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ABSTRACT: The current study aimed to investigate the protective effects 

of taurine and melatonin against caffeine-induced brain damage in rats. 36 

male albino rats were divided into 6 groups: Group I: control, group II: Rats 

received 20 mg/kg melatonin for 28 days. Group III: Rats received 50 mg/kg 

taurine dissolved in distilled water daily for 28 days. Group IV: Rats 

received 50 mg/kg caffeine dissolved in distilled water for 28 days. Group V: 

Rats received melatonin as described in group II in concomitant with 

caffeine, as described in group IV. Group VI: Rats received taurine as 

described in group III in concomitant with caffeine, as described in group IV. 

Caffeine-induced rats showed significantly increased brain lipid 

peroxidation, Superoxide dismutase (SOD) and reduced glutathione (GSH) 

content were significantly decreased. Monoamine neurotransmitters, gene 

and protein expression levels of p53 and Bax were significantly increased in 

the brain of caffeine-induced rats. In contrast, caffeine administration down-

regulated Bcl-2 both gene and protein expression in the brain of rats. DNA 

damage were detected in caffeine treated group compared with control. Gene 

and protein expression levels of p53 and Bax were significantly decreased in 

the brain of taurine and melatonin administrated groups. Taurine and 

melatonin significantly decreased MDA and DNA damage, levels of 

dopamine and norepinephrine, and enhanced activity of the antioxidant 

enzymes in the brain of rats. In conclusion, taurine and melatonin can impact 

caffeine-induced oxidative stress and apoptosis through their antioxidant 

activity. 

INTRODUCTION: Caffeine (1,3,7-trimethyl-

xanthine), a natural stimulatory compound, is 

probably the most consumed pharmacologically 

active compound in the world 
1
. Adults consume 

caffeine in tea and coffee; both contain natural 

caffeine in their beans or leaves 
2
.  
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Caffeine and other methylxanthines are used in 

clinical medicine as diuretics, analgesics, and 

muscle relaxants, and they can be used in the 

treatment of brain disorders such as headache 
3
. 

Caffeine had been found to have a role in the 

inhibition of motor symptoms and dopaminergic 

neurons loss in Parkinson’s disease 
4
. Moreover, 

excessive amounts of caffeine can adversely affect 

the body through significant toxic effects 
5
 

including anxiety, delirium, headache, insomnia, 

nervousness, dehydration, hyperglycemia, and 

arrhythmia 
6
. In addition, high concentrations of 

caffeine induce cellular apoptosis 
7
, cell death 

8
.  
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Also, caffeine can cause indirect DNA damage as a 

result of the oxidative stress that it can cause 
9
. It is 

obviously not a harmless compound and may cause 

significant toxicity and even lethality 
10, 11

. 

Melatonin (Nـacetyl-5-methoxytryptamine), an 

indole amine, acts as a hormone. It is secreted from 

the pineal gland during the night and also can be 

synthesized in the retina, bone marrow, gastro-

intestinal tract, and skin 
12

. The level of this 

hormone is controlled by dark-light cycle, gender, 

age, seasons, and physiological conditions 
13

. 

Melatonin is an antioxidant, immune-modulator, 

anti-inflammatory agent, vaso-regulator, and 

oncostatic agent 
14

. It was reported that melatonin 

affects the morphological features of nerve tissues 

and had a neuroprotective role through involvement 

in the regeneration of peripheral nerves. Moreover, 

melatonin exerts a positive effect on axon length 

and development after peripheral nerve stress 
15

.  

Melatonin is able to cross the blood-brain barrier 

easily, enter the central nervous system and the 

cerebrospinal fluid through the choroid plexus, 

where it can protect against various neuro-

degenerative diseases and brain injury. Exogenous 

melatonin had been shown to decrease the cerebral 

infarction area and promote the neuronal anti-lipid 

peroxidation reaction, thus playing a role in brain 

protection 
16

. Many neurological disorders had 

been reported to be ameliorated by melatonin-

administration, such as Alzheimer’s disease 
17

, 

stroke, traumatic brain injury and hypoxia 
18

.  

Taurine, 2-aminoethane sulfonic acid, is a simple 

sulfur-containing organic acid. It is found in all 

animal cells. In particular, the electrically excitable 

tissue such as the heart, retina, brain, and skeletal 

muscles and liver of mammals 
19

.  

Taurine accounts for 0.1% of the whole-body 

weight of human and present in its free form in all 

organs 
20

. It has antioxidant, anti-inflammatory, 

antiarrhythmic, and central nervous system 

neuromodulator effects.  

Additionally, taurine stabilizes cell membranes, 

regulates levels of calcium ions in the blood and 

fatty tissues metabolism, regulates the development 

and function of skeletal muscle, the central nervous 

system, and the retina 
21

. Taurine also plays an 

important role in innate immunity 
22

. 

MATERIALS AND METHODS: 

Chemicals: Caffeine, Melatonin, Taurine, tri-

chloroacetic acid (TCA), thiobarbituric acid (TBA), 

1,1,3,3 tetramethoxypropane, pyrogallol, and 5,5′-

dithiobis-(2- nitrobenzoic acid) (DTNB) were 

purchased from Sigma- Aldrich Chemical Co. (St. 

Louis, MO, USA). All other chemicals were of 

analytical grade and obtained from standard 

commercial supplies. 

Experimental Animals: The experimental animals 

used in this work were 36 adult albino rats 

weighing about 120-150 g. They were obtained 

from the animal house of the National Research 

Center, El-Giza, Egypt. They were kept under 

observation for about 15 days before the onset of 

the experiment to exclude any intercurrent 

infection. The chosen animals were housed in 

plastic well-aerated cages (6 rats/cage) at normal 

atmospheric temperature and a normal 12-h 

light/dark cycle. The animals were not treated with 

antibiotics or insecticides, and they had free access 

to water and were supplied daily with a laboratory 

standard diet of known composition.  

All animal procedures were in accordance with the 

recommendations of the Animal Ethics Committee 

of Beni-Suef University (Egypt), which conforms 

to the recommendations of the Canadian 

Committee for Care and Use of Animals 
23

. 

Experimental Design: Experimental animals were 

divided into six equal groups:  

Group I (Control): Rats received distilled water 

via oral gavage for 28 days. 

Group II: Rats received 20 mg/kg melatonin 

dissolved in distilled water 
24

 via oral gavage daily 

for 28 days. 

Group III: Rats received 50 mg/kg taurine 

dissolved in distilled water 
25

 via oral gavage daily 

for 28 days. 

Group IV: Rats received 50 mg/kg caffeine 

dissolved in distilled water 
26

 via oral gavage daily 

for 28 days. 

Group V: Rats received melatonin as described in 

group II in concomitant with caffeine, as described 

in group IV.  
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Group VI: Rats received taurine as described in 

group III in concomitant with caffeine, as described 

in group IV.  

The doses of caffeine, melatonin, and taurine were 

balanced weekly as indicated by any change in 

body weight to keep up the comparable dosage for 

every kg body weight over the entire period of the 

experiment. 

Blood and Tissue Sampling: At the end of the 

experimental period, animals were fasted overnight 

but allowed free access to water. Animals were 

sacrificed under mild anesthesia by diethyl ether, 

and blood samples were obtained from the carotid 

artery. Animals were decapitated and dissected, 

then brain tissues were rapidly excised and 

immediately perfused with ice-cold saline (0.9% 

sodium chloride). Blood samples were left for 15 

min at a temperature of 25 °C to coagulate, then 

centrifuged at 5000 rpm for 10 min, and clear non-

hemolyzed sera were collected and kept at -20 °C 

until used. Brain samples (10% w/v) were 

homogenized in chilled phosphate-buffered saline 

and the homogenates were centrifuged at 3000 rpm 

for 10 min at 4 °C by Centurion Scientific K3 

cooling centrifuge (UK) to separate the nuclear 

debris. The clear homogenates were collected and 

stored at -20 °C until used. Also, brain specimens 

were preserved in -70 °C for gene expression 

analysis and western blot analysis. 

Biochemical Assays: 

Assay of Oxidative Stress and Antioxidant 

Defense System: Lipid peroxidation was estimated 

in brain homogenate by measuring malondi-

aldehyde (MDA) levels following the method of 

Preuss et al. 
27

 Reduced glutathione (GSH) content 

and superoxide dismutase (SOD) activity were 

estimated following the methods of Beutler et al., 
28

 

and Marklund and Marklund 
29

 respectively. 

RNA Isolation and Quantitative Reverse 

Transcription Polymerase Chain Reaction 

(qRT-PCR): Gene expression analysis of P53, 

BAX, and Bcl2 in brain samples was carried out by 

quantitative reverse transcription-polymerase chain 

reaction (qRT-PCR). Total RNA was isolated from 

frozen brain samples using TRIzol reagent, treated 

with DNase I, and quantified at 260 nm. cDNAs 

were synthesized from 2 mg RNA and were 

amplified using SYBR Green master mix (Thermo 

Fisher Scientific, USA) with the primer sets 

outlined in Table 1. The obtained amplification 

data were analyzed by the 2
-ΔΔCt

 method 
30,

 and the 

values were normalized to β-actin. 

TABLE 1: PRIMER PAIRS USED FOR PCR 

Gene Gene Bank accession number Sequence 5΄–3΄ 

BAX NM_007527 F: 5′ CGAGCTGATCAGAACCATC3' 

  R: 5′ GAAAAATGCCTTTCCCCTTC3' 

Bcl2 NM_009741 F: 5′ TAAGCTGTCACAGAGGGGCT3' 

  R: 5′ TGAAGAGTTCCTCCACCACC3' 

P53 NM_022112 F: 5′ GCTGCCCTCCCTTCTCCTAG3' 

  R:  5′CCCCGACTTTGGAGTAGTCTGA3' 

 

Western Blotting Analysis: Brain samples kept at 

−70 °C were used to investigate the effect of 

caffeine on the expression level of P53, BAX and 

Bcl2 using β-actin as a loading control using 

chemiluminescence kit (BIORAD, USA) 
31

. 

Detection of DNA Single Strand Breaks (Comet 

Assay): The alkaline comet assay was performed 

as described by Singh et al. 
32

 To obtain single cells 

from brain, sample must be finely minced using 

sterile scissors or scalpels, cell dispersion can be 

achieved by enzymatic digestion of the sample 

using collagenase. A freshly prepared 10µL of 

single liver cells (10,000-50,000) in cold Hank’s 

Balanced Salt Solution (HBSS) was mixed with 

65µL of 0.7 low melting point agarose (LMA) at 

37 °C and spread onto microscope slide pre -coated 

with 0.5 % normal melting point agarose (NMA) 

and the slide was covered with a third layer of 

LMA and a cover slip was applied to spread the 

sample.  

The cells then lysed in lysis buffer consisting of 1% 

sodium sarcosinate, 2.5 M NaCl, 10 mM Na2 

EDTA, 1% Triton x -100, 10% DMSO and 10mM 

Tris, pH10 for 1 h at 4 °C. After the lysis, the slides 

were placed in an electrophoresis unit, the DNA 

was allowed to unwind for 20 min in the 

electrophoretic solution consisting of 300 mM 

NaOH, 1 mM EDTA, pH>13.  Electrophoresis was 
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conducted at ambient temperature of 4°C for 20 

min at electric field strength of 300 mA. The slides 

were then neutralized with 0.4 M Tris, pH7.5, 

stained with 2 µg/ml ethidium bromide and covered 

with cover slips.  

To prevent additional DNA damage, all the steps 

described above were conducted under dimmed 

light or in the dark. The slides were viewed under a 

LeitzOrthoplan epifluorescence microscope 

(magnification 200x) equipped with an excitation 

filter of 515-550 nm and a barrier filter of 590 nm. 

The microscope was connected through a camera to 

a computer-based image analysis system (Comet 

Assay IV software). For each sample, 100 isolated 

comets (single-strand breaks of DNA migrate from 

nucleus to anode) were randomly selected and 

measured for comet tail length, % DNA in tail, and 

tail moment according to the definition by Olive 

and Banath (1993) 
33

. 

Tail moment = Tail length X % DNA in tail / 100 

Estimation of Monoamines in Different Brain 

Tissue Regions: The determination of 

norepinephrine (NE) and dopamine (DA) content 

was carried out according to Ciarolone 
34

. In this 

fluorometric assay, the monoamines are first 

oxidized to their "adrenochromes", and then re-

arranged to their "adrenolutins", which are then 

detected by specific fluorescence at particular wave 

lengths of excitation and emission. Each brain 

region was separately weighed then homogenized 

in ice-cold solution of n-butanol (10ml/g tissue) 

then centrifuged at 4,000 rpm for 10 min at 4 ºC in 

a Heraeus Sepatech centrifuge. A volume of 2.5ml 

of each supernatant was transferred to a tube 

containing 1ml of 0.2N acetic acid and 5ml n-

heptane. The tubes were then placed on a vortex 

mixer for 30 sec and centrifuged at 1000 rpm for 5 

min. The organic supernatant was discarded from 

the aqueous phase, and 1 ml of the aqueous phase 

was transferred to another tube for the 

determination of NE and DA. 

Determination of Norepinephrine (NE) and 

Dopamine Contents (DA):  A volume of 0.2ml of 

EDTA was mixed with 1ml of supernatant, and 

then 0.1ml of 0.1N iodine was added and shook 

well for 2 min followed by 0.2ml of alkaline 

sulphite added with shaking for further 2 min. 

Finally, 0.2ml of 5N acetic acid was added and 

shook well while blank tube was prepared by 

adding 0.2 ml of 0.2N acetic acid instead of 

supernatant. For determination of norepinephrine 

the tubes were placed in boiling water bath for 2 

min then cooled under tap water and the 

fluorescence was read at excitation 380 nm and 

emission 480 nm using Hitachi (F3010 model) 

spectrophotofluorometer. For the determination of 

dopamine, the tubes were placed in boiling water 

bath for 40 min then were cooled under tap water, 

and the fluorescence was read at excitation 320 nm 

and emission 480 nm using Hitachi (F3010 model) 

spectrophotofluorometer. 

RESULTS: 

Melatonin and Taurine Attenuate Oxidative 

Stress in Brain of Caffeine-Administered Rats: 

Caffeine-administered rats showed a significant (P 

< 0.05) increase in MDA, a marker of lipid 

peroxidation, when compared to the respective 

normal rats. Concurrent treatment with either 

melatonin or taurine for 28 days significantly (P < 

0.05) decreased brain MDA content. In contrast, 

GSH content and activity of the antioxidant 

enzyme SOD in the brain of caffeine-administered 

rats were significantly (P < 0.05) declined. Rats 

treated with melatonin and taurine significantly (P 

< 0.05) prevented GSH decline and ameliorated 

SOD activity in rats brain Fig. 1. 

  A B 
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FIG. 1: MELATONIN AND TAURINE AMELIORATED THE OXIDATIVE STRESS EFFECT INDUCED BY CAFFEINE IN 

BRAIN OF CAFFEINE-ADMINISTERED RATS. (A) MDA, MALONDIALDEHYDE; (B) GSH, GLUTATHIONE; (C) SOD, 

SUPEROXIDE DISMUTASE. Data are expressed as Mean ± SD (N = 6). aSignificantly different from control group, bSignifficantly 

different from caffeine group at p ˂ 0.05 

Melatonin and Taurine Prevent DNA Damage in 

Brain of Caffeine-Administered Rats: To further 

explore the protective effects of melatonin and 

taurine against caffeine toxicity, oxidative DNA 

damage was determined using comet assay. The 

data represented in Fig. 2 and 3 show the effect of 

melatonin and taurine on DNA fragmentation in 

brain of control and caffeine-administered rats. 

Caffeine significantly (P < 0.05) increased DNA 

fragmentation as showed from the tail length and 

DNA% in comet tail. Oral supplementation of 

either melatonin or taurine for 28 days significantly 

(P < 0.05) attenuated DNA fragmentation in brain 

of caffeine-administered rats. 

  

  

  
FIG. 2: MELATONIN AND TAURINE AMELIORATED THE INDUCED DNA DAMAGE IN BRAIN OF CAFFEINE-ADMINISTERED 

RATS. PHOTOMICROGRAPHS OF COMET ASSAY SHOWING DNA MIGRATION PATTERN IN BRAIN TISSUE FROM (A) 

CONTROL RATS, (B & C) NORMAL RATS TREATED WITH MELATONIN AND TAURINE, RESPECTIVELY. ALL OF WHICH 

SHOWING NORMAL SPOTS AND ROUND UNTAILED SHAPE (ARROWS), (D) CAFFEINE ADMINISTERED RATS SHOWING 

INCREASED NUMBER OF DAMAGED SPOTS WITH TAILED SHAPES (HEAD ARROWS) , (E&F) CAFFEINE ADMINISTERED 

RATS TREATED WITH MELATONIN AND TAURINE, RESPECTIVELY SHOWING DECREASED NUMBER OF DAMAGED SPOTS 

C 

A 

C 

B 

D 

E F 
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FIG. 3: MELATONIN AND TAURINE AMELIORATED THE DNA DAMAGE INDUCED BY CAFFEINE IN BRAIN OF 

CAFFEINE-ADMINISTERED RATS. PHOTOMICROGRAPHS OF COMET ASSAY SHOWING DNA MIGRATION PATTERN 

IN BRAIN TISSUE FROM (A) CONTROL, (B) CONTROL + MELATONIN (C) CONTROL + TAURINE, (D) CAFFEINE 

ADMINISTERED RATS, (E) CAFFEINE + MELATONIN AND (F) CAFFEINE + TAURINE 

Melatonin and Taurine Exacerbate the Caffeine 

Effect on Neurotransmitters in Brain of 

Caffeine-Administered Rats: Dopamine and 

norepinephrine level Table 2 in brain of caffeine-

administered rats showed a significant (P < 0.05) 

elevation as compared to their respective normal 

controls. Melatonin and taurine supplementation 

produced a significant (P < 0.05) amelioration in 

both dopamine and norepinephrine levels as 

compared to caffeine administered rats. 

TABLE 2: AMELIORATIVE EFFECT OF MELATONIN AND TAURINE ON NEUROTRANSMITTERS IN BRAIN OF 

CAFFEINE-ADMINISTERED RATS. (A) DA, DOPAMINE IN PICOGRAM/MILLILITER; (B) NE, NOREPI-NEPHRINE 

IN PICOGRAM/MILLILITER 

Group / Parameter Control Melatonin Taurine Caffeine Caffeine + 

Melatonin 

Caffeine+ 

Taurine 

Dopamine (Pg/ml) 33.90 ± 1.10 39.33 ± 2.17 38.28 ± 1.08 98.87 ± 8.81
a
 67.77 ± 3.26

b
 58.00 ± 3.27

b
 

Norepinephrine (Pg/ml) 69.68 ± 4.48 79.28 ± 3.83 69.92 ± 2.12 136.70 ± 2.60
a
 93.80 ± 8.77

b
 87.77 ± 8.73

b
 

Data are expressed as Mean ± SD (N = 6). aSignificantly different from control group, b Significantly different from caffeine group at p ˂ 0.05 

Melatonin and Taurine Prevent Apoptosis in 

Brain of Caffeine-Administered Rats: Caffeine 

significantly (P < 0.05) increased the level of P53 

and BAX gene and decreased Bcl2 gene expression 

in the brain of caffeine-administered rats as 

compared to their respective normal controls.  

 

  
FIG. 4: AMELIORATIVE EFFECT OF MELATONIN AND TAURINE ON APOPTOSIS INDUCED BY CAFFEINE IN BRAIN OF 

CAFFEINE-ADMINISTERED RATS. (A) BAX, APOPTOSIS REGULATOR; (B) Bcl-2, (B-CELL LYMPHOMA-2), ANTI-

APOPTOTIC MARKER; (C) P53, TUMOR SUPPRESSOR GENE. Data are expressed as Mean ± SD (N = 6). aSignificantly different 

from control group, b Significantly different from caffeine group at p ˂ 0.05 

A B 

A 

B C 
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Treatment with either melatonin or taurine for 28 

days markedly (P < 0.05) decreased brain level of 

P53 and BAX gene and increased Bcl2 gene in the 

brain of caffeine-administered rats. In the same 

trend, the protein expression level of P53 and BAX 

significantly (P < 0.05) increased in the brain of 

caffeine-administered rats, and Bcl2 protein 

expression level decreased. Co-treatment with 

either melatonin or taurine for 28 days markedly 

(P<0.05) decreased brain expression level of P53 

and BAX protein and increased Bcl2 protein 

expression in the brain of caffeine-administered 

rats Fig. 4. 

DISCUSSION: Caffeine is present in energy 

drinks, drugs, several food and beverage products, 

such as coffee, tea, and carbonated. It is probably 

the most commonly consumed pharmacologically 

active compound in the world 
1, 35

. Some of the 

effects of caffeine could favor the generation of 

free radicals and lead to a subsequent increase in 

oxidative stress by increasing lipid peroxidation 
36

. 

Although the wide use of caffeine in productions, 

its increasing consumption, and the conflicting 

results that had been generated by using of variable 

forms of caffeine and experimental methods little 

attention has been paid towards the study of its 

possible toxicity.  

The present investigation evaluates the possible 

protective role of melatonin and taurine against 

caffeine toxic effects on the brain of rats, focusing 

on oxidative stress, inflammation, oxidative DNA 

damage, apoptosis, and monoamine neuro-

transmitters. 

The total antioxidant capacity is determined by 

measuring the markers of oxidative stress. MDA 

has been reviewed as a primary biomarker of free 

radical mediated oxidative stress and lipid damage 
37

. The results showed the prooxidant effect of 

caffeine administration, evidenced by the 

significantly increased levels of MDA. Caffeine 

has been reported to induce the generation of ROS 

and eventually to result in oxidative stress as 

indicated by increased lipid peroxidation activity 
38

. 

Choi et al., 
39

 supposed that coffee or its 

metabolites can be pro-oxidant and can increase 

lipid peroxidation. Similarly, Leelarungrayub et al. 
40

 reported a significant increase in MDA level in 

men consuming caffeinated coffee, when compared 

to decaffeinated coffee or control, followed by a 

submaximal exercise test. In the same trend, Metro 

et al., 
41

 demonstrated an increased intramuscular 

fat oxidation after caffeine-rich food consumptions.  

In contrast, caffeine-induced rats showed a 

significant decline in brain GSH content. GSH has 

been considered as a biomarker of redox imbalance 

at the cellular level and the most abundant non 

protein thiol that defends against oxidative stress 
37

. 

Intracellular GSH depletion significantly promotes 

mitochondrial ROS production and triggers 

mitochondrial membrane depolarization 
42

. The 

declined GSH might be due to nicotinamide 

adenine dinucleotide phosphate (NADPH) 

depletion or increased consumption of GSH in non-

enzymatic removal of oxygen-radicals 
43

.  

In addition, reduced activity of the antioxidant 

enzyme SOD was observed in the brain of the 

caffeine-induced rats. SOD has been reported as an 

important defense enzyme that catalyzes the 

partitioning of superoxide radical, which produces 

hydrogen peroxide (H2O2) that is turned into H2O 

and molecular oxygen by catalase 
44

. In agreement 

with our findings, Cruz et al., 
45, 

and Ekaluo et al. 
46 

concluded that caffeine could cause lipid 

peroxidation and decrease the GSH content and 

SOD activity in molluscs (Ruditapes 

philippinarum) and rats, respectively.  

These changes were significantly ameliorated by 

melatonin and taurine administration, which 

reduced the MDA level and increased GSH content 

and SOD activity. The ameliorative effect of 

melatonin could be attributed to its free radical 

scavenging ability. It prevents peroxidation, which 

is a common feature of other antioxidants. Also, it 

had been found to be more potent than glutathione 

and mannitol in hydroxyl radical scavenging 

activity and decrease the nitric oxide synthase 

(NOS) activity that is a pro-oxidative enzyme 
47

. In 

addition to its highly free radical scavenging 

capacity, its metabolites are in a series of reactions 

that is known as the melatonin antioxidative 

cascade 
48, 49

. This function relies only on 

melatonin's chemical structure, it reacts directly 

with free radicals and neutralizes their oxidative 

effects, and the same is true for its metabolites. No 

cell receptor is required to achieve this effect.  
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Hence, this function cannot be lost through 

evolution 
50

. It has been reported that natural 

antioxidants such as vitamin E and melatonin might 

decrease MDA level and increase the activities of 

GSH levels in pathological conditions induced by 

oxidative stress 
51

. It ameliorates oxidative tissue 

and DNA damage resulting from formaldehyde-

induced toxicity, decreases MDA level, and 

increases GSH level in lung, liver, and kidney 
52

.  

According to Wang et al., 
53

 melatonin up-

regulated the relative expression of the antioxidant 

enzyme SOD during in-vitro embryo development. 

Moreover, in an experimental model of carbon 

tetrachloride (CCl4)-induced liver injury, 

melatonin treatment attenuated liver injuries and 

diseases by inhibiting oxidative damage and other 

mechanisms. It increased SOD and GSH activity 

and decreased MDA level 
54

. 

The ameliorative effect of taurine could be 

attributed to be a free radical scavenger, membrane 

stabilizer and hypolipidemic agent 
55

. Some 

investigations indicated that taurine’s antioxidant 

actions are related to the up-regulation of the 

activity of the antioxidant enzymes and reducing 

the amount of damaging ROS. Thus, taurine is able 

to indirectly elevate the activity of the antioxidant 

defenses. Also, taurine acts as an important anti-

inflammatory agent, which includes a 

myeloperoxidase-catalyzed reaction between 

taurine and hypochlorous acid to generate an anti-

inflammatory product, taurine chloramine. 

However, through the myeloperoxidase reaction, 

taurine also decreases the levels of the neutrophil-

generated ROS, hypochlorous acid. Furthermore, 

its intra-mitochondrial depletion is connected to up-

regulation in mitochondrial superoxide generation, 

leading to the suggestion that the mitochondria are 

the primary source of ROS generated by taurine 

deficient tissues 
56, 57

. Also, taurine advances the 

synthesis of GSH and raises the action of GPx, and 

this could be the mechanism of enzymatic 

antioxidant defense 
58

.  

In the other hand, taurine increases SOD activity in 

a dose-dependent manner 
59

. Additionally, NIU et 

al. 
60

 reported that taurine supplementation was 

reported to be effective against oxidative stress, 

apoptosis, and inflammation in injured brain cells, 

it significantly decreased MDA content and 

increased GSH and SOD content in injured brain 

cells. 

Reactive oxygen species can react with DNA, 

carbohydrates, proteins, and lipids in a destructive 

manner as a result of their high levels of chemical 

reactivity. Therefore, ROS are considered as DNA-

damaging agents that promote oncogenic 

transformation, increase mutation rates, and 

function as cellular messengers in redox signaling, 

causing disruptions in normal mechanisms of 

cellular signaling 
61

. The increase of oxidative 

stress results in double-strand DNA breaks 
62

. The 

present study revealed that caffeine significantly 

increased DNA fragmentation as showed from the 

tail length and DNA% in the comet tail. As shown 

in the comet assay results, oral supplementation of 

melatonin and taurine significantly attenuated DNA 

fragmentation in the brain of caffeine-administered 

rats. These findings are consistent with Schmid et 

al. 
63

, who found that men with high caffeine 

consumption had significantly higher frequencies 

of sperm comet values with DNA damage 

compared to men with less caffeine consumption. 

Genotoxicity of caffeine was also reported by 

Selby and Sancar 
64

, who concluded that caffeine 

can intercalate into the DNA molecule of bacteria 

and block repair enzymes, and Aguirre-Martínez et 

al., 
9
 who found damage in the DNA of hemocytes 

of the Asian clam Corbicula fluminea after a 21-

day exposure to caffeine. 

Reiter et al., 
65

 reported that the first primary 

function of melatonin is to protect cells from 

oxidative stress, avoiding DNA, RNA, proteins, 

and membrane cell damage through its free radical 

scavenger capacity. Melatonin protects oocytes 

from DNA damage during prophase arrest by 

enhancing DNA repair via non-homologous 

end‐joining (NHEJ) pathway and subsequently 

prevents the deterioration of oocyte quality during 

meiotic maturation 
66

. In the same trend, it had 

been found that melatonin enhances the repair of 

oxidized DNA. This is maybe due to the ability of 

melatonin to transform guanosine radical to 

guanosine by electron transfer 
67

. Moreover, it was 

reported that melatonin diminished the formation of 

8-hydroxy-2́՜-deoxyguanosine (8-OH-dG), a 

damaged DNA product, 60–70 times more 

effective than some classic antioxidants (ascorbate 

and α-tocopherol) 
68

. 
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In the same trend, the ameliorative effect of taurine 

agreed with Abd El-Twab et al., 
69,

 who found that 

oral supplementation of taurine for 6 weeks 

ameliorated ROS-induced DNA damage in 

testicular tissue of the diabetic rats. Another study 

reported that taurine treatment prior to KBrO3 

significantly attenuated DNA damage and DNA-

protein cross-linking caused by KBrO3 to the rat 

intestine 
70

. 

Biochemically, the main action of caffeine is 

antagonism of adenosine A1 and A2 receptors. 

Neuropsychiatric effects are mediated largely by 

blockade of A1 and A2 receptors in the CNS. 

Adenosine A1 receptors are present in almost all 

brain areas, but particularly in the cerebral cortex, 

hippocampus, thalamus, and cerebellar cortex 
71

. 

Caffeine acting as an antagonist of A2AR may 

inhibit an important A2 AR-mediated tissue-

protecting mechanism. Also, this suggested that 

caffeine might trigger tissue damage if consumed 

during an acute inflammation episode 
72

. Caffeine 

has been indicated to occupy adenosine receptors 

and then block the neurotransmitter action. 

Adenosine receptors relate to interplay of release, 

reuptake, metabolism, and excretion of 

neurotransmitters 
73

. 

We found that caffeine markedly elevated 

dopamine and norepinephrine levels in brain, while 

melatonin and taurine significantly down-regulated 

the level of dopamine and norepinephrine in the 

brain of caffeine-administered rats. Our 

observations were in a line with Volkow et al. 
74,

 

who interpreted that caffeine’s DA-enhancing 

effects in the human brain are indirect and 

mediated by an increase in D2/D3R levels and/or 

changes in D2/D3R affinity. Also, norepinephrine 

level increased after caffeine treatment. These 

observations agree with Smith et al., 
75

 who 

concluded that caffeine opposes the reduction in 

the turnover of central noradrenaline. 

There are links between adenosine A2A receptors 

and the dopaminergic system in the brain. As 
adenosine inhibits dopaminergic neurotransmission, 
blockade of A2A receptors by caffeine may 

increase dopaminergic activity and exacerbate 

psychotic symptoms 
76

. The inhibitory action of 

melatonin on enhanced dopamine release was first 

demonstrated in excised female rat hypothalamic 

tissue in vitro, and it appears to be mediated by 

membranal, low-affinity melatonin binding sites by 

suppression of calcium influx into the stimulated 

nerve endings 
77

. Melatonin inhibits dopamine 

release in the retina and mesencephalic dopamine 

areas 
78

. It was reported that melatonin enhanced 

norepinephrine content in the adrenal medulla of 

chronically stressed rats 
79

.  

The function of the neurotransmitter implies the 

existence of specific taurine receptors and the 

neuromodulator role of interference with the 

functions of other transmitter systems 
80

. Taurine 

injection within the Substantia nigra reduces 

extracellular dopamine 
81

 and modulates striatal 

dopaminergic transmission 
82

, but another study 

reported that direct injection of taurine into the 

striatum had significantly increased extracellular 

dopamine 
83

.  

Also, Chen et al., 
84

 report a significantly lower 

dopamine uptake was detected in the striatal 

synaptosomes of SHR rats that were fed with high-

dose taurine than those of the controls. It also 

affects norepinephrine uptake and releases in rat 

cerebral cortical slices 
85

. Pretreatment of taurine 

reduced the levels of dopamine, noradrenaline, and 

5-hydroxytryptamine. Moreover, taurine triggers 

the elevation of striatal dopamine is dependent on 

impulse flow 
86

. 

Increased ROS are related to excess cell loss and 

mediate the induction of apoptosis in various cell 

types 
87, 88

. Our findings showed that caffeine 

increased P53 and BAX gene and protein 

expression levels but decreased Bcl-2 gene and 

protein expression levels in the brain. Treatment 
with melatonin and taurine significantly ameliorated 
these changes. 

Several reports showed that high concentrations of 
caffeine induce cellular apoptosis 7. Our observations 
were in line with Lu et al., 

7,
 who found that 

treatment of osteoblasts with more than 0.5 mM 

caffeine triggered an increase in Bax and a decrease 

in Bcl-2 protein levels. Bax and Bcl-2 regulate 

changes in the mitochondrial membrane potential 

(MMP) and permeability, which play important 

roles in apoptotic processes 
89

. Another study was 

carried out by He et al., 
8
 who showed that the 

mechanism of induction of apoptosis in JB6 Cl41 
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cells by caffeine involved activated p53, Bax, and 

caspase 3. It has been reported that caffeine had a 

mechanistic effect on cell cycle function, triggered 

apoptosis, and perturb key regulatory proteins, 

including the tumor suppressor protein p53 
90

.  

Melatonin supplementation upregulated the 

antiapoptotic Bcl-2 level and decreased the 

proapoptotic Bax level. The ability of melatonin to 

enhance the Bcl-2 level has been shown in rat brain 

and has an antiapoptotic role 
91

. Furthermore, an in 

vitro study by Wang et al., 
53

 proved the anti-

apoptotic effect of melatonin by increasing Bcl-2 

level and down-regulating the pro-apoptotic gene 

p53. Our results are also consistent with Juknat et 

al. 
92,

 who found a decrease in Bax expression after 

pre-incubation of cultured rat astrocytes with 10 

nm melatonin. Melatonin significantly decreased 

the mRNA and protein expression of BAX, while it 

enhanced the mRNA and protein expression of Bcl-

2 of mouse Leydig cells, melatonin at 

concentrations of 10 and 100 ng/mL for 36 hours 
93

. Melatonin protective effects appear to be 

associated with its antioxidant ability, which limits 

intra-mitochondrial glutathione loss and reduces 

mitochondrial protein damage and improves the 

electron transport chain activity 
94, 95

.  

Under the condition of apoptosis, apoptotic cells 

undergo an exaggerated activation of the regulatory 

volume decrease in which taurine effluxes the cell. 

If the regulatory volume decrease is disrupted by 

preloading the cells with taurine several apoptotic 

steps, such as apoptotic cell shrinkage and DNA 

fragmentation, are blocked 
96

. Although taurine 

loading did not inhibit early apoptotic events, such 

as caspase activation, it blocked the progression of 

the apoptotic cascade beyond the cell shrinkage 

step 
96

. NIU et al., 
60

 found that taurine 

supplementation significantly reduced P53, 

caspases-3, and BAX mRNA expression and 

increased Bcl-2 mRNA expression in injured brain 

cells. Also, taurine significantly inhibited 

myocardial H/R-induced apoptosis, and the 

mechanism may be related to a down-regulated 

expression of PUMA 
97

. 

CONCLUSION: Our study showed the protective 

effect of melatonin and taurine against caffeine 

toxicity in rat brain. The results revealed that 

caffeine increased oxidative stress by increasing 

MDA and decreasing GSH content and SOD 

activity. From comet assay results, caffeine caused 

DNA damage as shown from DNA fragmentation 

and tail %. Caffeine-administered rat showed 

markedly high levels of dopamine and norepi-

nephrine, as well as significantly high levels of 

apoptotic markers, BAX and P53, and lower 

antiapoptotic Bcl-2. Melatonin and taurine 

ameliorated all of caffeine toxic effects.  

As shown from our results, taurine appears to be 

more potent against caffeine toxicity than 

melatonin. From this point of view, taurine and 

melatonin can impact upon caffeine-induced 

oxidative stress and apoptosis through their 

antioxidant activity.   
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