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ABSTRACT: In recent years, the extensive use of antibiotics has resulted in 

their frequent detection in the effluent discharge of wastewater discharge 

plants (WWTPs). In this study, the feasibility of using Surfactant-Modified 

Kaolinite (SMK) to remove the antibiotic, Ciprofloxacin (CIP) from 

wastewater was evaluated from batch experiments. The batch adsorption 

system was utilized to evaluate the CIP removal efficiency at different 

contact times, SMK dosages, and CIP concentrations. The experimental data 

were analyzed by the Langmuir, Freundlich, Temkin, and Dubinin–

Radushkevich (D–R) isotherm models. R
2
 values of Langmuir and D–R 

isotherm models are higher than that of other models, and maximum 

monolayer coverage (qmax) was calculated as 61.82 mg/g. The separation 

factor of 0.495 indicated favorable sorption. Also, from the Freundlich 

isotherm model, the intensity of adsorption (n) that indicated favorable 

sorption was 2.954. The kinetic study of sorption indicates that the pseudo-

second-order model provides a better correlation of the sorption data than the 

pseudo-first-order, confirming the chemisorption of CIP ions on SMK. The 

results showed that a significant increase in CIP sorption capacity could be 

achieved as the loading level of Cethyltrimethylammonium bromide 

(CTAB), a cationic surfactant, on kaolinite surface exceeds monolayer 

coverage.SMK shows promise to be an effective bio adsorbent for the 

removal of CIP from an aqueous solution. The adsorption involved is 

physisorption, which is best described by D-R isotherm. 

INTRODUCTION: Antibiotics are substances that 

can effectively inhibit the growth of pathogens 
1, 2

. 

At present, a large number of antibiotics are used 

not only to treat human and animal diseases but 

also in poultry feeding and aquaculture 
3, 4

. 

Antibiotics play a very important role in the 

prevention of diseases and growth promotion 
5
.  
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However, extensive use of antibiotics has resulted 

in their frequent detection in the effluents of 

wastewater treatment plants (WWTPs) 
6, 7

. Many 

commonly used antibiotics do not biodegrade 

easily and persist in the environment as potent 

pollutants and hence have attracted increasing 

concern in recent years 
7, 8

. Since most antibiotics, 

including Ciprofloxacin are poorly metabolized and 

absorbed by humans and animals, large fractions 

are excreted through urine and faeces as 

unmodified parent compounds 
9, 10

. 

Residues of these antibiotics discharged from 

agricultural runoff, and municipal wastewater 

treatment plants are frequently detected in soil, 
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surface water, groundwater, and even drinking 

water 
11, 12

. Due to leaching from agricultural fields, 

these residues could threaten surface water and 

groundwater quality 
13

. The widespread use of 

antibiotics has become a serious problem as it has 

several potential adverse effects, including acute 

and chronic toxicity, impact on aquatic 

photosynthetic organisms, disruption of indigenous 

microbial populations, and dissemination into 

antibiotic-resistant genes among microorganisms 
14, 

15
. 

CIP is a zwitterionic antibiotic categorized as a 

second-generation fluoroquinolone, which can 

effectively act against a wide range of gram-

negative and gram-positive bacteria 
16

. Due to its 

increasing use, large quantities of effluents 

containing CIP have been discharged into the 

environment. The excessive existence of CIP in the 

aquatic environment can lead to increased 

antibiotic resistance among bacteria and adverse 

effects on water quality 
17, 18

. Thus, the removal of 

CIP from water has become an increasingly 

important and necessary task 

Though the removal of antibiotics from 

pharmaceutical wastewater is quite expensive, it is 

essential that wastewater must be treated properly 

prior to its release into the environment
19

. Among 

the available processes for the treatment of 

wastewater containing antibiotics, the adsorption 

process is considered as the most effective and 

efficient method 
20

. The main drawback of 

adsorption process for wastewater treatment is the 

cost of the adsorbent. Commercially available 

adsorbents such as activated carbon are expensive 
21

. If inexpensive and abundantly available 

materials are found in nature as the alternative 

adsorbents, the adsorption process offers a very 

attractive and economical method for 

environmental remediation 
22

. 

Clay minerals have gained a lot of attention as 

adsorbents , catalysts and biomaterials due to their 

large surface area, considerable cation exchange 

capacity (CEC), the presence of both Bronsted and 

Lewis acidity and  low cost. Among the clay 

minerals, Montmorillonite and Bentonite have 

received the most attention 
23-25

. Therefore, there is 

a lot of scope for the exploration of kaolinite clay 

mineral as an adsorbent. 

Literature reports indicate the use of kaolinite clay 

minerals for the removal of pollutants from 

aqueous effluents. For example, iron-manganese 

oxide-coated kaolinite was successfully used to 

remove Crystal violet, Direct red 81, and Congo 

red from water 
26-29

.  

In the present study, Surfactant Modified Kaolinite 

was used to remove CIP antibiotic from aqueous 

solutions in batch adsorption experiments. Factors 

including adsorbent dose, contact time, initial 

concentration of CIP, and pH, which influence the 

adsorption was investigated in detail to explore the 

possible mechanism of adsorption. 

MATERIALS AND METHODS: 

Reagents and Solutions: Ciprofloxacin antibiotic 

(CIP) (molecular weight 331.34 g/mol, CAS 

Number 85721-33-1, wavelength (275 nm) and 

molecular formula C17H18FN3O3) was procured 

from Sigma Aldrich Co. Fig. 1. A stock solution 

containing 1000 mg/L of the CIP was prepared by 

dissolving CIP in distilled water and suitably 

diluted to get the solutions of the desired 

concentration (10, 25, 50, and 100 mg/L).  

 
FIG. 1: STRUCTURE OF CIP 

Surfactant-Modified Kaolinite: Kaolinite was 

synthesized according to the following procedure: 

2.0 g of natural Kaolinite was dispersed in 10 mL 

of distilled water containing CTAB. The 

suspension was then stirred at 60 °C for 15 min and 

dried in a microwave oven at 600 W for 5 min. The 

treated Kaolinite was repeatedly washed with 

deionized water to remove CTAB superficially 

adsorbed on its surface. The modified Kaolinite 

was then dried in an oven at temperature 105 °C for 

4 h. 

Batch Adsorption Experiments: Batch adsorption 

was employed in the present study, and the most 

effective factors for the adsorption process 

https://pubchem.ncbi.nlm.nih.gov/search/#collection=compounds&query_type=mf&query=C22H14N6Na2O9S2&sort=mw&sort_dir=asc


Balarak et al., IJPSR, 2021; Vol. 12(2): 813-819.                                          E-ISSN: 0975-8232; P-ISSN: 2320-5148 

International Journal of Pharmaceutical Sciences and Research                                                                                815 

including contact time (10-100 min), pH (3-11), 

adsorbent dose (0.2-3.0 g/L), and initial 

concentration of CIP (10-100 mg/L) were assessed. 

The optimum pH was determined by varying the 

pH in the range 3-11, keeping all other parameters 

constant. The experiments were performed in 100 

mL beakers at a constant concentration of CIP. 

Then this mixture was shaken using a shaker with 

150 rpm at 30 °C. HCl and NaOH were used to 

adjust the pH of the solution.  

In the next step, the optimum adsorbent dose was 

estimated by keeping contact time, initial CIP 

concentration, and the obtained optimum pH 

constant. After determination of the optimum pH 

and adsorbent dose, the concentration of CIP in the 

specified contact times was found out. The final 

CIP concentration in solution was measured by a 

UV-Visible spectrophotometer at wavelength 275 

nm. Each batch experiment was repeated three 

times.  

The removal efficiency (R, %), the adsorption 

capacities at equilibrium, (qe, mg/g), and at time t, 

(qt, mg/g) were calculated using the following 

equations
30

: 

%R= [(C0−Ce) / C0] × 100 …..(1) 

qe = (C0−Ce)V/M …..(2) 

qt = (C0−Ct)V/M …..(3) 

Where R (%) and qe (mg/g) are the removal 

efficiency and adsorption capacity respectively. C0 

(mg/L) is the initial concentration, Ct (mg/L) is the 

concentration at time t and Ce (mg/L) is 

concentration at equilibrium, M (g) is the mass of 

the adsorbent and V (L) is the volume of the 

solution. 

RESULTS AND DISCUSSION: 

Effect of Adsorbent Dose: The effect of SMK 

dosage on the amount of CIP was determined by 

batch method, at 100 mg/L CIP, 30 ± 2 °C, and pH 

= 6.5 ± 0.3, 150 rpm and contact time 60 min. It is 

evident from Fig. 2 that the amount of CIP 

absorbed increases with the increase in the 

adsorbent dose from 0.2 to 1.5 g/L, and removal % 

increases from 52.42 to 98.56. The subsequent fall 

in removal percentage with an increase in 

adsorbent dosage may be due to the adsorption sites 

getting saturated during adsorption. Hence the 

optimum dosage can be taken as 1.5 g in all 

calculations
31-32

. Even at high SMK dosages, the 

adsorption does not improve due to the interference 

between binding sites and reduced mixing at high 

adsorbent densities, as depicted in Fig. 2 
33

. 

Therefore, it is suggested that the removal of CIP 

ion should be carried out using a small amount of 

adsorbent rather than a large quantity of adsorbent. 

 
FIG. 2: EFFECT OF ADSORBENT DOSAGE ON CIP 

ADSORPTION (C0 = 100 mg/L, TIME = 60 min, pH = 6, 

TEMP= 30 ± 2 °C AND MIXING RATE 150 rpm) 

Effect of pH: In the sorption process, the pH of the 

sorbate has an important role because it affects the 

charge on the functional groups of biosorbent as 

well as their dissociation on active sites. It also 

influences the sorbate solubility as well as its 

degree of ionization 
34, 35

. The sorption of CIP on 

SMK was studied at pH 3-11 with a difference of 

single unit value, while all other parameters were 

kept constant.  

 
FIG. 3: EFFECT OF pH ON CIP REMOVAL (Ce/C0) (TIME 

= 60 min, ADSORBENT DOSAGE 1.5 g/L, MIXING RATE 

150 rpm, C0 = 100 mg/L) 

Fig. 3 shows that the sorption of the CIP on SMK 

increases with increasing pH from 3 onwards and 

attains a maximum at pH 6, and decreases up to pH 

11. At low pH values, the species of CIP that are 
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present are in their cationic form, favoring the 

adsorption on negative charged SMK surface by 

cation exchange of CIP
+
 for the natural cation 

within the SMK interlayer. This is the adsorption 

mechanism that is proposed and widely reported 

for adsorption of cations on SMK 
36, 37

. 

Sorption kinetics: Fig. 4 illustrates the effect of 

contact time on the sorption of CIP on SMK. The 

CIP adsorption (uptake) was found to increase 

rapidly with the increase in contact time, and the 

optimum percentage adsorption of the CIP was 

found to occur at 60 min, achieving the % removal 

of 98.56, after which it remained constant for the 

rest of the adsorption period. The slow rate of 

adsorption by the adsorbent may be attributed to 

the lack of available vacant active sites on the 

adsorbent to accommodate the CIP species present 

in the solution 
38, 39

.  

In general, the initial rate of adsorption was fast, 

and then the slow adsorption follows as the number 

of available adsorption sites slowly decreases 
40, 41

. 

Therefore in this study, the optimum contact time 

for CIP adsorption on the SMK was fixed at 60 min 

as represented in Fig. 4. 

 
FIG. 4: EFFECT OF CONTACT TIME ON CIP 

REMOVAL (pH =6, ADSORBENT DOSAGE 1.5 g/L, 

MIXING RATE 150 rpm, C0 = 100 mg/L) 

Two simplified kinetics models, including pseudo-

first-order and pseudo-second-order equations, are 

suggested. The pseudo-first-order model is given 

by equation
42

 given below: 

log (qe – qt) = log qe – k1/2.303t 

Where k1 is the pseudo-first-order rate constant 

(1/min), and qe is the pseudo-equilibrium sorption 

amount.  

The pseudo-second-order model is given by 

equation
43

given below: 

t/qt = 1/(k2 qe
2
 ) + t/(qe) 

Where k2 is the pseudo-second-order rate constant 

(g/mg.min). The above-mentioned models basically 

include all steps of sorption such as external film 

diffusion, sorption, and internal particle diffusion; 

hence they are pseudo-models. The parameters in 

these two models are determined from the linear 

plots of ln (qe−qt) versus t Fig. 5 and t/qt versus t 

Fig. 6, respectively Table 1. It is found that the 

correlation coefficients for the pseudo-first-order 

model are not high for CIP sorption on SMK; 

moreover, the qe values calculated from the pseudo-

first-order model are not consistent with the 

experiment data. However, good correlation 

coefficients are obtained by fitting the experimental 

data to pseudo-second-order, indicating that the 

sorption process for CIP is of the pseudo-second-

order. Fig. 6 also shows the typical curves in 

relation to the sets of data calculated from the rate 

constants of the pseudo-second-order model. The 

agreement between the sets of data reflects the 

extremely high correlation coefficients obtained 

and shown in Table 1.  

Since, the above two models cannot identify the 

sorption mechanism; the intra-particle diffusion 

model was tested. The intra-particle diffusion 

model is denoted by equation 
44 

given below:  

qt = kt
0.5

 + C 

Where k is the rate constant of intra-particle 

diffusion (mg/g min
−0.5

) and is determined from the 

linear plot of qt versus t
0.5

. In theory, such types of 

plots may present multi-linearity, indicating that 

two or more steps may occur. The first sharp 

portion is the external surface sorption or 

instantaneous sorption stage (Stage 1). The second 

portion is the gradual sorption stage (Stage 2), 

where intra-particle diffusion is rate-controlled. 

The third portion is the final equilibrium stage 

(Stage 3), where intra-particle diffusion starts to 

slow down due to extremely low solute 

concentrations in the solution. Results of this 

analysis on the CIP data are illustrated in Fig. 7 as 

plots of qt versus t
0.5

. The constant rate values (k) 

are shown in Table 1.  
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            FIG. 5: PSEUDO-FIRST-ORDER PLOTS FOR                FIG. 6: PSEUDO-SECOND-ORDER PLOTS FOR  

                   THE ADSORPTION OF CIP ON SMK                                  THE ADSORPTION OF CIP ON SMK 

 
FIG. 7: INTRA-PARTICLE DIFFUSION PLOTS FOR THE ADSORPTION OF CIP ON SMK 

TABLE 1: THE RESULTS OF KINETIC MODEL STUDIES RELATED TO CIP ADSORPTION ON SMK 

CIP Conc. 

(mg/L) 

(qe) exp Intraparticle diffusion model Pseudo-first order   model Pseudo-second order model 

 kd C R
2
 (qe) cal k1 R

2
 (qe) cal k2 R

2
 

10 9.541 0.732 7.451 0.841 6.147 0.039 0.841 9.481 0.0071 0.998 

25 17.45 0.684 9.832 0.798 10.42 0.041 0.874 16.13 0.0059 0.997 

50 32.35 0.623 12.74 0.813 22.73 0.053 0.832 31.25 0.0043 0.999 

100 60.73 0.538 16.79 0.796 39.45 0.062 0.919 61.80 0.0028 0.997 

 

Adsorption Isotherms: The CIP ion distribution 

between the liquid and solid phases can be 

described by mathematical model equations such as 

the Langmuir isotherm, Freundlich isotherm, 

Dubinin–Radushkevich, and Temkin. These models 

are used because of their ability to describe 

experimental data over a wide range of 

concentrations. All four isotherm models can be 

easily transformed into linear forms, just by linear 

regression.  

TABLE 2: LINEAR FORMS AND RESULTS OBTAINED FROM ISOTHERM STUDIES OF CIP REMOVAL ON SMK 

Isotherm Formula Plot Parameter Values Ref 

Langmuir 

  

q max (mg/g) 61.823 45 

kL (L/mg) 0.0274  

R
2
 0.9142  

Freundlich 

 
 

kF(mg/g(L/mg)
1/n

) 0.0916 46 

n 2.954  

R
2
 0.8183  

Temkin 

 
 

 
kT (L/mg) 0.5465 47 

B1 1.749  

R
2
 0.8389  

D–R 

  

q max (mg/g) 21.475 47 

 1.168  

R
2
 0.9961  
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As shown in Table 2, in the present study, the data 

points in equilibrium models give a much better fit 

to the Dubinin–Radushkevich (D–R) isotherm. 

Contrary to Langmuir or Freundlich's models, the 

D–R isotherm does not assume a homogeneous 

surface, constant sorption potential or even a two-

dimensional adsorbate layer on the surface. The D–

R model considers that the adsorption occurs in 

multiple-layer mode and involves van der Waals 

forces. The D-R isotherm also is temperature and 

concentration-dependent. 

CONCLUSION: SMK was successfully used for 

the adsorption of CIP from an aqueous solution. 

The results showed that SMK sorbent proved to be 

a very effective biosorbent for the removal of CIP 

ions from water. The adsorption of CIP from 

aqueous solution on SMK was investigated with 

variations in contact time, initial CIP concentration 

and adsorbent dosage. The results showed that the 

adsorption of CIP on SMK increased within 60 min 

and reached equilibrium gradually. The removal 

percentage was 91.51 for 100 mg/L for 1.5 g/L 

SMK. The adsorption behavior of CIP on SMK 

was best described by the D-R isotherm. The 

results also indicated that the type of adsorption 

involved in this study is physisorption.  
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