


FIGURE 4: EFFECT OF ETHYL ACETATE SOLUBLE FRACTION ON BRINE SHRIMP NAUPLII

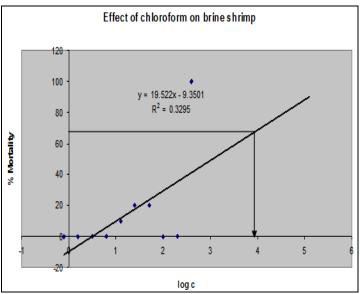


FIGURE 5: EFFECT OF CHLOROFORM SOLUBLE FRACTION ON BRINE SHRIMP NAUPLII

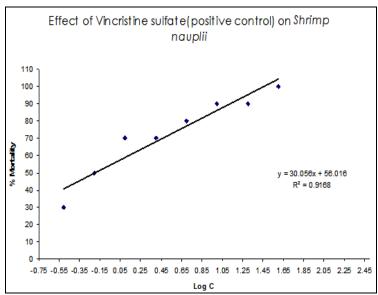


FIGURE 6: EFFECT OF VINCRISTINE SULPHATE ON BRINE SHRIMP NAUPLII

CONCLUSION: The present research indicates that the crude extracts of *Ocimum sanctum* has got intense *invitro* cytotoxic effect and may have potential use in traditional medicine.

REFERENCES:

- Abdul Gani, Medicinal Plants of Bangladesh: Chemical Constituents and Uses, 1st edition, Asiatic Society of Bangladesh 1998.
- Balakumar S, Rajan S, Thirunalasundari T, Jeeva S, Abdul Antifungal activity of *Ocimum sanctum* Linn. (Lamiaceae) on clinically isolated dermatophytic fungi, *Asian Pac J Trop Med*. 2011. 4(8), 654-7.
- Giridharan VV, Thandavarayan RA, Mani V, Ashok Dundapa T, Watanabe K, Konishi T, Ocimum sanctum Linn. leaf extracts inhibit acetylcholinesterase and improve cognition in rats with

- experimentally induced dementia, *J Med Food.* 2011, 14 (9), 912-9.
- Govinda HV, Asdaq SM., Immunomodulatory Potential of Methanol Extract of Aegle marmelos in Animals, Indian J Pharm Sci. 2011,73(2), 235-40.
- Inbaneson SJ, Sundaram R, Suganthi P, In vitro antiplasmodial effect of ethanolic extracts of traditional medicinal plant Ocimum species against Plasmodium falciparum, Asian Pac J Trop Med. 2012, 5(2):103-6.
- Joseph LJ, Bhartiya US, Raut YS, Hawaldar RW, Nayak Y, Pawar YP, Jambhekar NA, Rajan MG, Radioprotective effect of *Ocimum* sanctum and amifostine on the salivary gland of rats after therapeutic radioiodine exposure, Cancer Biother Radiopharm. 2011, 26 (6), 737-43.
- 7. Khan V, Najmi AK, Akhtar M, Aqil M, Mujeeb M, Pillai KK., A pharmacological appraisal of medicinal plants with antidiabetic potential, 2012,4(1), 27-42.
- Khanna A, Shukla P, Tabassum S, Role of *Ocimum sanctum* as a Genoprotective Agent on Chlorpyrifos-Induced Genotoxicity, Toxicol Int. 2011, 18 (1), 9-13.
- 9. Lahon K, Das S, Hepatoprotective activity of *Ocimum sanctum* alcoholic leaf extract against paracetamol-induced liver damage in Albino rats, Pharmacognosy Res. 2011, 3 (1), 13-8.
- Mahaprabhu R, Bhandarkar AG, Jangir BL, Rahangadale SP, Kurkure NV, Ameliorative effect of *Ocimum sanctum* on meloxicam induced toxicity in wistar rats, Toxicol Int. 2011,18 (2), 130-6.
- 11. McLughilin JL, Rogers LL. 1998. The use of Biological assays to evaluate botanicals. *Drug Information J.* 32: 513-524.
- Meyer, B. N, Ferringni, N, R., Puam, J, E., Lacobsen, L, B., Nichols, D.E. and McLaughlin, J. L.; Brine shrimp: a convenient general bioassay for active constituents, *Planta Medica*. 1982, 45, 31-32.
- Mondal S, Varma S, Bamola VD, Naik SN, Mirdha BR, Padhi MM, Mehta N, Mahapatra SC, Double-blinded randomized controlled trial for immunomodulatory effects of Tulsi (*Ocimum sanctum* Linn.) leaf extract on healthy volunteers, *J Ethnopharmacology*, 2011, 136 (3), 452-6.
- Monga J, Sharma M, Tailor N, Ganesh N, Antimelanoma and radioprotective activity of alcoholic aqueous extract of different species of *Ocimum* in C(57)BL mice, Pharm Biol.2011,49 (4), 428-36.
- Muralikrishnan G, Pillai SK, Shakeel F, Protective effects of Ocimum sanctum on lipid peroxidation and antioxidant status in streptozocin-induced diabetic rats, Nat Prod Res. 2012, 26 (5), 474-8.
- 16. Patil R, Patil R, Ahirwar B, Ahirwar D, Isolation and characterization of anti-diabetic component (bioactivity-guided fractionation) from *Ocimum sanctum* L. (Lamiaceae) aerial part, Asian Pac J Trop Med.2011, 4 (4), 278-82.
- 17. Persoone G. 1980. Proceeding of the International Symposium on brine shrimp, Artemia salina, Vol. 1-3, Universa Press, Witteren, Belgium.
- Rajamma AJ, Dubey S, Sateesha SB, Tiwari SN, Ghosh SK, Comparative larvicidal activity of different species of *Ocimum* against Culex quinquefasciatus, Nat Prod Res. 2011, 25 (20), 1916-22.
- Ramesh B, Satakopan VN, Antioxidant Activities of Hydroalcoholic Extract of *Ocimum sanctum* Against Cadmium Induced Toxicity in Rats, Indian J Clin Biochem. 2010, 25 (3), 307-10.
- 20. Saeio K, Chaiyana W, Okonogi S, Antityrosinase and antioxidant activities of essential oils of edible Thai plants, Drug Discov Ther. 2011, 5(3):144-9.

ISSN: 0975-8232

- Sethi J, Yadav M, Sood S, Dahiya K, Singh V, Effect of tulsi (Ocimum sanctum Linn.) on sperm count and reproductive hormones in male albino rabbits, Int J Ayurveda Res. 2010, 1(4), 208-10.
- Suanarunsawat T, Ayutthaya WD, Songsak T, Thirawarapan S, Poungshompoo S, Lipid-lowering and antioxidative activities of aqueous extracts of *Ocimum sanctum* L. leaves in rats fed with a high-cholesterol diet, Oxid Med Cell Longev. 2011, 96, 20-25.
- 23. Suanarunsawat T, Boonnak T, Na Ayutthaya WD, Thirawarapan S, Anti-hyperlipidemic and cardioprotective effects of *Ocimum*

- sanctum L. fixed oil in rats fed a high fat diet, J Basic Clin Physiol Pharmacol.2010, 21(4), 387-400.
- 24. Tang Ll, Ling AP, Koh RY, Chye SM, Voon KG, Screening of antidengue activity in methanolic extracts of medicinal plants, BMC Complement Altern Med. 2012, 12:3.
- 25. Venkatesalu V, Gopalan N, Pillai CR, Singh V, Chandrasekaran M, Senthilkumar A, Chandramouli N, *In vitro* anti-plasmodial activity of some traditionally used medicinal plants against *Plasmodium falciparum*, Parasitol Research, 2012, Jan 31.

How to cite this article:

Debnath A and Hussain MM: In vitro cytotoxic effect of Methanolic crude extracts of Ocimum sanctum. Int J Pharm Sci Res 2013; 4(3); 1159-1163.